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Abstract

The image of PSL.2; R/ under the irreducible representation into PSL.7; R/ is contained in

the split real form G
4;3
2 of the exceptional Lie group G2 . This irreducible representation

therefore gives a representation � of a hyperbolic triangle group � .p; q; r/ into G
4;3
2 , and

the Hichin component of the representation variety Hom.� .p; q; r/ ; G
4;3
2 / is the component

of Hom.� .p; q; r/ ; G
4;3
2 / containing � .

In this article we give a simple, elementary proof of a formula for the dimension of this Hitchin

component, this formula having been obtained earlier in [ALS22] as part of a wider investi-

gation using Higgs bundle techniques. Then we specialize to the .2; 4; 6/–triangle group and

give two infinite sequences of integer points on its G2–Hitchin component, yielding infinitely

many non-conjugate thin subgroups of G
4;3
2 .

1 Introduction

The .p; q; r/–triangle group � .p; q; r/ is the orbifold fundamental group of a 2–sphere with three cone

points, of respective orders p; q; r . Here we assume throughout that 1
p

C 1
q

C 1
r

< 1 , so that � .p; q; r/

may be regarded as the group of orientation preserving symmetries of a tiling of the hyperbolic plane H2

by triangles with angles �
p

; �
q

; �
r

: the quotient of H2 by the action of this group of isometries is the

abovementioned orbifold. One of the reasons for the interest in triangle groups is that they contain surface

groups as subgroups of finite index. From the Seifert – van Kampen theorem (extended to the context of

orbifolds) a triangle group admits a presentation as follows:

� .p; q; r/ D ha ; b ; c j ap D bq D cr D abc D 1i ;

the generators being represented by rotations about the vertices of a constituent triangle of the tiling.

Recall that for n � 3 there is an irreducible representation, unique up to conjugacy, of PSL.2; R/ into

PSL.n; R/ . Since we may identify the group of orientation preserving isometries of H2 with PSL.2; R/ ,

the restriction of this irreducible representation to a triangle group � .p; q; r/ is a representation �n W

� .p; q; r/ ! PSL.n; R/ , also irreducible [ALS22]. The Hitchin component of the representation variety

Hom.� .p; q; r/ ; PSL.n; R// is defined to be the component of that variety that contains �n . The term

“Hitchin component” was originally coined by F. Labourie [Lab06] for representations of surface groups of
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negative Euler characteristic, but it is appropriate to use the term for representations of hyperbolic triangle

groups or other orbifold fundamental groups.

There has been considerable study of Hitchin components, but often the case n D 7 has been regarded as

a technical inconvenience to be avoided, on account of the existence of the 7–dimensional representation in

SL.7; C/ of the exceptional Lie group G2 , giving rise to representations of its real forms in SL.7; R/ . It

so happens that the image of PSL.2; R/ under the irreducible representation into PSL.7; R/ is contained

in the split real form G
4;3
2 , this notation reflecting the fact that it is contained in SO.4; 3/ (the other real

form of G2 is compact and is contained in SO.7/ ) [Agr08, Draper17].

If n D 2k C 1 is odd, the image of PSL.2; R/ under the irreducible representation into PSL.n; R/ D

SL.n; R/ is contained in the split orthogonal group SO.k C 1; k/ , whereas if n D 2k is even, the

image is contained in the (projectivized) symplectic group PSp.k/ . The determination of the dimension

of the Hitchin component of � .p; q; r/ in PSL.n; R/ was carried out in [LT18b], and for SO.k C 1; k/

and PSp.k/ independently by [Weir18] and [ALS22]. The methods of [LT18b] and [Weir18] are quite

elementary in nature. On the other hand [ALS22] uses Higgs bundle techniques to obtain results of greater

generality, including in particular the formula of 2.1 below. The independent proof of the formula given

here is elementary, and is along the lines of [LT18b].

For the second part of this note we focus on the G2–Hitchin component H2;4;6 of the 2; 4; 6–triangle group,

which we were able to calculate exactly. Within H2;4;6 we found a sequence .�n/ of representations, each

of which can be conjugated to be over the integers. Interestingly, at the time that we proved the integrality

of the representations �n , we had been unable to find a formula generating conjugates of �n in SL.7; Z/ .

Eventually, after a lapse of more than a year, a formula was found for n a multiple of 4 . We did however

find an ad hoc process which yielded integer representations conjugate to the first twelve representations in

the sequence, and which appears to be effective beyond that.

2 The dimension of HG2 for � .p; q; r/

Theorem 2.1. Let S D fn 2 N j n � 2g , and let f W S ! N be defined as follows:

f .n/ D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

8 .n D 2/

10 .n D 3; 4; 5/

12 .n � 6/

The dimension of the Hitchin component HG2
of � .p; q; r/ in G

4;3
2 is f .p/ C f .q/ C f .r/ � 14 , and

that of the corresponding component of the character variety is f .p/ C f .q/ C f .r/ � 28 .

From the formula given in Theorem 1, we see that the two triangle groups � .2; 4; 5/ , � .2; 5; 5/ are rigid

in G
4;3
2 , and that all other hyperbolic triangle groups are “flexible”, with even-dimensional Hitchin compo-

nents. We were able to calculate the two-dimensional G
4;3
2 –Hitchin components for � .3; 3; 4/ ; � .3; 4; 4/
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and � .2; 4; 6/ exactly, using techniques based broadly on those of [LT18a]. The exact tautological repre-

sentation for � .2; 4; 6/ is given in the Appendix.

