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Abstract For any non-square 1 < D ≡ 0, 1 (mod 4), Zagier [8] defined

Fk(D;x) :=
∑

a,b,c∈Z,a<0,
b2−4ac=D

max(0, (ax2 + bx+ c)k−1).

Here we use the theory of periods to give identities and congruences which relate various values of Fk(D;x).

1 Introduction and Statement of Results

For non-square D ≡ 0, 1 (mod 4) and positive even integer k, define a function Fk(D;x) as follows: For

x ∈ R, consider the set of polynomials aX2 + bX+ c with integer coefficients and discriminant D such that

a < 0 < ax2 + bx + c. For each such polynomial, compute (ax2 + bx + c)k−1 and then add the resulting

values. That is, set

Fk(D;x) :=
∑

a,b,c∈Z,a<0,
b2−4ac=D

max(0, (ax2 + bx+ c)k−1)

(and note that Fk(D;x) can be defined similarly for square D using Bernoulli polynomials, although we

will not consider such D here). This function has been studied thoroughly, and much is known about it (for

example, Zagier proved [8] that if k = 2 or 4 and D fixed, then Fk(D;x) is constant in x). Here, we will

give additional identities which give information about relationships between values of Fk(D;x) for various

related values of x.

Let us begin with an example. We define an auxiliary function Fk(D, 2;x) by

Fk(D, 2;x) :=− 210Fk

(
D;

x

2

)
+ x10Fk

(
D;

2

x

)
− 210Fk

(
D;

x+ 1

2

)
+ (x+ 1)10Fk

(
D;

2

x+ 1

)
− Fk (D; 2x) + (2x)10Fk

(
D;

1

2x

)
− (x+ 1)10Fk

(
D;

2x

x+ 1

)
+ (2x)10Fk

(
D;

x+ 1

2x

)
.
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Since Fk(D;x) is constant for k = 2, 4, we will now choose k = 6, and also set D = 5.

One can compute that for x = 3, we have F6(5; 3) = 2, since the 2 polynomials [a, b, c] of interest here

are

[−1, 5,−5], and [−1, 7,−11].

One also has that F6(5; 1/3) = 18242/6561, and that

F6(5, 2; 3) :=− 210F6(5; 3/2) + 310F6(5; 2/3)

− 210F6(5; 2) + 410F6(5; 1/2)

− F6(5; 6) + 610F6(5; 1/6)

− 410F6(5; 3/2) + 610F6(5; 2/3)

= 304644624.

Thus altogether we have

1742
691 (211 + 1)(310 − 1)− F6(5, 2; 3)

1742
691 (310 − 1) + F6(5; 3)− 310F6(5; 1/3)

=
254016000/691

−10584000/691
= −24.

We now go through the same computation using a different value for x. If we choose x = 2/7, we have that

F6(5; 2/7) =
743556578

282475249

F6(5; 7/2) =
391

128

F6(5, 2; 2/7) = −1458365017050

282475249

and thus we have
1742
691 (211 + 1)((2/7)10 − 1)− F6(5, 2; 2/7)

1742
691 ((2/7)10 − 1) + F6(5; 2/7)− (2/7)10F6(5; 7/2)

=
−521408016000/195190397059

21725334000/195190397059
= −24.

From these two examples, one might wonder if

1742

691
(211 + 1)(x10 − 1)− F6(5, 2;x) = −24

[
1742

691
(x10 − 1) + F6(5;x)− x10F6(5; 1/x)

]
for all real numbers x. In fact, this is true, and more generally we have that

1742

691
σ11(n)(x10 − 1)− F6(5, n;x) = τ(n)

[
1742

691
(x10 − 1) + F6(5;x)− x10F6(5; 1/x)

]
(1)

for all x ∈ R and n > 1. Here, Fk(D,n;x) is defined in Section 2.3 (and is similar in shape to Fk(D, 2;x)

defined above), σ11(n) =
∑

d|n d
11, and τ(n) is a value of Ramanujan’s tau-function. A similar statement

holds true for other values of D as well.

2



For other values of k, we are not always so lucky. For example, let us consider the case where k = 12.

