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1 Introduction

In the summer of 2018 the author tabulated the knots of 20 crossings. An independent
tabulation was made simultaneously by B. Burton [Burton 2018], using the software
Regina developed by him and others [Burton et al. 2023]; as the results of the two
tabulations agree there is some confidence that the results are correct, despite the
quantity and complexity of the data.

The knots are listed up to unoriented equivalence, that is to say we regard knot pairs
(S3 , K) , (S3 , L) as equivalent if there is a homeomorphism of pairs sending (S3 , K)
to (S3 , L), and we list one representative of each equivalence class. The issue of
determining which knots are amphicheiral or reversible will be addressed as a separate
project.

A short historical note: knot tabulations began in earnest in the late nineteenth century
with the work of P.G. Tait [Tait 1896], T.P. Kirkman [Kirkman 1885] and C.N. Little
[Little 1885], Tait having being motivated by the (then current) Kelvin theory of vortex
atoms. Initially, as Tait was aware, techniques were not available for distinguishing
knot types rigorously; these techniques arrived shortly afterwards with the advent of the
fundamental group [Poincaré 1895], whereupon M. Dehn and O. Schreier initiated the
rigorous classification of knots, beginning with torus knots [Dehn 1914, Schreier 1924].
A fuller account of the history, up to the classification of 16–crossing knots, is given
in [Hoste et al. 1998], and to complete the picture B. Burton [Burton 2020] pioneered
the classification of knots of 17, 18 and 19 crossings.

A table listing the numbers of prime knots from 3 up to 20 crossings is given in the
Appendix of this article.
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Theorem 1.1 The number of equivalence classes of prime knots that can be projected
with 20 crossings, but not with fewer crossings, is 1, 847, 319, 428. Of these, all
but 921 are hyperbolic, the remainder comprising 915 satellites of the trefoil knot, 5
satellites of the figure-eight knot, and the (3, 10)–torus knot.

The issue of primality is one that is easy to overlook, but it is important, as one has to
guard against “imposter” knots that might be composite in some hidden way and are
thus masquerading as prime knots. For this reason a section of this article is devoted
to justifying the claim that all listed knots are prime.

2 The tabulation

2.1 Obtaining the raw list of knots

For the most part the method is the same as that employed in [Hoste et al. 1998],
albeit with some minor differences. Traditionally all tabulations of knots with given
crossing-number begin with a listing of the prime alternating knots with that number
of crossings. This is one of the few steps in the process that is truly algorithmic: from
the solutions of the various Tait conjectures, it is known that a knot with a reduced
alternating n–crossing diagram cannot be projected with fewer than n crossings. Also,
an alternating knot is guaranteed to be prime if its reduced alternating diagrams have the
property that they do not admit a simple closed curve in the projection plane meeting the
knot projection transversely in two points on distinct edges of the projection (Fig. 1).
[Menasco 1984]. Furthermore, any two reduced alternating diagrams represent the
same link type if and only if one can transform one to the other by means of a finite
sequence of flypes (Fig. 2).

It is precisely the failure of non-alternating knots to adhere to such desirable properties
that renders their classification a challenge.

It is relatively straightforward to write a program that generates all possible reduced
alternating diagrams of a given crossing-number n, choosing a representative from
each flype equivalence class, although skill is required in devising a program that will
run in a reasonable time. This has indeed been accomplished quite dramatically for
n ≤ 23 [Rankin et al. 2004]. The present author has written a program that generates
all prime alternating links with a given number of crossings, and for the case n = 20
the number of prime alternating knot types turns out to be 199, 631, 989.
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Figure 1: A composite alternating knot

Figure 2: The “flype” transformation

Once one has the list of alternating diagrams to hand, non-alternating diagrams can
be obtained from them by means of crossing switches. It is only necessary to take
one alternating diagram from each flype equivalence class, as if alternating diagrams
D1 , D2 are flype-equivalent, then the diagrams obtained from crossing switches of
D1 are flype-equivalent to those obtained from D2 . Switching all crossings of a knot
diagram produces a knot equivalent to the original on account of being its reflected
image in the projection plane, so a crude estimate of the number of diagrams to be
generated in this way from a single alternating diagram is 219 = 524288. However,
it is only on rare occasions that this number is needed, as can be seen from the
following observation: if a rational tangle diagram [Conway 1967] is not alternating,
then there exists an isotopy of the tangle that reduces the number of crossings while
keeping the four ends of the tangle fixed (Fig. 3). Therefore built into the program
is a procedure that detects all nontrivial rational tangle substituents, and then we only
allow crossing switches of the “base” alternating knot diagram that keep each of these
tangles alternating.