The proof of Theorem 1 presented here is a close adaptation of the corresponding proof in [LT18b], to

which the reader is referred. The idea is first to observe that under a continuous deformation the images

˛; ˇ;  in G
4;3
2 of the generators a; b; c of � .p; q; r/ can only move within their conjugacy classes in

G
4;3
2 , on account of their being of finite order. Then, writing Œ˛� ; Œˇ� ; Œ� for the respective conjugacy

classes of ˛; ˇ;  , we have a smooth map

˚ W Œ˛� � Œˇ� � Œ� ! G
4;3
2 ; ˚ W .˛0; ˇ0;  0/ 7! ˛0ˇ0 0 ;

which the argument of [LT18b] shows is a submersion close to .˛; ˇ; / , by invoking the irreducibility of

the representation � 7 . It follows from the defining relation abc D 1 that

dim HG2
D dim Œ˛� C dim Œˇ� C dim Œ� � dim G

4;3
2 D dim Œ˛� C dim Œˇ� C dim Œ� � 14 :

It remains to determine the dimensions of the conjugacy classes in G
4;3
2 of the elliptic generators of

� .p; q; r/ , and this is the ingredient that inevitably has to use specific properties of that Lie group.

Proposition 2.2. Let g be an elliptic generator of a triangle group, of order k say. The dimension of the

conjugacy class in G
4;3
2 of � 7.g/ is f .k/ , where f is the function defined in the statement of Theorem

1.

Proof. Let  ; Œ� denote � 7.g/ and its conjugacy class in G
4;3
2 , respectively. Since the elements of Œ�

are in bijective correspondence with cosets of the centralizer C
G

4;3
2

./ of  in G
4;3
2 , we have

dim Œ� D dim G
4;3
2 � dim C

G
4;3

2

./ D 14 � dim C
G

4;3

2

./ :

We would like to relegate the computation of dim C
G

4;3
2

./ to linear algebraic considerations of the Lie

algebra g
4;3
2 , and to this end we make use of the following facts from basic Lie theory (these facts are also

used in [LT18b]):

(i) There exists a neighbourhood of 0 2 g
4;3
2 on which the exponential map is a diffeomorphism to a

neighbourhood of the identity element of G
4;3
2 ;

(ii) exp.Ad� �/ D �exp.�/��1 .� 2 G
4;3
2 ; � 2 g

4;3
2 / .

The identity (ii) may be checked merely by expanding the left hand side as a power series. It follows that

the dimension of C
G

4;3
2

./ is equal to the dimension of the subspace

W D f� 2 g
4;3
2 j exp.Ad�/ D exp.�/g D f� 2 g

4;3
2 j Ad� D �g

of the Lie algebra g
4;3
2 .
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The dimension of the real vector space W evidently depends only on of the conjugacy class in PSL.2; R/

of our elliptic g , and indeed it will be most convenient to take a temporary excursion into PSL.2; C/ by

taking the conjugate represented by the diagonal matrix

 

z 0

0 z�1

!

.z D e
i�
k /

whose image under � 7 is the following diagonal matrix:

0

B

B

B

B

B

B

B

B

B

B

B

B

@

z�6

z�4

z�2

1

z2

z4

z6

1

C

C

C

C

C

C

C

C

C

C

C

C

A

(1)

Thus we shall in effect be computing the complex dimension of the complexification of W , but this is not

an issue as this complex dimension is equal to the real dimension that we seek.

For the determination of dim W , we are fortunate in having the very useful, explicit description of the Lie

algebra of G2 given in [Draper17]:

g2 D

8

ˆ

<

ˆ

:

0

B

@

0 �2yt �2xt

x a `y

y `x �at

1

C

A
.a 2 sl3.C/ ; x; y 2 C3/

9

>

=

>

;

; (2)

where for v 2 C3 the 3 � 3 matrix `v represents the map w 7! v � w with respect to the canonical basis:

v D

0

B

@

v1

v2

v3

1

C

A
H) `v D

0

B

@

0 �v3 �v2

v3 0 �v1

�v2 v1 0

1

C

A
:

A specification of the split real form g
4;3
2 is obtained by replacing C by R in the above description.

An important characterization of G2 is that it is the isotropy group of a generic 3–form on the complex

vector space C7 , the term “generic” signifying that its orbit under the action of GL.7; C/ is open in the

space of 3–forms [Agr08, Draper17]. The representation of G2 in SL.7; C/ is of course only defined up

to conjugacy, and different choices of conjugate representation will preserve different 3–forms in this orbit.

The 3–form preserved by the version of G2 given above is (up to scalar multiple)

e1 ^ .e2 ^ e5 C e3 ^ e6 C e4 ^ e7/ C 2 .e2 ^ e3 ^ e4 � e5 ^ e6 ^ e7/ ;
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whereas that preserved by the image of PSL.2; C/ under the irreducible representation given in the usual

way by action on homogeneous polynomials is

f D e1 ^ e4 ^ e7 � 3 e1 ^ e5 ^ e6 � 3 e2 ^ e3 ^ e7 C 6 e2 ^ e4 ^ e6 � 15 e3 ^ e4 ^ e5 (3)

The action of the following matrix was found (by trial and error) to send the second of these 3–forms to the

first:

1

6 .51=3/

0

B

B

B

B

B

B

B

B

B

B

B

B

@

0 0 0 0 0 0 12

0 0 6 0 0 0 0

0 �4 0 0 0 0 0

�3 0 0 0 0 0 0

0 0 0 0 6 0 0

0 0 0 0 0 10 0

0 0 0 �30 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

A

;

and conjugation of the diagonal matrix (1) by this matrix yields the diagonal matrix

 D

0

B

B

B

B

B

B

B

B

B

B

B

B

@

1

z2

z4

z�6

z�2

z�4

z6

1

C

C

C

C

C

C

C

C

C

C

C

C

A

: (4)

Using (2), it is now an almost trivial matter to compute the dimension of the subspace

W D f� 2 g
4;3
2 j Ad� D �g :

For example, taking k D 2 and taking � to be the general element of g2 given in (2), we have

� � � D

0

B

B

B

B

B

B

B

B

B

B

B

B

@

0 �4y1 0 �4y3 �4x1 0 �4x3

�2x1 0 �2a12 0 0 2y3 0

0 2a21 0 2a23 2y3 0 �2y1

�2x3 0 �2a32 0 0 �2y1 0

�2y1 0 2x3 0 0 2a21 0

0 2x3 0 �2x1 �2a12 0 �2a32

�2y3 0 �2x1 0 0 2a23 0

1

C

C

C

C

C

C

C

C

C

C

C

C

A

:

The condition Ad� D � requires us to set the eight parameters

x1 ; x3 ; y1 ; y3 ; a12 ; a21 ; a23 ; a32
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to zero, leaving 14 � 8 D 6 degrees of freedom. Therefore the dimension of the centralizer of  is 6 , and

the dimension of the conjugacy class of  is f .2/ D 14 � 6 D 8 .

