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Abstract
Let L be a finite group with subgroups F, G such that L = F G is an

exact factorization of L. This factorization gives maps C : G×F → G and
B : G × F → F such that (F, G,C,B) is a matched pair of groups. We
introduce bismash product commuting squares having in one corner the
bismash product Hopf algebra CG#C[F ] constructed from (F, G,C,B),
and in the opposite corner its dual CF #C[G].

The defect of a commuting square was introduced in [4] as an upper
bound for the number of linearly independent sequential deformations of
the commuting square, in the space of commuting squares. We compute
defects of bismash product commuting squares in the cases of exact fac-
torizations arising from direct products L = F × G, semidirect products
L = F oG with G abelian, and a more exotic Zappa-Szép product which
is not a semidirect product.

1 Introduction
Let L be a finite group with proper subgroups F,G such that L = FG is an exact
factorization of L. This factorization gives group actions C : G × F → G and
B : G × F → F making (F,G,C,B) a matched pair of groups. It follows that
we can construct from (F,G,C,B) a bismash product Hopf algebra CG#C[F ].
In Sections 2 and 3 we recall the definition of an exact factorization and of the
bismash product, and we give several examples.

The algebra CG#C[F ] and its dual CF#C[G] have canonical embeddings in
Mn(C), for n = |L|. We can thus consider the square of inclusions

CLCG#C[F ] =

CF#C[G] ⊂ Mn(C)
∪ ∪

CIn ⊂ CG#C[F ]

 .

In Section 4 we prove that this is a commuting square. Note that this requires
a proof, since the corners of CLCG#C[F ] are embedded in a different way than the
Hopf algebra commuting squares considered in [6]. We also use Section 4 to give
some concrete examples of such commuting squares.

In Section 5 we present computations of defects for bismash product com-
muting squares CLCG#C[F ]. The (undephased) defect of a commuting square was
introduced in [4] as an upper bound for the number of linearly independent
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directions in which one can sequentially deform the commuting square in the
space of commuting squares.

We compute the defect of CLCG#C[F ] when L = F ×G is a direct product of
groups. Next we compute the defect when L = F o G is a semidirect product
of groups with G abelian. We then consider a more exotic example of a Zappa-
Szép product which is not a semidirect product. In all our computations the
defect of the bismash product commuting square CLCG#C[F ] is the same as the
defect of the group L.

The framework of our computations hints to quasi-canonical bases for the
tangent space at the corresponding commuting square, in the manifold of com-
muting squares. In the case of group commuting squares, such bases can be
exponentiated to construct analytic deformations in the manifold of commuting
squares ([5]). In particular, for group commuting squares the defect is not just
an upper bound but an exact formula for the number of linearly independent
directions of sequential (or analytic) deformations by commuting squares. Our
computations for smash product commuting squares hint to the existence of
similar deformations, which we plan to explore in a future paper. By iterating
Jones’ basic construction ([3]), such deformations would yield d(L) families of
(possibly non-isomorphic) subfactors.
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2 Exact Factorizations of Finite Groups
Definition 1. An exact factorization of a group L is a pair of proper subgroups
F,G such that L = FG and F ∩G = {e}. We say that F and G factor L exactly.

Note that if F and G are proper subgroups of a group L, then F and G factor
L exactly if and only if |L| = |F | · |G| and F ∩G = {e}. Furthermore, L = FG
is an exact factorization of L if and only if each l ∈ L can be uniquely expressed
as l = fg for some unique f ∈ F and g ∈ G. This is equivalent to saying that
L is the internal Zappa-Szép product of F,G.

Example 1. Let L = A5 be the alternating group with 60 elements. Embed
F = A4 (the alternating group with 12 elements) in L, by defining F as the
set of all permutations in L that leave 5 invariant. Consider also the subgroup
G = Z5 generated by the 5-cycle 〈(12345)〉. We have A4 ∩ Z5 = {(1)} and
|A4| · |Z5| = 12 · 5 = 60 = |A5|. It follows that A4Z5 is an exact factorization
of A5. Note that since An is a simple group for n ≥ 5, neither A4 nor Z5
are normal subgroups of A5. In particular, this factorization is not a direct or
semidirect product.

Let L = FG be an exact factorization. For every g ∈ G and f ∈ F , define
the maps C : G× F → G and B : G× F → F by the following relation:

gf = (g B f)(g C f).

We recall some basic facts aboutB,C, which we will use in our computations.

Proposition 1. For an exact factorization L = FG, the maps C : G× F → G
and B : G × F → F defined via (g B f)(g C f) = gf ∈ L for every g ∈ G and
f ∈ F are group actions. Furthermore, we have that for every a, b ∈ F and
x, y ∈ G,

1. xB (ab) = (xB a)((xC a) B b)

2. (xy) C a = (xC (y B a))(y C a)

Proof. Let x ∈ G and a, b ∈ F . We have that

x(ab) = (xB ab)(xC ab)

and

(xa)b = ((xB a)(xC a))b = (xB a)((xC a)b)
= (xB a)((xC a) B b)(xC aC b) = (xB a)((xC a) B b)(xC ab)

from which it follows that

(xB ab) = (xB a)((xC a) B b).

A similar calculation proves the second claim.
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Definition 2. Let F , G be two finite groups. Consider maps C : G × F → G
and B : G × F → F satisfying the conditions 1,2 from Proposition 1. We call
(F,G,B,C) a matched pair of groups.

Example 2. For each odd n ∈ N, we have that An = An−1Zn is an exact
factorization of the alternating group An, where Zn = 〈(12 · · ·n)〉. It follows
that (An−1,Zn,B,C) is a matched pair of groups.

The following lemma will be used several times throughout the paper.