The resulting non-alternating diagrams are subjected to a number of rapid viability
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Figure 3: Reducing a non-alternating diagram of a rational tangle

tests to check whether the number of crossings can be reduced, and are immediately
discarded upon failing any such test. A surviving diagram is then subjected to a
different kind of test, specifically to see whether it can be transformed by flypes and
passes (Figs. 2, 4) to a diagram whose DT code [Dowker and Thistlethwaite 1983] is
lexicographically less. As the size of an equivalence class generated by these moves
can be very large, even in the tens of thousands, we declare that the diagram passes
the test if it is still lexicographically minimal once some fixed number k of diagrams
has been generated by the moves. Smaller values of k will entail larger redundancy,
but it makes sense to keep k quite small on account of the time that would be spent on
processing a large set of diagrams.

Figure 4: The “pass” transformation on diagrams

In [Hoste et al. 1998] some diagram moves more “exotic” than flypes and passes were
used, but this approach was avoided here as it was deemed unnecessary, quite apart
from the increased danger of introducing bugs into the program. In practice the value
chosen for k was 200, and from experimentation with known tabulations with fewer
crossings it was estimated that this resulted in roughly 25% redundancy overall.

2.2 Removing duplicate knots

The next task is to augment the current list of over 2 billion non-alternating diagrams
by all tabulated knots with fewer crossings, and then to remove as many duplicates as
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possible. The extreme difficulty of achieving this “house cleaning” simply by inspect-
ing or manipulating knot diagrams is wonderfully exhibited by the celebrated Perko
pair [Perko 1974], a pair of knots with only 10 crossings declared to be inequivalent in
C.N. Little’s 1900 table, this status persisting until 1974 when K. Perko finally spotted
the equivalence, thereby obtaining the first correct table of 10–crossing knots.

The 1970’s also saw R. Riley’s discovery of a hyperbolic structure on the comple-
ment of the figure-eight knot [Riley 1975], this being one of the inspirations for
W. Thurston’s breakthrough work on geometric structures on 3–manifolds. This
in turn led to J. Weeks’s extensive program SnapPea [Weeks 1989] and its more re-
cent Python implementation SnapPy [Culler et al. 2007], one of whose many features
is the ability to compute the canonical cell decomposition [Epstein and Penner 1988,
Sakuma and Weeks 1995] of a hyperbolic 3–manifold with genus 1 cusps.

The preimage of this cell structure in the universal cover can either be seen in the upper
half-space model as dual to the Ford domain, or it can be seen by means of a convex hull
construction in the Minkowski model. SnapPea performs a very rapid computation of
a purported canonical cell decomposition by starting with a known ideal triangulation
of the manifold and then implementing a heuristic optimization process that applies
combinatorial moves on the triangulation without affecting the underlying topology.
Because of inevitable accumulation of roundoff error, the resulting cell decomposition
might on occasion not be the canonical one, but nonetheless if two hyperbolic knots
produce isomorphic cell decompositions, their respective complements are proved to
be homeomorphic, and from the fact that knots are determined by their complements
[Gordon and Luecke 1989], the knots are equivalent. In practice, even at the level of
20 crossings this is an effective way of removing duplicates, which otherwise could be
very hard to spot.

Indeed, the current list of over 2 billion 20–crossing non-alternating diagrams was
fed through SnapPea’s canonical cell decomposition procedure, and the few hundred
million diagrams producing duplicate cell decompositions were discarded. During this
process approximately a mere 549491 were declared (with due caution) by SnapPea
to be “apparently not hyperbolic”, and these were copied to a separate list. The next
stage is to try to distinguish by means of invariants the knots in the filtrate. There is
no algorithm at work here, as there does not seem to be any way of predicting which
invariants will distinguish which knots: we just throw invariants at the knots and hope
for the best. However, the method is rigorous, as all computations of invariants are
integer based.
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2.3 Application of invariants to the list of knots

2.3.1 Description of the invariants

The first invariant applied to the remaining diagrams was the Jones polynomial, for
which we are fortunate in having the very fast program of [Ewing and Millett 1991],
which on a single processor of my workstation will process a million 20-crossing
knots in 2 1

2 minutes. This partitions the set of diagrams into relatively small equiv-
alence classes, such that within each equivalence class all knots have the same Jones
polynomial. The knots in equivalence classes of size 1 are extracted and placed in the
“resolved” folder, and the remaining knots are subjected to a sequence of further invari-
ants, the aim being to subject the partition to successive refinements so that eventually
all equivalence classes have size 1.