The computation of f .k/ for values of k greater than 2 is similar, but it should be remarked that the fact

that f .3/ ; f .4/ ; f .5/ are all equal should probably be regarded as a coincidence, as the computations for

these three values are seemingly unrelated.

3 Integer points in HG2
.� .2; 4; 6//

3.1 The character variety

From the formula of Theorem 1, HG2
.� .2; 4; 6// , the G2–Hitchin component of the .2; 4; 6/–triangle

group (in its character variety form) has dimension 2 . Its exact formulation was obtained in a manner

similar to that of [LT18a], the extra ingredient being a “filter” added with the purpose of steering the Newton

process so that it converged (numerically) to a representation preserving a generic 3–form, specifically the

form f given in (3).

The exact version of HG2
.� .2; 4; 6// given in the appendix has generators a ; b of orders 4 ; 6 respectively,

and with ab of order 2 . Each point of the character variety HG2
.� .2; 4; 6// is of course a conjugacy

class of representations, but we shall identify this point with the specific representation determined by the

given matrices a ; b .

The entries of the matrices a ; b are expressions in parameters u D Tr.aaab/ C1 and v D Tr.aabb/ C1 .

They lie in a quadratic extension Q.u; v/.˛/ of Q.u; v/ , with

˛ D 4 Tr.abABaB/ C 4 C 2u2 � 2u.2 C v/

D ˙

r

2.�72u2 C 72u3 � 16u4 � u5 C v.�192u C 64u2 C 20u3/ C v2.�192 � 32u C 2u2/ � 32v3/ ;

A ; B denoting the respective inverses of a ; b . Assigning appropriate values to u ; v together with a

sign for ˛ determines a specific representation in the Hitchin component. The values chosen for u ; v

should be the coordinates of a point in the correct region of the .u; v/–plane as indicated in Figure 1. In

that figure a component of the curve ˛ D 0 is illustrated; the Hitchin component is homeomorphic to R2

[ALS22] and consists of two sheets glued along the illustrated curve. Thus a point of the Hitchin component

is determined by a suitable pair of real numbers u; v together with a choice of sign for the corresponding

value of ˛ .

3.2 Finding integer points

For a representation in the Hitchin component to be written over the integers it is of course necessary for

traces of all words in the generators a ; b to be integers; thus we require u ; v 2 Z , and moreover from

˛ D 4 Tr.abABaB/ C 4 C 2u2 � 2u.2 C v/ we require that ˛ should be an even integer. A quick

computer search in a reasonable range produces a scatterplot of points .u; v/ ; u; v 2 Z for which ˛.u; v/
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is also an integer, and then another search looks within these points for possible beginnings of sequences

.un; vn/ such that ˛.un; vn/ 2 Z for all n . In this way, two such sequences were found, each lying on a

curve in the Hitchin component:

S1 .un ; vn/ D .4.18 C n2/ ; .18 C n2/.21 C n2// ˛ D 8n.15 C n2/.18 C n2/ (5)

S2 .un ; vn/ D .4.22 C 3n2/ ; .22 C 3n2/.23 C 3n2/ ˛ D 24n.21 C 3n2/.22 C 3n2/

The first few terms of these two sequences are illustrated in Figure 1, the points of S1 being marked as

filled circles and those of S2 as stars.

*
*

*

*

*

100 150 200 250 300

1000

2000

3000

4000

5000

Figure 1:

Substitution of the values given in (5) produces generating matrices with entries in the rational numbers,

and then it is incumbent upon the investigator to show somehow that the representations can be conjugated

to be over the integers. Initially one applies ad hoc methods (involving solutions of diophantine equations)

to individual representations, and although success was achieved for around twenty representations in each

sequence, there was no discernable pattern in the results. Also the integer representations thus obtained

were extremely unwieldy.

After approximately one year, finally, through persistent observation, solutions were found for the sequence

S1 , see Figure 2, where there are separate formulae for the generator b for the cases n even, n odd.

Each of the two formulae in Figure 2 gives a parametrization of a curve C1 in the Hitchin component. A

representative �.s/.s 2 R/ of an arbitrary point on this curve can be defined unambiguously as follows:
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aeven D aodd D