For D = 5 and n = 2, one might hope that

1590572822

236364091
(223+1)(x22−1)−F12(5, 2;x) = C

[
1590572822

236364091
(x22 − 1) + F12(5;x)− x22F12(5; 1/x)

]
for some constant C which does not depend on x. Unfortunately, this is not the case, but we do have that

1590572822

236364091
(223 + 1)(x22 − 1)− F12(5, 2;x) ≡ 0 (mod 72).

In order to explain these identities (and many others), we make use of the connection between Fk(D;x)

and the theory of modular forms. It is known that

ζD(1− k)

2ζ(1− 2k)
(x2k−2 − 1) + Fk(D;x)− x2k−2Fk(D; 1/x)

is the ”even” part of the period polynomial of a cusp form fk(D; z) of weight 2k (see Section 2.3). We

make use of this fact to give the following theorem, which implies the above claims for k = 6, since S12
has dimension 1 and is spanned by the eigenform

∆(z) = q
∞∏
n=1

(1− qn)24 =
∞∑
n=1

τ(n)qn.

Theorem 1. Suppose that k is a positive even integer, 0 < D ≡ 0, 1 (mod 4) is not a square, and n > 1 is

an integer such that fk(D; z) is an eigenform of the Hecke operator with eigenvalue λn. Then we have that

ζD(1−k)
2ζ(1−2k)σ2k−1(n)(x2k−2 − 1)− Fk(D,n;x) = λn

[
ζD(1−k)
2ζ(1−2k)(x

2k−2 − 1) + Fk(D;x)− x2k−2Fk
(
D; 1

x

)]
.

While unfortunately fk(D; z) is not an eigenform in general, we can use congruences to give results

analogous to Theorem 1, as in the above example with k = 12. The following theorems are derived from

congruence results of Serre and Tate from the theory of modular forms. They correspond to the case where

the appropriate Hecke eigenvalues vanish modulo some value M (which simplifies the resulting formulae

considerably). Note here that one cannot ever expect these Hecke eigenvalues to be equal to 0, but Theorem

3 asserts that they are almost always 0 mod M .

Theorem 2. Suppose that k is a positive even integer and 0 < D ≡ 0, 1 (mod 4) is not a square. Let K and

α be as described in Section 3.2, and let λ be a prime of K lying above 2. Set e ≥ 0 such that λe||α. Then

there is a nonnegative integer c such that for every t ≥ 1 we have that

Fk(D,n;x) ≡ ζD(1− k)

2ζ(1− 2k)
σ2k−1(n)(x2k−2 − 1) (mod λt−e)

for all real numbers x and positive integers n with at least c+ t distinct odd prime factors.
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Theorem 3. Suppose that k is a positive even integer, let K and α be as described in Section 3.2, and let

m ⊂ OK be an ideal of norm M which is relatively prime to α. Then a positive proportion of the primes

p ≡ −1 (mod M ) have the property that

Fk(D, p;x) ≡ ζD(1− k)

2ζ(1− 2k)
σ2k−1(p)(x

2k−2 − 1) (mod M)

for all real numbers x and non-square 0 < D ≡ 0, 1 (mod 4). Furthermore, for almost all positive integers

n, we have that

Fk(D,n;x) ≡ ζD(1− k)

2ζ(1− 2k)
σ2k−1(n)(x2k−2 − 1) (mod M)

for all real numbers x and non-square 0 < D ≡ 0, 1 (mod 4).

In Section 2, we will recall the necessary background material regarding period polynomials, Hecke

operators, and the connection between Fk(D;x) and the theory of modular forms. In Section 3, we will

prove Theorems 1, 2, and 3.

2 Preliminaries

2.1 Background on Period Polynomials and Hecke Operators

First we review the theory of periods, as described in [3]. Given a cusp form f(z) =
∑

n≥0 a(n)qn (where

q := e2πiz) of weight 2k on SL2(Z), we define the period polynomial of f by

rf (x) :=

∫ i∞

0
f(z)(x− z)2k−2dz

and also let r+f and r−f denote the even and odd parts of rf , respectively.

