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INSTRUCTIONS:

1. The use of a calculator, cell phone, or any other electronic device is not permitted
during this examination.

2. The use of notes of any kind is not permitted during this examination.

3. Each student should be prepared to produce his/her ID upon request.

4. Read and observe the following rules:

(a) Students are not permitted to ask questions of the proctors, except in cases of
supposed errors or ambiguities in examination questions.

(b) CAUTION - Students guilty of any of the following or similar practices shall be
immediately dismissed from the examination and shall be liable to disciplinary
action.

• Making use of any books, papers or memoranda, other than those authorized
by the examiners.

• Speaking or communicating with other students.

• Purposely exposing written papers to the view of other students. The plea
of accident or forgetfulness shall not be received.
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1. (a) (5 Pts.) State the Archimedean Property of R. (Be precise!)

For every x ∈ R, there is a natural number nx such that x < nx.

(b) (10 Pts.) Prove that if a and b are real numbers and 0 ≤ a < b, then there exist m,n ∈ N
such that a <

m

10n
< b.

(Hint: You may use proof by contradiction argument.)

Let 0 ≤ a < b be given. Suppose the conclusion of the statement is false. That is,

suppose that for all n,m ∈ N either a ≥ m

10n
or b ≤ m

10n
. Now if a ≥ m

10n
for all

n,m ∈ N, then in particular, a ≥ m

101
for all m ∈ N. This implies that 10 a is an upper

bound for N, which contradicts the Archimedean Property. If b ≤ m

10n
for all n,m ∈ N,

then in particular, b ≤ 1

10n
, for all n ∈ N. That is, the positive number b is a lower

bound for

{
1

10n
: n ∈ N

}
. But again this contradicts the Archimedean Property since

inf

{
1

10n
: n ∈ N

}
= 0. Therefore, the conclusion of the statement is true.
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2. (a) (5 Pts.) State the Completeness Property of R. (Be precise!)

Every nonempty subset of R that is bounded above has a supremum in R.

Or

Every nonempty subset of R that is bounded below has an infimum in R.

(b) (10 Pts.) Suppose that A, B are nonempty subsets of R and E = A ∪B. Assume that E
has a supremum. Show that supA and supB both exist. Moreover, supE is one of the
numbers supA or supB.
To show that supA and supB both exist, we only need to check that the sets are bounded
above by the Completeness Property, since A and B are nonempty. But since supE exists,
supE ≥ s, for all s ∈ E. In particular supE ≥ a for all a ∈ A, since a ∈ A =⇒ a ∈ E.
That is A is bounded above and supE is a upper bound for A. Similarly, supE is an
upper bound for B.
To show that supE is one of the numbers supA or supB. it suffices to show that
supE = max{supA, supB}. To that end, let us assume without loss of generality that
max{supA, supB} = supA. Clearly supA ≤ supE. If, on the other hand, supA <
supE, there supA is not an upper bound for E. Then there exists s ∈ E such that
s > supA. This implies that s /∈ A. Also s /∈ B, since s > supA ≥ supB. That is
s /∈ A ∪B = E, a contradiction. Therefore supA ≥ supE. and so supE = supA.
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3. For given real numbers a and r, r 6= 1, consider the sequence (xn), where

xn =
n∑
k=1

a rk−1 = a(1 + r + r2 + · · ·+ rn−1).

(a) (5 Pts.) Use induction to show that for all n ∈ N, xn =
a(1− rn)

1− r
.

For n = 1, x1 = a =
a(1− r1)

1− r
, the statement is true. Assume now that the statement is

true for n. Let us show it is also true for n+ 1.

xn+1 =
n+1∑
k=1

ark−1 =
n∑
k=1

ark−1 + arn =
a(1− rn)

1− r
+ a rn

where we have used the induction assumption in the last equality. Simplifying the last
expression we have

xn+1 =
a(1− rn)

1− r
+ a rn =

a(1− rn) + a rn(1− r)
1− r

=
a(1− rn+1)

1− r

which is exactly what we wanted to show. Then by the Principle of Mathematical
Induction, the statement is true for all n ∈ N.

(b) (5 Pts.) When −1 < r < 1, show that lim
n→∞

xn =
a

1− r
. From part a)

xn =
a(1− rn)

1− r
=

a

1− r
− arn

1− r
=

a

1− r
− a

1− r
rn.

Then for each n ∈ N, ∣∣∣∣xn − a

1− r

∣∣∣∣ ≤ C|r|n, (C =
a

1− r
)

Since |r| < 1, lim
n→∞

|r|n = 0. (We proved this in class using Bernoulli’s inequality.)