0

B

B

B

B

B

B

B

B

B

@

0 1 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 �1 0

0 0 0 0 0 0 �1

1

C

C

C

C

C

C

C

C

C

A

beven.t/ D

0

B

B

B

B

B

B

B

B

B

@

3 1 �49 C 10t �50 C 12t �13 C 2t 1 C 2t 0

�2.3 C t/ 0 63 � 4t 65 � 4t 16 �5 � t 4

�2.4 C t/ 0 98 � 22t C t2 102 � 22t C t2 25 � 4t �6 6 � t

17 C 4t 0 �170 C 27t � t2 �174 C 27t � t2 �43 C 4t 15 C t �11 C t

�38 � 6t 0 288 � 36t C t2 287 � 36t C t2 72 � 4t �2.19 C t/ 20 � t

�2.5 C 2t/ 0 126 � 8t 130 � 8t 32 �9 � 2t 8

�18 � 5t � 2t2 0 142 � t � t2 142 � t � t2 2.18 C t/ �18 � 3t � t2 9 C t

1

C

C

C

C

C

C

C

C

C

A

bodd.t/ D

0

B

B

B

B

B

B

B

B

B

@

3 1 �62 C 12t �62 C 12t 2.�7 C t/ �4 C 12t 2.�1 C t/

�5 � 2t 0 72 � 4t 76 � 4t 16 �6 � 4t 2

2.8 C t C t2/ 0 �125 C .�1 C t/2 �131 � 3t C t2 �2.14 C t/ 58 C 4t C 4t2 2

�2.4 C t2/ 0 43 C 7t � t2 45 C 8t � t2 2.5 C t/ �34 � 4t2 �2

�39 � 7t 0 373 � 41t C t2 396 � 42t C t2 83 � 4t �121 � 12t �1

�2 � t 0 36 � 2t 38 � 2t 8 �2.1 C t/ 1

5.3 C t/ 0 �234 C 31t � t2 �247 C 32t � t2 4.�13 C t/ 19 C 8t �6

1

C

C

C

C

C

C

C

C

C

A

Figure 2: In beven , s D 2t , and in bodd , s D 2t � 1.

Definition. Let a ; b be the elliptic generators of respective orders 2 ; 6 of the triangle group � .2; 4; 6/ .

For s 2 R , �s W � .2; 4; 6/ ! SL.7; R/ is the representation �s W a 7�! aeven.s/ ; b 7�! beven.s/ with

s D 2t .

Recall that we have defined the Lie group G2 to be the isotropy group in SL.7; R/ of a generic 3–form

on R7 . Thus G2 is actually only defined up to conjugacy, and the image of the representation �s lies

in a representative of this equivalence class, or informally a “copy” of G2 . That this copy is unique for

given s follows from direct calculation: using the formulae for aeven ; beven , one finds that the 3–form

preserved by both of these generators is unique up to scalar multiple. A 1–parameter family of 3–forms

preserved by the images of the representations �s is given in Table 3 in the Appendix (for convenience

a corresponding parametrized family is also given for the family haodd ; boddi ). We should check that

these forms are generic, although we are already reasonably confident that they are, as the Newton process

used in the initial computation of the Hitchin component was designed to obtain numerical representations

preserving the standard 3–form (3) whose isotropy group is the “standard” copy of G
4;3
2 . The purpose of

the next proposition is to give an independent proof of genericity not tainted by approximations inherent

in numerical work. It involves a short computation that is easily carried out on a computer algebra system

such as Mathematica.

8



Proposition 3.1. The 3–forms listed in (3) for haeven ; beveni are generic for all s 2 R .

Proof. Let fs0
be any of the 3–forms listed in (3). The action of GL.7; R/ on the space F of 3–forms

induces a smooth map

�s0
W GL.7; R/ ! F ; g 7�! g:fs0

:

For distinct i; j let Eij be the 7 � 7 matrix whose .i; j / entry is 1 and all other entries 0 ; then let

Hij � GL.7; R/ be the 1–parameter subgroup I C kEij .k 2 R/ . There are 42 such subgroups, and

a subset of size 35 (chosen randomly in fact), which we denote for convenience fH1 ; : : : ; H35g , was

found to have the following property: the determinant of the matrix whose i th column is Hi .k/:f.s/ is

�126100789566373888 k34 .9 C 2x2/26 .15 C 4x2/26 .90 � 5x C 14x2/ p.s/ q.s/ ;

where p.s/ ; q.s/ are irreducible polynomials in ZŒs� of degrees 6 ; 11 respecitvely. It follows that

if we exclude the real roots of the polynomials p.s/ ; q.s/ (there are three in number), the elements

�s.Hi .k// ; : : : ; �s.H35.k// span the space F of 3–forms for all nonzero k . We deduce that the

differential d�s maps the subspace of the Lie algebra of GL.7; R/ spanned by the tangents to the Hi at the

identity diffeomorphically to the tangent space of F at f.s/ , and the conclusion follows for all s except for

the excluded three real roots of p.s/ ; q.s/ . The same computation was carried out for a different subset

of size 35 of the collection of 42 1–parameter subgroups, and this time the excluded values of s had no

overlap with the previous ones. The conclusion of the proposition follows.

It should be verified that we are in the correct orbit of generic 3–forms, not that corresponding to the

compact real form Gc
2 . One checks that the image of the representation �s respects a bilinear form which

is non-singular for all s 2 R , whence the signature is constant over all real s . Since at s D 0 the signature

is .4; 3/ the verification is complete.

Definition. (i) H.s/ denotes the image of the representation �s of the 2; 4; 6–triangle group.

(ii) G2.s/ denotes the isotropy group of the 3–form f.s/ given in Table 3. Thus G2.s/ is the copy of

G
4;3
2 containing the subgroup H.s/ .

3.3 Zariski dense subgroups and thin subgroups arising from S1

In [LT23] a detailed investigation of the representations in the sequence S1 yielded the following result:

Theorem 3.2. [LT23] The image groups of the representations �s are Zariski dense in G2 for all nonzero

real s .

Here we present an alternative method for determining Zariski denseness. It is applicable to representations

over the integers, and is a straightforward application of Proposition 1 and Theorem 2 of [Lub99].

The following will be useful in our (brief) discussion of thin groups.
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Proposition 3.3. For each s 2 Z the Lie group G2.s/ is defined over Z .

Proof. The coordinates of the 3–form f.s/ are all integers, and the condition g:f D f can be set out as

a system of polynomial equations over Z in the entries of the matrix g . The group G2.s/ is the set of

solutions over R of this system.

We are now in a position to exploit the results of [Lub99].

Proposition 3.4. Let G2.s/ be as in 3.3; suppose that for some prime p the matrices obtained by reducing

aeven.s/ ; beven.s/ modulo p generate the Chevalley finite simple group G2.p/ . Then the group generated

by aeven.s/ ; beven.s/ is Zariski dense in G2.s/ .