Let V = V2k−2 be the set of polynomials of degree at most 2k − 2, and define the slash operator by

P |γ = (cx+ d)2k−2P

(
ax+ b

cx+ d

)

for γ =

(
a b

c d

)
and P ∈ V. One can check that rf (z) ∈W, where

W = W2k−2 := {P ∈ V : P |(1 + S) = P |(1 + U + U2) = 0},

Here, S =

(
0 −1

1 0

)
and U =

(
1 −1

1 0

)
. We also set W+ and W− to be the subspaces of even and

odd polynomials. Finally, set W+
0 to be the subspace of codimension 1 of W+ which does not contain the

polynomial x2k−2 − 1.
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It is known (due to Eichler and Shimura) that the maps

r+ : S2k →W+
0

r− : S2k →W−

are isomorphisms.

We now wish to establish a relationship between the theory of Hecke operators and period polynomials.

We recall a result of Zagier, which generalizes a result of Manin and gives the action of Hecke operators on

period polynomials in a way which respects the Eichler-Shimura isomorphisms. Zagier proved [9] that if f

is a cusp form of weight 2k on SL2(Z) and n is a positive integer, then

rf |Tn(x) =
∑

(cx+ d)2k−2rf

(
ax+ b

cx+ d

)
,

where the sum is over matrices

(
a b

c d

)
of determinant n satisfying

a > |c|, d > |b|, bc ≤ 0, b = 0⇒ −a
2
< c ≤ a

2
, c = 0⇒ −d

2
< b ≤ d

2
(2)

Thus we define the Hecke operator T̃n for period polynomials by

rf (x)|T̃n :=
∑

(cx+ d)2k−2rf

(
ax+ b

cx+ d

)
=
∑

rf |M

where the sum is over matrices M =

(
a b

c d

)
of determinant n which satisfy (2), and note that the result

of Zagier may be written as rf |Tn = rf |T̃n for all cusp forms f . One can also check that

(x2k−2 − 1)|T̃n = σ2k−1(n)(x2k−2 − 1).

2.2 Congruence Results from the Theory of Modular Forms

When considering cusp forms f ∈ Sk, one might be interested in forms which are eigenforms of the Hecke

operator, i.e., which satisfy f |Tn = λnf for some constant λn. While this is not always the case, it is known

that analogous statements can be made in many situations using congruences.

For example, it is known [7], [5] that the action of Hecke algebras on spaces of modular forms modulo

2 is locally nilpotent, as stated in the following lemma.

Lemma 1. Suppose that f(z) ∈Mk ∩ Z[[q]]. Then there exists a positive integer i such that

f(z)|Tp1 |Tp2 | · · · |Tpi ≡ 0 (mod 2),

for every collection of odd primes p1, p2, . . . pi.
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Thus for a modular form f(z) ∈ Mk ∩ Z[[q] which is not congruent to 0 (mod 2), we may define its

degree of nilpotency to be the smallest such i, i.e., there exist odd primes `1, `2, . . . `i−1 for which

f(z)|T`1 |T`2 | · · · |T`i−1
6≡ 0 (mod 2),

and for every collection of odd primes p1, p2, . . . pi, we have that

f(z)|Tp1 |Tp2 | · · · |Tpi ≡ 0 (mod 2).

More generally, one might ask about modular forms which do not have integral coefficients (e.g., in the

next section, we will consider modular forms with coefficients in the ring of integers of a number field). We

have the following result, which also follows from the work of Tate [7].

Lemma 2. Let k be a positive even integer and suppose that K is a number field containing the coefficients

of all the weight k normalized eigenforms in Sk. Let λ be a prime of K lying above 2. Then there is an

integer c ≥ 0 such that for every f(z) ∈ Sk with coefficients in OK,λ and every t ≥ 1 we have that

f(z)|Tp1 |Tp2 | · · · |Tpc+t ≡ 0 (mod λt)

for all odd primes p1, p2, . . . pc+t.

One might next ask whether one can give results with a different modulus. In order to do so, we state the

following lemma of Serre [6], which he proved in more generality using the theory of Galois representations

and the Chebotarev Density Theorem.

Lemma 3. Let A denote the subset of integer weight modular forms in Mk whose Fourier coefficients are in

OK , the ring of algebraic integers in a number field K. If m ⊂ OK is an ideal of norm M , then a positive

proportion of the primes p ≡ −1 (mod M ) have the property that

f(z)|Tp ≡ 0 (mod m)

for every f(z) ∈ A.

