Math 447: Quiz 3

Name: Solution

September 19, 2014

1. Suppose that $A \subset B$, where A and B are nonempty bounded subsets of \mathbb{R} . Show that

 $\inf B \leq \inf A.$

Proof. Let $b = \inf B$. It suffices to show that b is a lower bound of A. But this is obvious as b is a lower bound for B and therefore for $A \subset B$ as well.

2. Find the supremum and infimum of the set $\left\{\frac{1}{2^n} : n \in \mathbb{N}\right\}$. Justify your answer.

Solution.

$$\inf\left\{\frac{1}{2^n}:n\in\mathbb{N}\right\}=0.$$

To show this: first 0 is a lower bound since, $0 \le 1/2^n$ for all $n \in \mathbb{N}$. Also for any $\epsilon > 0$, $1/\epsilon > 0$ and by Archemedean Property, there exists a natural number m such that $1/\epsilon < m$. But $m \le 2^m$, and so $1/\epsilon < 2^m$, implying that $1/2^m < \epsilon$. That is any $\epsilon > 0$ cannot be a lower bound. And therefore, 0 is the greatest of all the lower bounds.

$$\sup\left\{\frac{1}{2^n}:n\in\mathbb{N}\right\} = \frac{1}{2}.$$

This follows from the fact that $2^n \ge 2$, for all $n \in \mathbb{N}$.