The remaining invariants are classical, and occur in papers of R.H. Fox [Fox 1962] and
K. Perko [Perko 1976]. They rely on the fact that knot groups seem always to have an
abundance of subgroups of small index. It follows from the work of W. Thurston that
knot groups are residually finite, but this alone does not explain why the knots in our
20–crossing list are so rich in subgroups of index less than 10. Given a subgroup H
of index n of a knot group G, the group G acts transitively by left multiplication on
the set of n left cosets of H , giving rise to a transitive permutation representation of
degree n of G. Conversely, given a transitive permutation representation of degree n
of G, the stabilizers of the n symbols are conjugate subgroups of G of index n. Using
the Reidemeister–Schreier rewriting process we can obtain a presentation of such a
subgroup H , and by Abelianization obtain a finitely generated Abelian group, which
is essentially the first homology group of the covering space of the knot complement
corresponding to H . We can also glue in solid tori to this covering space so that the
components of the preimage of a meridian curve are spanned by cross-sectional disks,
thus obtaining the first homology group of the so-called branched covering space.

The technique is to choose a transitive permutation representation of some group, for
example the natural representation of degree 5 of the alternating group A5 , and then
find all homomorphisms of the knot group onto that group of permutations, up to
composition with inner automorphisms of the image group. The multiset of Abelian
groups thus obtained is then an invariant of that knot type, and amazingly, together
with the Jones polynomial it was possible in this way to distinguish almost all listed
20–crossing knots from one another and from knots with fewer crossings, using only
subgroups of the symmetric group S7 .
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Figure 5: A pair K1 , K2 of mutant 20–crossing knots

Here are two examples of this type of invariant applied to a fairly resistant mutant pair
of 20–crossing knots.

Each diagram in Figure 5 consists of an upper tangle glued to a lower tangle along
four strands; the second diagram can be obtained from the first by excising the upper
tangle, rotating it through a half turn in the projection plane and then gluing it back to
the lower tangle.

Being related by mutancy, these knots cannot be distinguished by the Jones polynomial
nor indeed by the HOMFLYPT 2–variable polynomial; also they resisted homology
groups associated with permutation representations of degrees 5 and 6. However
they did succumb to permutation representations mapping meridians to one of the two
conjugacy classes of 7–cycles in the alternating group A7 . For K1 there were 14
representations, producing homology groups with torsion numbers as follows:

[1083964, 14], [10873394], [117987912], [1308356, 2, 2], [13423592, 8],

[155682849, 3], [2496669], [30245222, 2], [353577, 7], [477902327],

[4832310], [58290239, 7], [8694588], [909657, 7]
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and for K2 just 13 representations:

[10007522, 2], [1339604, 14], [20281751], [21298634], [24072097],

[2742502, 2], [304197488, 2], [40220460], [46137, 21], [4719806],

[53620280], [56118930, 3], [6282066, 2]

Since the group A7 admits an automorphism sending each 7–cycle to its inverse, this
conjugacy class cannot be used to detect nonreversibility of knots. It was observed by
H. Trotter [Trotter 1964] that a more careful choice of target group can be effective
for this purpose; indeed this was the first occasion that the existence of nonreversible
knots was proved. Later R. Hartley [Hartley 1983] used (solvable) groups of functions
x 7→ ax + b (a ̸= 0) over finite fields to establish nonreversibility of many knots of
up to 10 crossings. For the knots K1 , K2 of Figure 5, the sporadic Mathieu simple
group M11 is effective in showing that they are not reversible. Specifically, we can use
the irreducible permutation representation of M11 of degree 11, and map meridians
to one of the two conjugacy classes of size 990 containing elements of cycle type
(ab)(cdefghij). Here are the results, with torsion numbers for each representation
enclosed in square brackets as above:

K1 [1394030, 2]
Reverse of K1 [287520], [65322]
K2 [14118592], [5682, 2]
Reverse of K2 [1598572], [4161904]

It is expected that one can determine reversibility in this way for the list of 20–crossing
knots, although it could be very time consuming. Determining amphicheirality is in
practice easier, as almost all instances of non-amphicheirality are detected by the Jones
polynomial.

