A Math 447: Homework 3
o

N4V Michael Morgan Wise
Due date: Wednesday, September 17, 2014.

1. Find the infimum and supremum, whenever they exist, of the following sets. Justify
(or explain) your answer.

n

(a) S; = {1— e e N}

Answer. Note that ) = {2,3,%,%,2,2 .}, Elements have been written corre-
sponding to n € N. It seems that 2 is the supremum and 1/2 is the infimum. Let

this be demonstrated.

e (2 is the supremum.) It must be shown that 2 is an upper bound for S; and
that 2 is the least upper bound of S;. The inequality 1 — L:nllﬁ < 2 is true
exactly when —(—1)" < n since n > 0 by n € N._Qbviously, this implies the
inequality is true for all n € N. Thus, 2 is an uppet bound. It remains to be
shown that 2 is the least upper bound. Consider u, any upper bound of S;.
Thus, for every element z in S;, u > z, but 2 € S, so 2 < u for any upper
bound u of S;. Thus, 2 is the supremum of S;.

e (5 is the infimum.) It must be shown that 1/2 is an upper bound of S; and
that 1/2 is the least upper bound of ;. The inequality 1 — % > % is
true exactly when n > 2(—1)". Clearly, this inequality is true for all n € N,
implying that 1/2 is a lower bound of S;. It must be shown that 1/2 is the
greatest lower bound. Suppose [ is a lower bound of S;. Thus, for any z € S,
! < z. Thus, since 1/2 € Sy, I < 1/2 for any lower bound of S; and 1/2 is
the infimum.

(b) Sg:{:ne]R:$<%}

inswer. Solving the inequality z < i— implies that S, = {m ER:—0<z<
—lor 0 <z < 1;. Since the set has no lower bound, the infimum does not exist

by the Completeness Property for Infima. Since an upper bound exists for the
set, however, the supremum does exist. Consider 1. For every element = € S,
z < 1, so 1 is an upper bound. Is it the least upper bound? Thus, suppose
v < 1 for some v € R. Thus, either 0 < v or v > 0. Should 0 < w, choose any
se{reR:0<z<1}CS; and v < 8. In the other case, where v > 0, choose
' =%k Since 0 <wv <1, 2v < v+ 1, implying that v < ¥, By Lemma 2.3.3,
1 is the supremum of S,.



(c)

/

832{:1:61&:3;4_22;32}

Answer. Solving the inequality = + 2 > z? implies that Sy ={z e R: -1 <z <
2}. Thus, the set is bounded and by the Completeness Property, the supremum
and infimum exist. Consider 2. Since x < 2 for all x € S5, 2 is an upper bound.
For any upper bound b € R, z < b for all z € S5 so 2 < b for any upper bound b
of S5. Therefore, 2 is the supremum. Consider —1. —1 < z for all z € S3, so it
is a lower bound. For any lower bound b of S, b is less than every element of S,
so b < —1. Thus, —1 is the infimum.

54:{%—;};:n,m€N}

Answer. Note that should n = 1 and m be large, £ — L will be very close to

1. Similarly, should m = 1 and n be large, this difference will be close to —1.
As n and m vary in N otherwise, this difference lies between —1 and 1. Thus,
it is conjectured that 1 is the supremum and —1 is the infimum. It has already
been discussed that they are upper and lower bounds respectively. It remains to
be determined whether they are the least upper bound and greatest lower bound,
however. Consider 1. Let € > 0. Let n = 1 and choose m € N by the Archimedean
Principle such that m > 1. Let d =2 -1 € §5. Thus, 1—e=1-c< -2 =d
Thus, by Lemma 2.3.4, 1 is the supremum of this set. Consider —1, and let ¢ > 0.
Let m = 1 and choose n € N by the Archimedean Principle such that n > % Let
d= % - ?—i € Sy Thus, d = % - -?% < e—1=—1+e€ Thus, by the corresponding

lemma to Lemma 2.3.4 found in Exercise 14 on page 40, —1 is the infimum.

2. (Compatibility of sup/inf with algebraic operations)
Given nonempty subsets A and B of R and k € R, we define the following subsets of

R:

kA:={k-a:a€ A}
k+A:={k+a:a€ A}
A+B:={a+b:acAbec B}.