Serre also proved the following amazing fact.

Lemma 4. Assume the notation in Lemma 3. If f(z) ∈ A has fourier expansion f(z) =
∑
n = 0∞a(n)qn,

then there is a constant α > 0 such that

#{n ≤ X : a(n) 6≡ 0 (mod m) = O

(
X

(logX)α

)
.

If the modular form f in Lemma 4 is a Hecke eigenform, then this implies that almost all of its Hecke

eigenvalues are 0 modulo m.
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2.3 Zagier’s Fk(D;x) and its connection to the theory of modular forms

As before, for non-square D ≡ 0, 1 (mod 4), and positive even integer k, we define

Fk(D;x) :=
∑

a,b,c∈Z,a<0,
b2−4ac=D

max(0, (ax2 + bx+ c)k−1).

This function is related to cusp forms of weight 2k in the following way, as described by Zagier in [8]:

define the polynomial

Pk(D;x) :=
∑

b2−4ac=D
a>0>c

(ax2 + bx+ c)k−1.

Then one can easily see that

x2k−2Fk(D; 1/x)− Fk(D;x) = Pk(D;x).

For k > 2, we may also consider

fk(D; z) := CkD
k−1/2

∑
b2−4ac=D

1

(az2 + bz + c)k

(where Ck is a constant which is not important here), and it is easy to see the fk(D; z) is a cusp form of

weight 2k on SL2(Z). In [3], it was shown that its even period function is given by

r+fk,D(x) =
ζD(1− k)

2ζ(1− 2k)
(x2k−2 − 1)− Pk(D;x).

This gives that

Fk(D;x) =
ζD(1− k)

2ζ(1− 2k)
+
∞∑
n=1

ak,D(n)

n2k−1
cos(2πnx),

where we write fk(D; z) =
∑

n≥1 ak,D(n)qn. Additionally, we define

Fk(D,n;x) :=
∑

[Fk(D;x)|J − Fk(D;x)] |M = Pk(D;x)|T̃n,

where the sum is over matrices M =

(
a b

c d

)
of determinant n which satisfy (2), and J :=

(
0 1

1 0

)
.

2.4 Examples for small k

In order to show that the above discussion can be made explicit, and to give some easy (known) consequences

of the relationship between Fk(D; z) and the theory of modular forms, we consider the cases where k = 2, 4,

and 6. First consider the case where k = 2 or 4, which is considered extensively in [8]. Since there are no

cusp forms of weight 4 or 8, we have that

0 = r+fk,D(x) =
ζD(1− k)

2ζ(1− 2k)
(x2k−2 − 1)− Pk(D;x),
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so Pk(D;x) = ζD(1−k)
2ζ(1−2k)(x

2k−2 − 1). Thus we have that

Pk(D;x) =
ζD(1− k)

2ζ(1− 2k)
(x2k−2 − 1) = x2k−2Fk(D; 1/x)− Fk(D;x).

It follows that the function F 0
k (D;x) := Fk(D;x)− ζD(1−k)

2ζ(1−2k) satisfies:

x2k−2F 0
k (D; 1/x) = F 0

k (D;x)

F 0
k (D;x+ 1) = F 0

k (D;x)

F 0
k (D; 0) = 0,

so it follows that F 0
k (D;x) = 0 for all rational x (and thus, by continuity, for all x). That is, for k ∈ {2, 4},

we have that Fk(D;x) is the constant function

Fk(D;x) =
ζD(1− k)

2ζ(1− 2k)
.

We now consider Fk(D;x) where k = 6. Since the space of cusp forms of weight 12 and level 1 is

non-empty, we no longer have that F6(D;x) is a constant function as before. For example, when D = 5,

one can compute that

P6(5;x) = 2x10 + 10x8 − 30x6 + 30x4 − 10x2 − 2

r+f6,5(x) =
360

691
x10 − 10x8 + 30x6 − 30x4 + 10x2 − 360

691
.

Note here that since the relevant space of cusp forms S2k is one-dimensional (and spanned by ∆(z)) it

follows that f6(D; z) is a multiple of ∆(z), and is an eigenform of the Hecke operator Tn for all n; thus we

have that Theorem 1 applies whenever k = 6.