2.3.2 Details of the invariants’ performance

There now follows details of the efficacy of the invariants used for distinguishing
the 20–crossing knots from one another and from knots with fewer crossings. The
enumeration stage of the classification process generated 2229828372 20–crossing
nonalternating diagrams; barring programming error there were no omissions in this
list, and the procedure was in three main stages as described below.

Stage 1. The raw list of 20–crossing nonalternating diagrams was augmented by the
list of all 352151858 hyperbolic knots with fewer than 20 crossings, resulting in an
enlarged list containing 2581980230 knots. SnapPea’s canonical cell decomposition
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procedure was applied to each knot in the enlarged list, and the data was sorted so
that duplicate cell decompositions became evident. Each cell decomposition was
encoded by a string of approximately 300 bytes on average, so the amount of data
involved in this step was around 775 GB. As explained in Section 2.2, it is not
guaranteed that the cell decompositions output by this procedure are canonical in the
sense of [Epstein and Penner 1988, Sakuma and Weeks 1995], but knots with duplicate
cell decompositions have homeomorphic complements, so are equivalent owing to the
fact that knots are determined by their complements [Gordon and Luecke 1989].

The canonical cell decomposition procedure declared that 549491 knots from the list
were “apparently not hyperbolic” and these were put in a separate list for further
treatment. Aggressive diagram moves revealed that out of these knots 200 were the
unknot, 547611 were composite knots, and a further 482 could be drawn with fewer
than 20 crossings. This left a residue of 1198 knots, which on being treated to
still more stringent diagram moves were shown to belong to 921 knot types, distinct
from one another and distinct from all nonhyperbolic knot types with fewer than 20
crossings. The proof that this list consisted of a single 20–crossing torus knot and 920
20–crossing satellite knots is given in Section 3.

After removing the 549491 knots declared to be “apparently not hyperbolic” and the
knots whose complements had duplicate cell decompositions, the number of knots in
the refined list was 1999847149. These were input into the next stage, it being expected
that the only duplications were those arising from roundoff error in application of the
canonical cell decomposition procedure.

Stage 2. From an accounting point of view this was the easiest stage. The Jones
polynomials of the 1999847149 knots output by the previous stage were computed,
and the 336548774 knots with unique polynomials were extracted and placed in the
store of “resolved” knots . The remaining 1663298375 knots were input into Stage 3,
which subjected them to the invariants described above, namely first homology groups
of branched covering spaces corresponding to permutation representations of the knot
groups.

Stage 3. Tables 1, 2 below summarize the results of this stage. The first table uses
representations into alternating or symmetric groups of degrees 5, 6, and the number
of unresolved knots was reduced from 1663298375 to 728749. The column labelled
“# unique” gives the number of knots distinguished from all others and placed into
the “resolved” store, and the column labelled “# nonunique” gives the number of
unresolved knots requiring further treatment. The column labelled “cycle type” gives
the cycle type of the conjugacy class to which meridians of the knot group were mapped.
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The machine used for these computations had 160 GB of memory and 20 processing
cores.

The remaining knots were then subjected to permutation representations in various
specific groups, as set out in Table 2. Each of these substages took less than a day of
runtime.

degree cycle type # input # unique # nonunique runtime
5 (abcde) 1663298375 906980266 756318109 20 days
5 (abc)(de) 756318109 317431388 438886721 4 days
5 (abcd) 438886721 309112549 129774172 5 days
6 (abc)(def ) 129774172 66784736 62989436 6 days
6 (abcde) 62989436 57189475 5799961 6 days
6 (abcdef ) 5799961 5071212 728749 1 day

Table 1

group degree cycle type # input # unique # nonunique
PSL(2, 7) 7 7–cycles 728749 572093 156656

PSL(2, 11) 11 11–cycles 156656 117446 39210
PSL(2, 13) 14 13–cycles 39210 15364 23846
PSL(2, 17) 18 17–cycles 23846 5245 18601

A7 7 7–cycles 18601 1071 17530
PSL(2, 19) 20 19–cycles 17530 2 17528

Table 2

At this point the list of 17528 unresolved knots were partitioned into 8755 equivalence
classes, where knots within each equivalence class had resisted all invariants applied to
date. It was suspected that each of these in fact represented a single knot type, and this
was confirmed by a more persistent application of the canonical cell decomposition
procedure: SnapPea has a convenient “random retriangulation” feature, and from this
a small number of different contenders for canonicity were obtained, amongst which
matching cell decompositions were found in each of the outstanding cases.