Assume that A and B are nonempty bounded subsets of R. Prove {any two of) the
following;:

(a)

If k > 0, then inf(kA) = kinf(A), sup(kA) = ksup(A).

Proof. Let k > 0. It is to be shown that that infimum of kA is kinf A and the
supremum of kA is ksup A.
o (infkA = kinf A):
— (kinf A is a lower bound): Note that for every a € A, inf A < a. Since

k > 0, kinf A < ka. Thus for any element ka of kA, kinf A is less than
or equal to that element, i.e., kinf A is a lower bound of kA.

— (kinf A is the greatest lower bound): Let [ be a lower bound of kA,
implying that [ < ka for any ¢ € A. Thus, since £ > 0, {; < a. This
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implies that & ¢ is a lower bound of A. Thus, % < inf A. Again, since

k>0,1< klnf A. Thus, kinf A is the greatest lower bound of kA.
Therefore, inf kA = kinf A.
o (supkA = ksupA):
— (ksup A is an upper bound): Note that for any a € A, sup A > a. Thus,
since k > 0, ksup A > ka. Thus, ksup A is an greater than or equal to
any element ka in kA, i.e., ksup A is an upper bound of kA.

— (ksup A is the least upper bound): Let u be an upper bound of kA,

implying that u > ka for all @ € A. Thus, since k& > 0, z = a. This
‘/ implies that ¥ is an upper bound for A. Thus, ¥ > sup A4, 1mp1y1nﬁ that

u > ksup A smce k > 0. Thus, ksup A is the least upper bound of kA.

Therefore, sup kA = ksup A.

(b) If £ <0, then inf kA = ksup A, sup kA = kinf A.

Proof. Let k < 0. It is to be shown that that infimum of kA is ksup A and the
supremum of kA is kinf A.
o (infkA = ksupA):
— (ksup A is a lower bound): Note that for every a € A, a < sup A. Since

'k <0, ksup A < ka. Thus for any element ka of kA, ksup A is less than
" or equal to that element, i.e., ksup A is a lower bound of kKA.

— (ksup A is the greatest lower bound): Let [ be a lower bound of kA,

implying that | < ka for any a € A. Thus, since k < 0, I > a. This

implies that —l— is an upper bound of A. Thus, 1 > sup A. Agam since

k<0,1< ksupA Thus, ksup A is the greatest lower bound of kA.
Therefore, inf kA = ksup A.

o (supkA = kinf A): _

— (kinf A is.an upper bound): Note that for any a € A, inf.A < a. Thus,
since k£ < 0, kinf A > ka. Thus, ksup A is an greater than or equal to
any element ka in kA, i.e., ksup A is an upper bound of kA.

\v" — (kinf A is the least upper bound): Let u be an upper bound of kA,
implying that v > ke for all a € A. Thus, since k < 0, ¥ < a. This
implies that } is an lower bound for A. Thus, b £ infd, 1mp1y1ng that
u>kinf A smce k < 0. Thus, kinf A is the least upper bound of kA.

Therefore, sup kA = kinf A.

(c) sup(A+ B) =sup A+ sup B, inf (A + B) = inf A + inf B.
(d) sup (AU B) = sup {sup (4),sup (B)}, inf (4 U B) = inf{inf (A), inf (B)}.

3. (The greatest integer function)



(a) Given any z € R, show that there exists a unique n € Z such that n <z <n+1.
[n is the greatest integer less than or equal to x (sometimes called the floor of x)
and is denoted by |xz|. m + 1 is the smallest integer greater than = (sometimes
called the ceiling of = and is denoted by [z])]

Proof. Let x € R.

Case I: Suppose that £ > 0. Thus, consider the subset £, := {n € N: 2z < n} of
N, which is nonempty by the Archimedean Property. By the Well-Ordering
Principle, this E, has a unique least element. Let this element be known as
ng + 1 for some n, € Z. Thus, n, ¢ E,, implying n, <z < ng + 1.

Case II: Suppose that 2 < 0. Consider the subset —E, := {-n € N: —z < —n}
of N (note that —n > 0, since n € N), which is nonempty by the Archimedean
Property. Thus, by the Well—Ordering Principle this —FE, has a unique least
element —n, € N for n, € Z. Thus, — 1 & Z is not an element of —F,
S0 =7, — L < —x < —ng, implying that nx <z < ng+ 1.