Proof. This follows at once from Proposition 1 and Theorem 2 of [Lub99].

The main result of [Lub99] is actually stronger, in that Strong Approximation is used to show that if the

hypothesis of 3.4 is satisfied for some prime p , then it is satisfied for all but finitely many p .

Armed with 3.4 we can recover part of Theorem 3.2. More could be recovered by the use of additional

primes larger than 5 , but there seems to be little point as it is unlikely that by this method one can prove

the conclusion of Theorem 3.2 for all nonzero integers.

Corollary 3.4.1. For s ¤ 0 .mod 5/ the group haeven.s/ ; beven.s/i is Zariski dense in G2.s/ .

Proof. This is a straightforward computation in GAP [Gap]. For s D 2; 4; 6; 8 it was found that the

generators aeven.s/ ; beven.s/ reduced modulo 5 generate a finite simple group of order 5859000000 , for

which G2.5/ is the only possibility.

We end this subsection with a note regarding matrix groups that are thin, as defined in [Sarnak13], see also

[KLLR19].

Recall from Proposition 3.3 that for s 2 Z the copy G2.s/ of G
4;3
2 containing the image H.s/ of �.s/

is defined over Z . It follows from Major Theorem 5.1.11 of [Morris99] that G2.s/ \ SL.7; Z/ is a lattice

in G2.s/ . We denote this lattice G2Z.s/ .

The lattice G2Z.s/ is irreducible on account of G2.s/ being simple, see [Morris99], ÷4.3. In light of

Theorem 3.2 the conclusion of the next proposition holds for all nonzero integers s , but to keep the article

self-contained we shall restrict here to integers that are not multiples of 5 .

Proposition 3.5. Let s 2 Z with s ¤ 0 .mod 5/ . Then H.s/ is a thin matrix group.

Proof. We have already shown that H.s/ is Zariski dense in G2.s/ , so in order to satisfy the thin group

condition it remains to show that H.s/ has infinite index in G2Z.s/ . Suppose to the contrary that

jG2Z.s/ W H.s/j is finite. The triangle group H.s/ has a hyperbolic surface subgroup ˙ of finite index, so

10



˙ is also of finite index in G2Z.s/ and is thus a lattice in G2.s/ . Let N be the commutator subgroup of

˙ . Then N is an infinite normal subgroup of ˙ with quotient ˙=N also infinite (it is the first homology

group of the underlying surface). Since the rank of the Lie group G2.s/ is 2 [Draper17], we have arrived

at a contradiction to the Margulis Normal Subgroups Theorem, [Morris99] Theorem 17.1.1.

Proposition 3.5 provides infinitely many pairwise non-conjugate thin groups in SL.7; Z/ , each with Zariski

closure a copy of G
4;3
2 . The argument of Theorem 1.5 of [LT18a] shows that amongst these groups there

are infinitely many pairwise non-conjugate thin surface groups.

3.4 The representations in the sequence S2

As of this writing, generating matrices in SL.7; Z/ for the representations of S2 have only been found for

the first 20 representations in the sequence. This section will explain how to prove that the representations

in S2 can all be written over the integers, without having explicit representations over Z to hand. It uses a

technique from [BL15].

Looking at Table 4, which gives generators for the representations in S2 with rational entries, one sees that

the only primes dividing the denominators are 2 ; 784 C 177t2 C 9t4 . Conjugating the representations

so as to expunge the prime 2 from denominators is quite straightforward, as the conjugating matrix can be

taken to be independent of the parameter t , see Table 5.

We use a different method for dealing with the remaining prime 784 C 177t2 C 9t4 . From the following

extremely useful result of [Bass80], to prove that the representations in S2 can be written over Z it is

sufficient to show that traces of all elements of ha ; bi are integral. Currently we have established that

784 C 177t2 C 9t4 is the only prime occurring in denominators of elements of ha ; bi , so exclusion of

this prime from denominators of traces together with application of Bass’s result will complete the proof of

integrality of the representations.

Proposition 3.6. ([Bass80], Corollary 2.5.) Let � be a subgroup of SL.n; Q/ satisfying:

(i) The action of � on Qn is absolutely irreducible;

(ii) �.� / � Z , i.e. each element of � has integer trace.

Then there exists t 2 GL.n; Q/ with t� t�1 � SL.n; Z/ .

Proof. Let Z� denote the set of all finite Z–linear combinations of elements of � . By Proposition 2.2(a)

of [Bass80], Z� is a Z–order of M.n; Q/ .

The order Z� is contained in a maximal order O of M.n; Q/ ; from Theorem 21.6 of [Reiner75] such

a maximal order is of the form ft 2 M.n; Q/ j t .�/ � �g for some full lattice � in Qn . Since � is

isomorphic (as a Z–module) to the free module Z ˚ � � � ˚ Z
„ ƒ‚ …

n

, we see that O Š M.n; Z/ .

11



We may now apply the Skolem-Noether theorem (see Theorem 7.21 of [Reiner75]) to obtain t 2 GL.n; Q/

with �t .O/ D M.n; Z/ , �t being the inner automorphism x 7! txt�1 of M.n; Q/ .

M.n; Q/ M.n; Q/

O M.n; Z/

�t

Š

In order that we may apply Proposition 3.6 we need to establish conditions (i), (ii) in the statement of that

proposition, and for this we shall make use of the following construct.

Definition. Let k be a field, let M.n; k/ denote the algebra of n � n matrices over k , and let � be a

multiplicative group of matrices in M.n; k/ . A Burnside � –basis for M.n; k/ is a subset of � that is a

basis for the n2–dimensional k–vector space M.n; k/ .

It is a classical result of W. Burnside that such a basis exists if � is absolutely irreducible in M.n; k/ , i.e.

� leaves no non-trivial, proper subspace of the k–vector space M.n; k/ invariant, where k is an algebraic

closure of k . The (much easier) converse is of immediate use to us.