Surprisingly the last two knots to be distinguished, in the last row of Table 2, were a pair
of 14–crossing two-bridged knots, with associated fractions 505

192 ,
505
212 and respective

Conway codes 2111221112 , 2211111122. These are easily distinguished by the fact
that they are alternating, and also by their lens space two-fold branched covers, but for
some reason they resisted polynomial invariants and the homology invariants of Tables
1, 2 until the very last step.
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This concluded the task of obtaining a list of 20–crossing knots with no omissions or
duplications, but it was still necessary to check that there were no “poseur” composite
knots in the list. One almost hoped that some would materialize, as such examples
would be noteworthy.

3 Establishing primality

A fundamental property of a hyperbolic 3–manifold is that it cannot contain an es-
sential torus. The software Regina [Burton et al. 2023] confirmed that all presumed
1, 847, 318, 507 hyperbolic 20–crossing knots in our list are indeed hyperbolic (i.e.
there are no false positives with respect to hyperbolicity) so all are immediately known
to be prime.

A different approach is needed for showing that the 921 (apparently) non-hyperbolic
knots are prime. The single torus knot was easily identified, and since torus knots are
prime we may restrict our attention to the remaining 920 knots in this list.

We recall the terminology of [Lickorish 1981]. In that paper a tangle is defined to be a
pair (B , T) where B is a 3–ball, i.e. a manifold with boundary homeomorphic to the
standard 3–ball B3 , and T is a proper 1–submanifold of B consisting of two disjoint
arcs (naturally we assume that we are in the piecewise linear or smooth category). Thus
the boundary of T consists of four points on ∂B. This definition has some obvious
generalizations, for example we might allow the number of arcs in T to be greater than
2, but the definition as given is sufficient for our purposes. Tangles (B1 , T1) , (B2 , T2)
are equivalent if there is a homeomorphism of pairs from (B1 , T1) to (B2 , T2), and
(B , T) is untangled or trivial if it is equivalent to a product (D , {x, y}) × I , where D
is a disk and x, y are points in its interior.

In the definition of tangle equivalence given above, for a homeomorphism h : (B , T1) →
(B , T2) there is no restriction on the effect of h on the boundary 2–sphere of B, other
than the requirement that it map ∂T1 to ∂T2 . For example, any tangle represented as a
diagram of a rational tangle [Conway 1967] is equivalent to a tangle where T consists
of two parallel line segments, i.e. it is trivial.

A tangle (B , T) is locally unknotted if each 2–sphere in B meeting T transversely in
two points bounds in B a ball meeting T in an unknotted spanning arc. Otherwise we
say that (B , T) is locally knotted; an example is illustrated in Figure 4(i). Observe that
if (i) (B , T) is locally unknotted, and (ii) there exists a properly embedded disk in B
separating the arcs of T , then (B , T) is trivial.
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Given tangles (B1 , T1) , (B2 , T2), we may glue them together by means of some
homeomorphism of (2–sphere , four points) pairs to obtain a link L of one or two
components in the 3–sphere. Such a pair (S3 , L) is called a sum of the tangles
(B1 , T1) , (B2 , T2). Given two tangles drawn in the usual way as diagrams, one way
of summing them is to join the diagrams by arcs in the projection plane.

If (B , T) contains a 2-sphere S exhibiting local knottedness, with knotted arc α in the
ball bounded by S , then there is a well-defined non-trivial knot K obtained by joining
the ends of α with an arc in S , and this knot K will persist as a connected summand of
any knot formed by summing (B , T) with an arbitrary tangle. Therefore if we can sum
(B , T) with a tangle so as to obtain the unknot, (B , T) is locally unknotted. In more
complicated situations we have the following effective test for local unknottedness:

Proposition 3.1 Let (B , T) be a tangle for which there exist tangles (B1 , T1) , (B2 , T2),
such that summing (B , T) with the (Bi , Ti) in turn produces distinct prime knots
K1 , K2 . Then (B , T) is locally unknotted.