Note that, in either case, the element n, is unique by the Well-Ordering Principle.
Thus, for any = € R, there exists a unique n, € Z such that n, <z <n,+1. 0O
(b) Sketch the graphs of the functions f(z) = [z] and g{x) = [z].
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4. (Supremum/infimum of a function)

Definition 1. Suppose D is a nonempty subset of R and f: D — R is a function.
e f is bounded above (below) if the range of f, f(D) , is bounded above (below).
f is a bounded function if f(D) is a bounded set.
o Whenever they exzist, sup f(z) = sup{f(z): z € D} := sup (f(D)); inf f(z) =

zeD el

inf {f(z) : x € D} := inf (f(D)).
Prove the following:

(a) f is bounded if and only if there exists M € R such that |f(z)| < M, for all
Z% Lk



i

Proof. Suppose that D is a nonempty subset of R and that f:D — Risa
function.

(= ): Suppose that f is bounded. Thus, f(D) is a bounded set, that is, f(D)
is bounded above and below. Let z € D Since f: D — R is a function,
f(z) € f(D). Since f(D) is bounded, there exists u,/ € R such that [ <
f(z) < u. Choose M := max{|l|,|u|}. By Theorem 2.2.2(d) in the text,
-M <1 < f(r) £ u £ M, implying that —M < f(z) < M. By the
Fundamental Theorem of Absolute Value (Theorem 2.2.2(c)), |f(z)| < M.

\/ Therefore, if f is bounded, there exists M € R such that |f(z)| < M, for all

(b)

oe b,

(<= ): Suppose that there exists M € R such that |f(z)| < M for all z € D.
Thus, by Theorem 2.2.2(c), this implies that for all z € D, =M < f(z) < M.
Thus, M is an upper bound and —M is a lower bound for the range of f,
f(D). Since the set is bounded above and below, i.e., f(D) is bounded, f is

bounded.
Therefore, f is bounded if and only if there exists M € R such that |f(z)| < M,
forall z € D. O

Suppose that f and g are bounded functions with common domain D. Assume
that f(z) < g(z), for all z € D. Then

sup f(z) < sup g(z).

zeD xeD
Proof. Suppose that f(z) < g(z), for all z € D. Since f and g are bounded, f(D)
and g(D) are bounded sets, implying that sup f(z) = sup f(D) and inf f(z) =
inf f(D) exist by the Completeness Property. Recalling that a supremum is an
upper bound, note that f(z) < sup f(z) and g(z) < sup g(z) for all z € D. Thus,
since f(z) < g(z) for all z € D, f(z) < supg(z). Thus, supg(z) is an upper
bound for f(D). However, since sup f(z) is a supremum, it is the least upper
bound, implying that sup f(z) < sup g(z). O

5. Do Exercise #8 in Section 2.4.

Problem 8, Section 2.4, page 45. Let X be a nonempty set, and let f and g be
defined on X and have bounded ranges in R. Show that

sup{f(z) +g(z):z€ X} <sup{f(z) :x € X} +sup{g(z): 2 € X}

and that

inf {f(z): 2 € X} +inf{g(z):z € X} <inf {f(z)+g(=):zc X}

Give examples to show that each of these inequalities can be either equalities or strict
inequalities.

Answer.



Proof. Suppose that X is a nonempty set, and f and g are defined on X, each having
bounded ranges in R.

o (sup{f(z)+g(z):zeX}<sup{f(z):z€ X}+sup{g(z):ze€X}):
Since f and g each have bounded ranges in R, tho Completeness Property guaran-

tees the existence of 8 f(z)+g() = sup {f(z) + g(z) : * € X}, sp(z) :=sup {f(z) : 2 € X},

and sy = sup{g(z) : z € X} For all = € R, it is known by definition that
f(Z) + 9(z) < Sp@)tgta)s F(Z) £ 8¢y, and g(z) < sg¢p). From the latter two of
these inequalities, one may deduce that f(z) + g(x) < sp@) + Sg(z), that is, that
Sf(z) + Sg(z) is an upper bound for {f(z)+g(z) : z € X}. However, since §f(z)4g(a)
is the supremum of {f(z) + g(z) : * € X}, 8p@)+ez) < Sfa) + Sg(z). Therefore,
/ sup{f(z) +g(z):z € X} <sup{f(z) :z € X} +sup{g(z):z € X}
o (inf{f(z):z€ X}+inf{g(z):2e X} <inf{f(z)+g(z):ze X}):
Since f and g each have bounded ranges in R, the Completeness Property for
Infima (discussed in the text on page 39) guarantees the existence of i (z)1g() ==

inf {f(z) + g(z):x € X}, 5 =inf {f(z): Q"EX} cmdig =inf{g(z) : z € X}.