Proposition 3.7. Let k; �; M.n; k/ be as above. If M.n; k/ admits a Burnside � –basis, then � is

absolutely irreducible in M.n; k/ .

Proof. Suppose that � leaves invariant a non-trivial, proper subspace W of M.n; k/ . We choose a basis

for the subspace W and extend to a basis of M.n; k/ . With respect to this basis the matrix for every

element of � (regarded as a group of linear transformations of M.n; k/ ) has a block of zeros in the bottom

left-hand corner, and so � is conjugate in GL.n; k/ to a group � 0 of matrices of this form. Clearly

the matrix whose .n; 1/–entry is 1 and all other entries 0 is not in the k–span of � 0 , so the subspace

of M.n; k/ consisting of all k–linear combinations of elements of � 0 has dimension strictly less than

n2 . This dimension is equal to that of the subspace of M.n; k/ consisting of all k–linear combinations of

elements of � , and the conclusion follows.

Finding a Burnside basis, like many tasks undertaken in the context of integer representations, is not al-

gorithmic; however in the current situation it was relatively easy to find one, valid for all integers t , for

the images of the representations in S2 . One just keeps adding words in the generators, checking linear

independence at each stage, until one arrives at the requisite number 49 . A Burnside basis that was effective

in eliminating 784 C 177t2 C 9t4 from denominators is given in Table 6 in the Appendix. In that table,

A ; B denote the inverses of the generators a ; b , respectively.

One now proceeds as in [BL15]. Let � D ha.t/ ; b.t/i , where the matrix generators a.t/ ; b.t/ for the

representations in S2 are those given in Table 4, and let B � M.7; Q.t// be a Burnside basis for � . The

group � acts on the algebra M.7; Q.t// by left multiplication, this action giving rise to a representation

12



˚ (with respect to B ) of � into SL.49; Q.t// . We now take the basis B� that is dual to B with

respect to the trace form hX ; Y i D tr.XY / on M.7; Q.t// and calculate generators for the representation

˚� W � ! SL.49; Q.t// with respect to this dual basis B� . It is found that 784 C 177t2 C 9t4 does not

occur as a factor of the denominator of any matrix entry of these generators, whereas it is shown in [BL15]

that any prime dividing the denominator of the trace of an element of � must so occur.

In this way the prime 784 C 177t2 C 9t4 has been eliminated from denominators of traces of elements of

� , and since we have already eliminated the prime 2 , this concludes the proof that the representations in

S2 can be written over the integers.
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4 Appendix

4.1 The tautological representation for HG2
.� .2; 4; 6//

By means of a tautological representation, we can express the entire Hitchin component by means of a

single matrix for each generator. The matrix entries are algebraic expressions in the parameters u ; v of

the variety, and assigning values to u ; v together with a sign for ˛ determines a specific representation in

the variety. The choice of values for u ; v should give a point in the correct region of the .u; v/–plane as

indicated in Figure 1. Recall that in Figure 1 the Hitchin component consists of two sheets glued along the

curve ˛ D 0 , and the sign of ˛ determines the particular sheet where the representation lies.

Here matrices with entries in the field Q.u; v/.˛/ ,

˛ D ˙

r

2.�72u2 C 72u3 � 16u4 � u5 C v.�192u C 64u2 C 20u3/ C v2.�192 � 32u C 2u2/ � 32v3/ ;

are given for the triangle group � .2; 4; 6/ . a ; b are generators of orders 4 ; 6 respectively, and their

product ab has order 2 . The base representation �0 is the composition of the holonomy representation

in PSL.2; R/ (given by the hyperbolic structure) with the irreducible representation of PSL.2; R/ in

PSL.7; R/ D SL.7; R/ , and has coordinates .u; v/ D .72; 378/ ; ˛ D 0 .
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a D

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0 �4 u
2

0 0 1

0 0 2u �u 1 0 �1

0 0 �1 1 0 0 0

0 0 �2 0 0 1 0

0 0 u �u 0 0 �1

0 0 �2 1 0 0 0

0 1 u 0 0 0 �1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

b D

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 0 �4 1 p15

2u.u2
�8v/d

p16

2.u2
�8v/d

0

0 1 2u 0 p25

2.u2
�8v/d

p26

2.u2
�8v/d

0

0 0 �1 0 p35

.u2
�8v/d

p36

.u2
�8v/d

0

0 0 �2 0 p45

d
p46

d
0

0 0 u 0 p55

2.u2
�8v/d

p56

.u2
�8v/d

1

1 0 �2 0 p65

2u.u2
�8v/d

p66

2.u2
�8v/d

0

0 0 u 0 p75

.u2
�8v/d

p76

.u2
�8v/d

0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

pij D pij 0 C .pij1/˛ .1 � i � 7 ; 5 � j � 6/

d D 192u � 112u2 C 8u3 C u4 C 192v C 32uv � 16u2v C 32v2

Table 1: Tautological representation for the Hitchin component of the 2; 4; 6–triangle group

In the above table a ; b are the images of the elliptic generators of orders 4 ; 6 respectively. The coefficients

pij 0 ; pij1 are given in the next table.
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p150 D �8u5 � u6 C 16u4.10 C v/ C 32u2v.10 C v/ C 4u3.�84 � 24v C v2/ C 512v.18 C 9v C v2/

� 64uv.72 C 18v C v2/

p151 D 112u2 C u4 � 32v.6 C v/ � u3.14 C v/ C 8u.�24 C 2v C v2/

p160 D 3u6 C u4.64 � 96v/ � 3u5.�10 C v/ � 128v2.12 C 8v C v2/ C 16u3.�54 � 7v C 3v2/