Proof If (B , T) is locally knotted, there exists a non-trivial knot that is a connected
summand of each of the distinct prime knots K1 , K2 , and this contradicts uniqueness
of factorization of knots.

Figure 6: (i) A locally knotted tangle and (ii) a companion tangle

There is a special type of tangle that pertains to satellite knots. We define a companion
tangle to be a tangle (B , T) where T consists of two parallel, knotted arcs in B;
an example is illustrated in Figure 6(ii). Each companion tangle (B , T) contains a
properly embedded annulus A in B − T that “follows” the two strands of T in tube-
like fashion, i.e. there is a homeomorphism h : S1 × I → A such that each section
h(S1×{t}) of A bounds a disk in B meeting T transversely in two points. A companion
tangle cannot be locally knotted, as it is always possible to sum it with a trivial tangle
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so as to obtain the unknot; in Figure 6(ii) this can be seen by taking two arcs in the
projection plane, one joining the two left-hand ends and the other the two right-hand
ends.

Let us now consider a knot (S3 , K) constructed as a sum of a companion tangle
(B1 , T1) with a locally unknotted tangle (B2 , T2). We may form a torus F in the
complement of K as the union of the “following” annulus A1 of (B1 , T1) described
above, with a boundary-parallel annulus A2 in (B2 , T2) that “swallows” T2 . Let V
be the solid torus containing K that is bounded by F ; V is the union of two “halves”
V∩B1 , V∩B2 glued together along cross-sectional disks D1 , D2 , both in ∂B1 = ∂B2 ,
and each meeting K in two points. The core Γ of V is a non-trivial knot in S3 , as it it
the union of a knotted arc in B1 that is the core of A1 with an unknotted arc in B2 that
is the core of A2 .

Any cross-sectional disk of V not meeting K would have to separate the strands of
the second tangle (B2 , T2), but the local unknottedness of (B2 , T2) would force that
tangle to be trivial, and we would be in the situation described above where K is the
unknot. On the other hand, if there is no cross-sectional disk of V separating the
strands of (B2 , T2), K is a satellite of Γ and the torus F is incompressible in S3 − K .

The next theorem provides the method for showing that the 920 outstanding knots are
prime. It is closely related to results in [Schubert 1953, Lickorish 1981, Cromwell 2004],
as explained below; however the full proof is given here as the hypotheses are an exact
fit to our situation, and moreover should be applicable to future tabulations with more
than 20 crossings.

Theorem 3.2 Let K be a knot that is a sum of a companion tangle with a locally
unknotted tangle. If K is non-trivial, then K is prime.

Proof We adopt the notation of the preceding discussion: (S3 , K) is a non-trivial
knot that is the sum of a companion tangle (B1 , T1) with a locally unknotted tangle
(B2 , T2), F = A1 ∪ A2 is the incompressible torus in S3 − K that “follows” T1 and
“swallows” T2 , and V is the solid torus with boundary F .

Let S be a 2–sphere in S3 meeting K transversely in two points. Before proceeding
further it is useful to observe that each simple closed curve C in S − K is either null-
homotopic in S − K (hence also null-homotopic in S3 − K ), or else it separates the
punctures. In particular, a circle on F that bounds a cross-sectional disk of V cannot
lie on S .

We first consider the special case where S is contained in V . Since by hypothesis each
of the constituent tangles (B1 , T1) , (B2 , T2) is locally unknotted, the conclusion of



14 Morwen B. Thistlethwaite

the theorem holds for S contained in either “half” V ∩ Bi , and we are motivated to
consider the transverse intersection of S with the two disks D1 , D2 along which the
halves of V are glued together. We may assume that the two points of S ∩ K are away
from the Di . The set S ∩ (D1 ∪ D2) is the union of a disjoint collection of circles on
S; let C be a circle from this collection that is innermost on S , say without loss of
generality C ⊂ S ∩ D1 . Then C bounds a disk ∆1 ⊂ S and a disk ∆2 ⊂ D1 . The
union of the disks ∆i is an embedded 2–sphere Σ, bounding a ball B ′ contained in
one of the Bi . The number n of points of ∆2 ∩K is 0, 1 or 2, and we consider each of
these cases. We can exclude the possibility n = 2 summarily, as in this case C would
be a simple closed curve on S homotopic in S3 − K to a meridional curve of F = ∂V ,
a situation ruled out in the previous paragraph.