For all z € R, it is known by definition that ¢, < flz)+9(x), ig) < f(z),
and f.py < g( 2). From the latter two of Theso 1n0quaht1(—*b one may deduce
that 4p) + gy < f(z) + g(z), that is, that ip) + 4g) is a lower bound for
{flz)+glz) 2 € X} However, since b f(w)+o(z) 18 the infimum of { f(z)+g(z) 1z €
X}, i) + igle) < Gf(a)+g(z). Lherefore, inf {f( z):z€ Xy +inf{g(z):ze X} <
inf {f(z) +g(z):z € X}.

O

Examples. For sake of simplicity, a simple lemma will be proven.

Lemma. Let a,b € R such thata <b. For E:={z €R:a <z <b}, inf E=a and
sup B =.b;

Proof. Let a,b € R such that a < b, Consider £ := {r € R:a <z < b}. Note that
b is an upper bound of E since for every x € £, x < b. For any upper bound u of E,
z <wuforall z € u, sob < ufor all upper bounds w of £. Thus, sup E = b. Similarly, a
is & lower bound of E since for every z € F, a < z. Furthermore, for any lower bound
lof B, <zforallz€ E. Thus, | <a and inf F = a. O

In the following examples, the above lemma will be used. Since the ranges of the
functions below are sets as described in the lemma (closed intervals), the maximums
and minimums of these functions on the intervals (found by elementary calculus) are
taken to be the suprema and infima.

(a) Suppose that X = {z € R: 0 < z < 5} and suppose that f(z) = z and g(z) =
2z + 3. Thus, sup{f(z)+g(z) :z € X} = 18, inf {f(z) +g(z) : 2 € X} = 3,
sup{f{z):z€ X} =5, sup{g(z) 2z € X} = 13, inf{f(z) : 2 € X} = 0, and
inf {g(z) : x € X} = 3. Thus, for this example,

sup};f(:r:) +g(z):z € )%: sup{f(z):z € X} +sup{g(z):z € X}
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and
inf {f(z) : 2z € X} +inf {g(z) : z € X} = inf {f(z) + g(z) : z € X}.

(b) Suppose that X = {z € R : 0 < z < 3} and suppose that flz) = = and
g(z) = —a®. Thus, sup {f(z) + g(z) : 2 € X} = 1, inf {f(z) + g(z) 1z € X} =
—6, sup{f(z):z € X} =3, sup{g(z) : 2 € X} = 0, inf {f(z) 1z € X} =0, and
inf {g(z) : « € X} = —9. Thus, for this example,

\ sup{f(:r)Jrg(m):xGX}:%<3:sup{f(:1:):IE X} +sup{g(z):z e X}
and
inf {f(z) : € X} + inf {g(z) 1z € X} =-9<-6=inf{f(z)+g(z):ze X}

Thus, in the first example, strict equality holds, but in the second example, strict
inequality holds.

6. Do (any two of) Exercise #9, 10, 11, 12 in Section 2.4.

9. Let X =Y :={z€R:0<z <1} Defineh: X xY — R by h(z,y) =2z +y.
(a) For each x € X, find f(z) :=sup {h(z,y) : y € Y'}; find inf {f(z) : z € X}.

Proof. Let z € X. It is conjectured that s := 2z + 1 is the supremum of
{h(z,y) : y € Y}. Let this be demonstrated.

(s is an upper bound): Let h € {h(zx,y):y € Y'}. Thus, for some y € Y,
h =2z +y, but since y € Y, 0 < y < 1, implying that 2z + y <2z + 1.
Thus, for any h € h € {h{z,y) 1y € Y}, h < 5, and s is an upper bound.