C 32uv.60 C 28v C 3v2/ C 8u2.144 C 4v C 32v2 C v3/

p161 D .�4 C u/.�16u2 C u3 C 16u.3 C v/ � 8v.6 C v//

p250 D u.�4u5 C 32u3.�6 C v/ C 1536uv C 2u4.22 C v/ C 64v.�36 C v2/ � 8u2.�36 C 44v C 3v2//

p251 D .�8 C u/u.8u C u2 � 12.2 C v//

p260 D �.u2.u5 � u4v � 8u3.�14 C 3v/ C 4u2.�132 � 32v C 5v2/ � 16v.�36 C 12v C 7v2/

C 16u.36 C 12v C 13v2///

p261 D u.�4u3 C u4 C 16.�6 C v/v � 4u2.8 C 3v/ C 16u.6 C 5v//

p350 D �2.�6 C 2u � v/.4u3 � 32uv � 2u2.6 C v/ C 16v.6 C v//

p351 D �2.�8 C u/.�6 C 2u � v/

p360 D �4u.�6 C 2u � v/.�14u2 C u3 � 4.�6 C v/v C 4u.6 C v//

p361 D 8.u � v/.�6 C 2u � v/

p450 D �8.6 � 2u C v/2

p451 D 0

p460 D �16u2 � 8u3 C u4 C 32v.6 C v/ � 4u.�12 C 4v C v2/

p461 D 2.�6 C 2u � v/

p550 D u.2u5 � u4.�26 C v/ � 64v.6 C v/2 � 8u3.46 C 7v/ C 32u.�36 C 24v C 5v2/

C 4u2.300 C 48v C 5v2//

p551 D .�8 C u/u.8u C u2 � 12.2 C v//

p560 D u.�1152u2 C 1056u3 � 248u4 C 2u5 C u6 � 1152uv � 192u2v C 312u3v � 12u4v

� 192uv2 � 128u2v2 � 4u3v2 C 64uv3/

p561 D u.12u2 � 4u3 � 96v C 32uv C 2u2v � 16v2/

p650 D 8u5 C u6 � 768uv.6 C v/ C 32u3.18 C v/ � 8u4.22 C 3v/ � 128v.�36 C v2/

C 16u2.�36 C 88v C 9v2/

p651 D �8u3 � u4 � 32u.6 C v/ � 32v.6 C v/ C 16u2.7 C v/

p660 D �3u6 C u5.�34 C v/ C 80u4.6 C v/ C 256v2.6 C v/ C 64uv.60 C 16v C v2/

� 64u2.�18 C 29v C 5v2/ � 4u3.348 C 40v C 5v2/

p661 D �..�8 C u/u.8u C u2 � 12.2 C v///

p750 D 24u5 C u6 � 256v2.6 C v/ � 32u4.12 C v/ C 48u3.26 C 3v/

C 32uv.�84 � 8v C v2/ C 64u2.�18 C 17v C v2/

p751 D 0

p760 D �4u2.6 � 2u C v/.�14u2 C u3 � 4.�6 C v/v C 4u.6 C v//

p761 D �2u.�14u2 C u3 � 4.�6 C v/v C 4u.6 C v//

Table 2: Numerators of entries for columns 5, 6 of the matrix b
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4.2 Tables relating to S1 ; S2