Therefore,

lim
n→∞

|xn −
a

1− r
| = 0,

which is equivalent to lim
n→∞

xn =
a

1− r
.

(c) (5 Pts. ) When r > 1, show that (xn) is an unbounded sequence.

From part a) xn =
a

1− r
− a

1− r
rn =

a

1− r
+

a

r − 1
rn. To show that xn is unbounded it

suffices to show that rn is unbounded. Now since r > 1, we can write r = 1 + h, for some
h > 0. Then by Bernoulli’s inequality, for all n

rn = (1 + h)n ≥ 1 + nh.

The right hand side is clearly unbounded, and therefore so is the left hand side.
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4. (a) (5 Pts.) Prove that lim
n→∞

yn = y if and only if for all ε > 0, lim
n→∞

|yn − y| ≤ ε.

(⇒) If lim
n→∞

yn = y, then lim
n→∞

|yn−y| = 0. It is then clear that for any ε > 0, lim
n→∞

|yn−y| =
0 ≤ ε.
(⇐) Assume that for all ε > 0, lim

n→∞
|yn − y| < ε. Let a = lim

n→∞
|yn − y|. We will show

that a = 0. But this follows from the assumption and by what is proved in class that
if ∀ε > 0, 0 ≤ a ≤ ε, then a = 0. (Or just just say that a ≥ 0 can not be positive for

otherwise 0 <
a

2
< a violating the assumption.)

(b) (10 Pts. ) Suppose that (xn) is a sequence in R that converges to x0. Let

an =
1

n
(x1 + x2 + · · ·+ xn).

Write the proof of the following steps to show that an converges to x0.

• Show that for all n ∈ N, an − x0 =
1

n
((x1 − x0) + (x2 − x0) + · · ·+ (xn − x0)).

an − x0 =
1

n
(x1 + x2 + · · ·+ xn)− x0 =

1

n
(x1 + x2 + · · ·+ xn − nx0)

=
1

n
((x1 − x0) + · · ·+ (xn − x0))

where in the last equality the n-copies of x0 are distributed.

• Prove that for all ε > 0, there exists Nε ∈ N such that

|an − x0| ≤
1

n
(|x1 − x0|+ |x2 − x0|+ . . . |xN − x0|) + ε, for all n ≥ Nε,

Let ε > 0. Since xn → x0, there exists Nε ∈ N such that

|xn − x0| < ε, ∀n ≥ Nε.

Using the first step and triangular inequality, for all n ≥ Nε

|an − x0| = |
1

n
((x1 − x0) + · · ·+ (xNε−1 − x0) + (xNε − x0) + · · ·+ (xn − x0))|

≤ 1

n
(|x1 − x0|+ · · ·+ |xNε−1 − x0|+ |xNε − x0|+ · · ·+ |xn − x0)|

≤ 1

n
(|x1 − x0|+ · · ·+ |xNε−1 − x0|+ ε(n−Nε))

=
1

n
(|x1 − x0|+ · · ·+ |xNε−1 − x0|) + ε

(n−Nε)

)

≤ 1

n
(|x1 − x0|+ · · ·+ |xNε−1 − x0|) + ε,

as desired.

• Use part a) and the above steps to prove that lim
n→∞

an = x0.
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Using part a), it suffices to show that for all ε > 0, lim
n→∞

|an−x0| ≤ ε. Now let ε > 0.

By the above step, there exists a natural number Nε ∈ N such that

|an − x0| ≤
1

n
(|x1 − x0|+ |x2 − x0|+ . . . |xN − x0|) + ε, for all n ≥ Nε,

Observe that for a fixed ε, (|x1 − x0|+ |x2 − x0|+ . . . |xN − x0|) is a constant, that
we denote by Cε. Thus

|an − x0| ≤ Cε
1

n
+ ε, for all n ≥ Nε,

This tell us that the tail of the sequence |an−x0| is not more than Cε
1

n
+ε. Therefore,

lim
n→∞

|an − x0| ≤ lim
n→∞

Cε
1

n
+ ε = ε,

and that is exactly what we wanted to show.

(c) (5 Pts.) Demonstrate that the converse of the statement in part b) is false.

Let us consider the sequence (xn) = ((−1)n). Then an = 0 if n is even and an =
−1

n
when n is odd. Clearly the sequence (an) converges to 0. But (xn) is not convergent.

6