(The upper bound s is the supremum (see Lemma 2.3.4, page 38)):
Let € > 0. Choose h := 2z +y € {h(z,y) : y € Y} for y € Y such that

e 1

y =max{l — 5, 5}. Thus, for any €, y is guaranteed to satisfy 0 < y < 1.

From this, it is known that y — (1 —¢) > l1-5~14e=¢€—£ > 0. Thus,
y—(1-¢)>0
= l-e<y
= 2z+1—-€e<2x+y
= s—e<h.

Thus, for any € > 0 there exists h € {A(z,y) : y € Y} such that s —e < h.
/ Therefore, by Lemma 2.3.4, s is the supremum and f(z) = 2z + 1.

Thus, since 0 < z < 1, it is conjectured that inf {f(z):z € X} = 1. This
shall be demonstrated.

(1 is an lower bound): Since for all z € X, 0 < z < 1, 2z > 0. This
implies that 2z + 1 > 1 (loosely, 2z + 1 > 1) for all z € X. Thus, 1is a
lower bound.



(1 is the greatest lower bound (see Theorem: Exercise 14, page 40)):
Let € > 0. Let y = f(z) be chosen in {f{z) : z € X} for z: I11111{4, =
Thus, since £ < £, y =22 +1<2(5) +1=1 + ¢ Thus, by the theorem
referenced above, for every € > 0, there exists y € {f(z) : z € X} such
that y < 1+ ¢. Therefore, 1 is the infimum of {f(z) : z € X}.

]

(b) For each y € Y, find g(y) := inf {h(z,¥y) : z € X}; find sup{g(y) : y € Y'}.
Compare with the result found in part (a).

Proof. Let y € Y. It is conjectured that b := y is the infimum of H :=
{h(z,y) : z € X}. Let this be demonstrated.

(b is an lower bound): Let h € H. Thus, for some z € X, h = 2z + y.
Since 0 < z < 1, 0 < 2z, implying that y < 2z + y for all z € X. Thus,
for all h € H, b < h and b is a lower bound.

(The lower bound b is the infimum): Let € > 0. Let o =2z +y € H be
chosen such that z = min {£, 2} Thus, z < £. Thatis, h =2z +y <

5
2(£) + y = b+ e. Therefore, since h < b+ ¢, b the infimum of H and

9(y) =y
Thus, since 0 < y < 1, it is conjectured that 1 is the supremum of G :=
{9(y) : y € Y}. Let this be shown.

(1 is an upper bound): Let y € Y. By definition of ¥, y < 1 and 1 is an
upper bound.

(The upper bound 1 is the supremum): Let € > 0. Let g =y € G
chosen such that y = max{1 — £,%}. Thus, 1 —e=1-2(§) < 1—% =
y = g, implying 1 — € < g. Therefore, since for any € > 0 there exists
g € G such that 1 — e < g, 1 is the supremum of G.

As a final note, it is interesting that inf {f(z) : z € X} =sup{g(y) :y € Y}
]

10. Perform the computations in (a) and (b) of the preceding exercise for the function
h:X xY — R defined by

0 ifz<uy,
h(:ﬁyy)::{l if:n>g.

Proof. It is conjectured that f(z) :=sup{h(z,y):y € Y} is 1. By the definition
of h(z,y), it is known that H := {h(z,y) : vy € Y} = {0,1}. Thus, 1 > 0
and 1 > 1, so 1 is an upper bound of H. Consider any other upper bound
b € R. By definition, b is greater than or equal to all elements of H, so b > 1.
Thus, f(z) = 1. Since f(z) is constant, the set G := {f(z) : z € X} = {1}.
Thus, 1 is a lower bound since 1 < 1 and is the infimum since it is a lower
bound and for any b € R such that b < 1, b < 1. It is further conjectured that
g(y) = inf {h(z,y):z € X} = 0. As above, H := {h(z,y) 1y € Y} = {0,1}.



As to not tire the reader, recall the statement at the top of page 39 in the text
that if a nonempty set has a finite number of elements, then it has a largest and
smallest element. Furthermore, it states that the largest element is the supremum
and the smallest element is the infimum. Thus, since 0 is the smallest element
of H, g(y) = 0. Since g(y) is constant, {g(y) : y € Y’} = {0}, implying by the
statement, from the text that sup{g(y) :y € Y} = 0. O