Suppose that n = 0; then ∆1 meets K in 0 or 2 points. In the latter case, from
the hypothesis of local unknottedness applied to Σ, the ball B ′ would meet K in an
unknotted arc; we deduce from this that one of the components of S3 − S would meet
K in this arc, and the conclusion of the theorem would follow. Otherwise the ball B ′

does not meet K . The circle C might not be innermost on D1 , but nonetheless ∆1 can
be pushed by an isotopy through B′ , taking with it all components of S ∩ B′ , reducing
the number of components of S ∩ (D1 ∪ D2). If n = 1, then from the hypothesis of
local unknottedness B ′ meets K in an unknotted arc, so again there is an isotopy that
pushes ∆1 across B ′ , including if necessary another component of S ∩ B ′ meeting
K in one point. Here the isotopy will move points of K along the unknotted arc, but
can be assumed to fix K setwise. We conclude that there is an isotopy of S into one
of the Bi without affecting transversality of S ∩ K , whence S bounds a ball on one
side meeting K in an unknotted arc, and the conclusion of the theorem follows for this
special case.

For the remainder of the proof we assume that S has non-empty transverse intersection
with F = ∂V ; the proof will be completed by showing that there an isotopy of S in S3 ,
maintaining transversality of S with K , that moves S to a 2–sphere contained in V .

Recall that a simple closed curve in the twice-punctured sphere S − K is either null-
homotopic in S−K or is homotopic to a meridian of curve of K . The torus F does not
contain any simple closed curve of the second type, so each component C of S ∩ F is
a simple closed curve bounding a disk in S − K , and also bounding a disk in F owing
to the incompressibility of F . Let us take a component C of S ∩ F bounding a disk
∆1 ⊂ S − K whose interior does not meet F ; also let ∆2 be the disk on F bounded
by C . Then ∆1 ∪∆2 is an embedded 2–sphere in S3 − K , and in a manner similar
to that of the special case we can perform an isotopy of S that reduces the number of
components of S ∩ F . Repeating the process will eventually move S into V , and the
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proof of the theorem is complete.

There is overlap between Theorem 3.2 and results in the literature, most notably H.
Schubert’s paper [Schubert 1953] where the notion of companionship tree of a knot is
introduced, and where it is shown that doubled knots and cabled knots are prime.

In [Lickorish 1981] a tangle is called prime if it is non-trivial and locally unknotted, and
it is proved in that paper that a sum of two prime tangles is a prime link. A companion
tangle is prime according to this definition, as it is locally unknotted, and cannot be
trivial as its individual strands are knotted arcs. Theorem 3.2 shows that, apart from
the obvious single exception, a knot formed as a sum of a companion tangle with a
trivial tangle is also prime, thus confirming a special case of the conjecture stated in
§4 of [Lickorish 1981].

Theorem 4.4.1 of [Cromwell 2004] deals more generally with primality of satellite
knots; it includes the hypothesis that the pair (V , K) is locally unknotted, this being
the conclusion of the special case dealt with in the proof of Theorem 3.2.

Recall that there are 920 knots in our tabulation that are under examination for prime-
ness. It was suspected that five of these are satellites of the figure-eight knot, and these
were easily found in the list; they are all obtained by summing the companion tangle
of Fig. 4(ii) with a 4–crossing rational tangle. Since they are already known to be
non-trivial, and rational tangles are certainly locally unknotted, application of Theorem
3.2 shows that they are prime.

Naturally one suspects that the remaining 915 knots are satellites of the trefoil knot.
In order to apply 3.2 we need diagrams of these knots that show each as a sum of a
companion tangle with a locally unknotted tangle. Undoubtedly it would be possible
to find such diagrams directly; however, a different approach was used here. The list of
199, 631, 989 prime alternating 20–crossing knots provides, up to flype equivalence,
all projections of prime non-alternating knots, and an easy search through this list found
434 projections of tangle sums of the required kind. Suitable over- and under-passes
were applied to these, resulting in a refined list of 915 knot diagrams that (i) visibly
were sums of tangles (B1 , T1) , (B2 , T2) with (B1 , T1) a companion tangle, and (ii)
matched the tabulated 915 knots.