f1 D �8.9t C 2t3/

f2 D 8.9t C 2t3/

f3 D 0

f4 D �2.45 � 72t C 10t2 � 16t3/

f5 D 16.9 C 2t2/

f6 D 4.�540 � 249t � 126t2 � 54t3 C 4t4/

f7 D �4.135 C 36t C 51t2 C 8t3 C 4t4/

f8 D �1620 � 1113t � 402t2 � 242t3 C 12t4

f9 D 2.�483 C 174t � 106t2 C 44t3/

f10 D �4.�36t C 15t2 � 8t3 C 4t4/

f11 D �1440 � 969t � 362t2 � 210t3 C 12t4

f12 D 6.�191 C 46t � 42t2 C 12t3/

f13 D �8.45 C 36t C 13t2 C 8t3/

f14 D 4.�72 C 15t � 16t2 C 4t3/

f15 D �279 � 54t � 62t2 � 12t3

f16 D �4.�540 � 249t � 126t2 � 54t3 C 4t4/

f17 D �4.�36t C 15t2 � 8t3 C 4t4/

f18 D 1440 C 969t C 362t2 C 210t3 � 12t4

f19 D �6.�191 C 46t � 42t2 C 12t3/

f20 D �4.135 C 36t C 51t2 C 8t3 C 4t4/

f21 D 1620 C 1113t C 402t2 C 242t3 � 12t4

f22 D �2.�483 C 174t � 106t2 C 44t3/

f23 D 8.45 C 36t C 13t2 C 8t3/

f24 D �4.�72 C 15t � 16t2 C 4t3/

f25 D �279 � 54t � 62t2 � 12t3

f26 D 0

f27 D �2.3555 C 366t C 844t2 C 52t3 � 8t4/

f28 D �4.�1245 C 36t � 298t2 C 20t3/

f29 D �900 � 153t � 224t2 � 28t3

f30 D �2.�315 � 12t � 76t2/

f31 D �2.�2961 C 486t � 704t2 C 142t3 � 4t4/

f32 D 900 C 153t C 224t2 C 28t3

f33 D �2.315 C 12t C 76t2/

f34 D �2.�2961 C 486t � 704t2 C 142t3 � 4t4/

f35 D 1521 � 144t C 356t2 � 48t3

ha even ; b eveni

g1 D 19 � 4t C 4t2

g2 D �19 C 4t � 4t2

g3 D 0

g4 D 133 � 256t C 76t2 � 48t3

g5 D 19 � 42t C 12t2 � 8t3

g6 D 362 � 168t C 99t2 � 22t3

g7 D 2.59 � 26t C 25t2 � 5t3 C 2t4/

g8 D 3074 C 1005t C 343t2 C 388t3 � 20t4

g9 D 512 C 195t C 47t2 C 72t3 � 4t4

g10 D �2.�17 C 9t � 14t2 C 3t3 � 2t4/

g11 D 2732 C 982t C 291t2 C 368t3 � 20t4

g12 D 474 C 184t C 43t2 C 68t3 � 4t4

g13 D �2.�307 � 130t � 38t2 � 44t3/

g14 D �2.�53 � 24t � 6t2 � 8t3/

g15 D �2.�19 � 53t C 8t2 � 12t3/

g16 D �362 C 168t � 99t2 C 22t3

g17 D �2.�17 C 9t � 14t2 C 3t3 � 2t4/

g18 D �2732 � 982t � 291t2 � 368t3 C 20t4

g19 D �474 � 184t � 43t2 � 68t3 C 4t4

g20 D 2.59 � 26t C 25t2 � 5t3 C 2t4/

g21 D �3074 � 1005t � 343t2 � 388t3 C 20t4

g22 D �512 � 195t � 47t2 � 72t3 C 4t4

g23 D �2.307 C 130t C 38t2 C 44t3/

g24 D �2.53 C 24t C 6t2 C 8t3/

g25 D �2.�19 � 53t C 8t2 � 12t3/

g26 D 0

g27 D 10648 � 3627t C 2792t2 � 364t3 C 8t4

g28 D 1504 � 381t C 366t2 � 20t3

g29 D �2.�586 C 166t � 145t2 C 12t3/

g30 D �2.�82 C 16t � 19t2/

g31 D �2.2510 � 79t C 479t2 C 102t3 � 8t4/

g32 D �2.586 � 166t C 145t2 � 12t3/

g33 D �2.82 � 16t C 19t2/

g34 D �2.2510 � 79t C 479t2 C 102t3 � 8t4/

g35 D �4.274 C 7t C 53t2 C 14t3/

ha odd ; b oddi

Table 3: Coordinates of 3–form preserved by S1
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a D

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0 �2 2r 0 0 r

0 0 4 �4 1 0 �1

0 0 �1 2 0 0 0

0 0 �1 0 0 1 0

0 0 2 �4 0 0 �1

0 0 �1 1 0 0 0

0 1 2 0 0 0 �1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

b D

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 0 0 1 q15

4d
q16

2d
0

0 0 0 0 q25

2d
q26

d
1

0 0 �1 0 q35

4d
q36

2d
0

1 0 0 0 q45

4d
q46

2d
0

0 0 0 0 q55

d
q56

d
0

0 0 0 0 q65

2d
q66

d
0

0 1 0 0 q75

2d
q76

d
0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

r D 22 C 3t2

d D 784 C 177t2 C 9t4

q15 D �.34496 C 28368t C 20412t2 C 12177t3 C 3726t4 C 1728t5 C 216t6 C 81t7/

q16 D �3.20384 C 13768t C 11220t2 C 5307t3 C 1944t4 C 666t5 C 108t6 C 27t7/

q25 D �.10976 � 7200t C 4470t2 � 2160t3 C 603t4 � 162t5 C 27t6/

q26 D �784 C 5436t � 1260t2 C 1719t3 � 351t4 C 135t5 � 27t6

q35 D �3.16 C 3t2/.112 C 40t C 37t2 C 6t3 C 3t4/

q36 D �3.1792 C 976t C 1048t2 C 327t3 C 177t4 C 27t5 C 9t6/

q45 D 34496 � 4272t C 12492t2 � 1179t3 C 1458t4 � 81t5 C 54t6

q46 D 7840 � 4272t C 3762t2 � 1179t3 C 567t4 � 81t5 C 27t6

q55 D 784 C 960t C 357t2 C 324t3 C 36t4 C 27t5

q56 D 2.1568 C 1254t C 714t2 C 369t3 C 72t4 C 27t5/

q65 D �3t.320 C 108t2 C 9t4/

q66 D �.784 C 960t C 357t2 C 324t3 C 36t4 C 27t5/

q75 D 10976 C 5280t C 4830t2 C 1512t3 C 657t4 C 108t5 C 27t6

q76 D 3.7056 C 2544t C 2560t2 C 681t3 C 285t4 C 45t5 C 9t6/

Table 4: Generators of orders 4; 2 for the curve C2
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This table gives matrices � with the property that for the generators a ; b of Table 4:

(i) � a ��1 2 SL.7; Z/ ;

(ii) all denominators of entries of � b ��1 are odd.

No conjugation is required for t � 0 .mod 8/ , as denominators are already odd.

t � 1 .mod 4/ W

0

B

B

B

B

B

B

B

B

B

B

@

1 0 0 0 0 2 0

0 1 0 0 0 2 0

0 0 1 0 0 �1 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 4 0

0 0 0 0 0 2 1

1

C

C

C

C

C

C

C

C

C

C

A

t � 2 .mod 4/ W

0

B

B

B

B

B

B

B

B

B

B

@

2 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 2 0 0 0 0

0 0 0 2 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 2 0

0 0 0 0 0 0 1

1

C

C

C

C

C

C

C

C

C

C

A

t � 3 .mod 4/ W

0

B

B

B

B

B

B

B

B

B

B

@

1 0 0 0 0 0 0

0 1 0 0 0 2 0

0 0 1 0 0 �1 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 4 0

0 1 0 0 0 0 1

1

C

C

C

C

C

C

C

C

C

C

A

t � 4 .mod 8/ W

0

B

B

B

B

B

B

B

B

B

B

@

1 0 0 0 0 0 0

0 2 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 2 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 2

1

C

C

C

C

C

C

C

C

C

C

A

Table 5: Conjugating matrices for expunging the prime 2 from the representations in S2
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I a b A B aa ab

aB ba bA bb aab aaB abA

abb aBa aBB baa baB bAb bAB

Abb AbA aabb aabA aaBa aaBA aaBB

abaB abba abbb aBab aBBa baab baaB

baBa baBB bbaa bbaB bbba bbbA bbAb

bAbb bAbA Abba AbbA AbAb Baab BaBab

Table 6: A Burnside basis for the group of Table 4 .A D a�1 ; B D b�1/
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