3 Proofs

3.1 Proof of Theorem 1

Since fk(D, z) is an eigenform of the Hecke operator, we have that fk(D; z)|Tn = λnfk(D; z). Thus

r+fk,D|Tn(x) = r+λnfk,D(x)

r+fk,D(x)|T̃n = λnr
+
fk,D

(x)

ζD(1−k)
2ζ(1−2k)σ2k−1(n)(x2k−2 − 1)− Fk(D,n;x) = λn

[
ζD(1−k)
2ζ(1−2k)(x

2k−2 − 1) + Fk(D;x)− x2k−2Fk
(
D; 1

x

)]
as desired.
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3.2 Congruences for period polynomials of modular forms

One must be a bit careful when applying the congruence results of Section 2.2; they do not necessarily apply

to the cusp forms fk(D; z). Here we consider a basis of eigenforms for S2k in order to circumvent this issue.

Fix a positive even integer k and a positive non-square integer D ≡ 0, 1 (mod 4). Set dk := dim(S2k)

and let

f1, f2, · · · , fdk

be a basis of eigenforms for S2k which are normalized so that their corresponding even period polynomials

r+f1(X), r+f2(X), . . . , r+fdk
(X)

have coefficients in a number field K (where K is defined to be the smallest number field which contains

all of the coefficients of the weight 2k normalized eigenforms of S2k). Note that such a choice exists by

the “The Periods Theorem” of Manin [4]. Since these eigenforms give a basis for S2k, their even period

polynomials give a basis for W+
0 , so there exist constants c1, . . . , cdk such that

r+fk,D(X) =

dk∑
i=1

cir
+
fi

(X).

Note that r+fk,D(X) ∈ Q[X], and thus we have that ci ∈ K for all i.

Thus we may choose α ∈ OK so that

α
(
ciλi,nr

+
fi

(X)
)
∈ OK [X]

for all i and n > 1 (where λi,n is the eigenvalue of fi with respect to the Hecke operator Tn). It follows that

for m coprime to α, and n > 1 such that

r+fi |T̃n ≡ 0 (mod m)

for all i, we have that

r+fk,D |T̃n =

dk∑
i=1

cir
+
fi
|T̃n ≡ 0 (mod m).

3.3 Proof of Theorem 2

Fix a positive integer t and choose a positive integer n with at least c + t distinct odd prime factors. Then

by Lemma 2 we have that

αcir
+
fi

(X)|T̃n = αcir
+
fi|Tn(X) = αciλi,nr

+
fi

(X) ≡ 0 (mod λt)
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for all i, and thus we have that αr+fk,D(X)|T̃n ≡ 0 (mod λt). Finally, this gives

r+fk,D(X)|T̃n ≡ 0 (mod λt−e)(
ζD(1− k)

2ζ(1− 2k)
(X2k−2 − 1)− Pk(D;X)

)
|T̃n ≡ 0 (mod λt−e)

σ2k−1(n)
ζD(1− k)

2ζ(1− 2k)
(X2k−2 − 1) ≡ Fk(D,n;X) (mod λt−e)

as desired.

3.4 Proof of Theorem 3

Note that for a positive proportion of primes p ≡ −1 (mod M ), we have that

αcir
+
fi

(X)|T̃p = αcir
+
fi|Tp(X) = αciλi,pr

+
fi

(X) ≡ 0 (mod M)

for all i by Lemma 3, and thus we have that αr+fk,D(X)|T̃p ≡ 0 (mod M). Finally, this gives

r+fk,D(X)|T̃p ≡ 0 (mod M)(
ζD(1− k)

2ζ(1− 2k)
(X2k−2 − 1)− Pk(D;X)

)
|T̃p ≡ 0 (mod M)

σ2k−1(p)
ζD(1− k)

2ζ(1− 2k)
(X2k−2 − 1) ≡ Fk(D, p;X) (mod M).

This proves the first statement of Theorem 3. To see the second statement, note that Lemma 4 says that

almost all positive integers n satisfy λi,n for all i. For such n, we have that σ2k−1(n) ζD(1−k)
2ζ(1−2k)(X

2k−2−1) ≡
Fk(D,n;X) (mod M) by the same argument as above.
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