As the knots were already known to be non-trivial it remained to check that in each
case the tangle (B2 , T2) was locally unknotted. In all but ten cases, verification was
immediate, as the diagrams of (B2 , T2) are either alternating, in which case they are
subject to Theorem 1 of [Menasco 1984], or they are standard diagrams of arborescent
tangles [Bonahon and Siebenmann 1979].
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Figure 7

The ten exceptional cases come in five pairs, each pair consisting of a diagram and its
reflection in the projection plane. It was only necessary to check one tangle from each
pair, and they are illustrated in Figure 7.

Under mild scrutiny the individual strands of the third, fourth and fifth tangles of Figure
7 are all revealed to be unknotted, so local knots for these tangles are ruled out. One
can also notice that the first two tangles are equivalent: there is a homeomorphism
that interchanges the lower two tangle ends. Therefore, in order to complete the
proof that all 920 satellite knots are prime, we just need to check that the first tangle
is locally unknotted. This follows quickly from Proposition 3.1: summing (in the
“diagrammatic” sense) with a tangle with no crossings produces a prime 8–crossing
knot, and one can obtain a prime 9–crossing knot, also a prime 10–crossing knot by
summing with a 2–crossing tangle.
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5 Appendix

5.1 The rate of growth of the number of knots

It is natural to ask whether one can estimate the number of prime knots with a given
number of crossings without an actual tabulation. There are very few results in existence
on this topic, but the following is known. It is stated for links rather than knots, but it
suggests that the number of non-alternating knots grows exponentially faster than that
of alternating knots.

Theorem 5.1 (i) [Sundberg and Thistlethwaite 1998] Let An denote the number of
prime alternating link types with n crossings. Then

lim
n→∞

A1/n
n =

101 +
√

21001
40

≈ 6.1479

(ii) [Thistlethwaite 1998] Let λ be the limit stated in (i). There exists a set B of prime
links, strictly containing the set of prime alternating links, such that if Bn is the number
of links in B with n crossings, then limn→∞ B1/n

n exists and is strictly greater than λ.

5.2 The number of prime knot types with n crossings, 3 ≤ n ≤ 20

The first correct tabulations of knots of 17, 18 and 19 crossings were produced by Ben
Burton [Burton 2020].

When reading Table 3, it is worth noting that the only prime, alternating, non-hyperbolic
knots are the (2, n)–torus knots (with n necessarily odd) [Menasco 1984]. Thus for
even n all n–crossing prime alternating knots are hyperbolic, and for odd n there is
a single non-hyperbolic prime alternating knot, namely the (2, n)–torus knot. Also it
follows that all prime satellite knots are non-alternating.
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# crossings # alt. knots # nonalt. knots # hyperbolic # torus # satellites
3 1 0 0 1 0
4 1 0 1 0 0
5 2 0 1 1 0
6 3 0 3 0 0
7 7 0 6 1 0
8 18 3 20 1 0
9 41 8 48 1 0

10 123 42 164 1 0
11 367 185 551 1 0
12 1288 888 2176 0 0
13 4878 5110 9985 1 2
14 19536 27436 46969 1 2
15 85263 168030 253285 2 6
16 379799 1008906 1388694 1 10
17 1769979 6283414 8053363 1 29
18 8400285 39866181 48266380 0 86
19 40619385 253511073 294130212 1 245
20 199631989 1647687439 1847318507 1 920

Table 3
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[Poincaré 1895] Poincaré, H.. (1895) Analysis situs. Journal de l’Ecole Polytechnique (2) 1,
1–123 (1895).

[Rankin et al. 2004] Rankin, S., Flint, O., Schermann, J. (2004) Enumerating the prime
alternating knots, I. J. Knot Theory Ram. 13 (2004), no. 1, 57–100.

[Riley 1975] Riley, R. (1975) Discrete parabolic representations of link groups. Mathematika
22 no. 2 (1975), 141–150.



20 Morwen B. Thistlethwaite

[Sakuma and Weeks 1995] Sakuma, M., Weeks, J. (1995) The generalized tilt formula. Geom.
Dedicata 55 (1995), no. 2, 115–123.
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