Lemma 1. Let (F,G,B,C) be a matched pair of groups coming from the exact
factorization L = FG. For g ∈ G and f ∈ F , we have that (g B f)−1 =
(g C f) B f−1 and (g C f)−1 = g−1 C (g B f).

Proof. Since for any g ∈ G and f ∈ F we have gf = (g B f)(g C f), it follows
that

(g B f)−1 = (g C f)f−1g−1

= ((g C f) B f−1)((g C f) C f−1)g−1

= ((g C f) B f−1)(g C e)g−1

= (g C f) B f−1.

A similar calculation shows (g C f)−1 = g−1 C (g B f).

Remark 1. In the latter sections of this paper we will identify L with the set
F × G, and the subgroups F and G with F × {1L} and {1L} × G respectively.
The group structure on F ×G is given by:

(f, g)(f ′, g′) = (f, 1G)(1F , g)(f ′, 1G)(1F , g′)
= (f, 1G)(g B f ′, 1G)(1F , g C f ′)(1F , g′)
= (f(g B f ′), (g C f ′)g′)

for all f, f ′ ∈ F and g, g′ ∈ G.
Note that if L is the direct product of F and G then the actions C,B are

trivial and thus the group structure defined above on F × G is just the group
structure of the direct product of groups F ×G. It is easy to check that the group
structures also agree when L is a semidirect product (L = F oG or L = F nG),
and when L is a Zappa-Szép product L = F ./ G (see [1]).
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3 The Bismash Product Hopf Algebra
In this section we recall the definition of bismash product Hopf algebras, from
which we will construct commuting squares. We begin by recalling the definition
of a Hopf algebra.

Definition 3. A Hopf Algebra is a K-vector space H equipped with five (bi)linear
maps

∇ : H ⊗H → H, ∆ : H → H ⊗H

η : K → H, ε : H → K, S : H → H

such that (H,∆,∇, η, ε) forms a bialgebra and such that the following diagram
commutes.

H ⊗H S⊗id // H ⊗H

∇

��
H

∆

EE

∆

��

ε // K
η // H

H ⊗H
id⊗S

// H ⊗H

∇

EE

The linear maps ∇, η,∆, ε, S are called the product, unit, co-product, co-unit,
and antipode, respectively.

For h ∈ H, we write
∆(h) =

∑
h1 ⊗ h2

where by standard notation the index of the summation is suppressed.

3.1 Definition of the Bismash Product Hopf Algebra
Let L be a finite group and let (F,G,B,C) be a matched pair of groups arising
from an exact factorization L = FG. Let {ρg| g ∈ G} be the canonical basis for
CG. Abusing notation for simplicity, let {ρf | f ∈ F} be the canonical basis for
CF . We have that CF is a left C[G]-module via the action defined by

g · ρf := ρgBf

and CG is a left C[F ]-module via the action defined by

f · ρg := ρgCf−1

for all g ∈ G, f ∈ F

5



Definition 4. Let L = FG be an exact factorization and let (F,G,B,C) be its
matched pair of groups. The bismash product Hopf algebra CG#C[F ] associ-
ated to (L,F,G) is the Hopf algebra having underlying vector space CG ⊗C[F ],
multiplication given by

(ρx#a)(ρy#b) = δyCa
−1

x ρx#ab

and unit given by
u(a) = Σg∈Gρg#a,

for all x, y ∈ G and a, b ∈ F , where δ is the Kronecker delta function.
The algebra structure of (CG#C[F ])∗ = CF#C[G] then dualizes to give the

comultiplication and counit of CG#C[F ].

Remark 2. The formula for multiplication in CG#C[F ] follows from:

(ρx#a)(ρy#b) = ρx(a · ρy)#ab = ρxρyCa−1#ab = δyCa
−1

x ρx#ab.

The dual algebra CF#C[G] has multiplication defined via

(ρa#x)(ρb#y) = ρa(x · ρb)#xy = δxBba ρa#xy

for all x, y ∈ G and a, b ∈ F .

Remark 3. The Hopf algebra structure of the bishmash product depends not
only on the subgroups F,G, but also on their embeddings in L = FG. For
example, consider L = Z6 = Z3 × Z2. In this case the matched pair of groups
(Z3,Z2) has trivial actions B and C. Consider also L′ = D3, the dihedral
group with 6 elements, yielding the matched pair (Z3,Z2) with actions B′ and
C′. Since Z3 is normal in L′, the action C′ is still trivial (but B′ is not). It
follows that the bismash product CZ2#C[Z3] has identical multiplications for
both matched pairs of groups corresponding to L,L′. However, the dual algebras
are not isomorphic and thus induce different comultiplications on CZ2#C[Z3].
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4 Bismash product commuting squares
In this section we associate to any bismash product Hopf algebra a bismash
product commuting square.

Definition 5. Let (F,G,C,B) be a matched pair of groups arising from the
exact factorization L = FG, where L is a group with n elements containing
F,G as subgroups. Let

CLCG#C[F ] =

CF#C[G] ⊂ Mn(C)
∪ ∪

CIn ⊂ CG#C[F ]

 .

The embedding of CG#C[F ] in Mn(C) is realized by using the left-regular repre-
sentation. That is to say, we identify the basis element ρg#f ∈ CG#C[F ] with
the unitary u(g,f) = uρg#f =

(
z(x,a),(y,b)

)
x,y∈G
a,b∈F

∈Mn(C), given by

z(x,a),(y,b) =
{

1, if (ρg#f) · (ρy#b) = (ρx#a)
0, otherwise.

Let us identify Mn(C) = M|G|(C) ⊗M|F |(C), by fixing some order on the
elements of G, F respectively. Consider the matrix units e(g,f),(g′,f ′) = eg,g′ ⊗
ef,f ′ of Mn(C), with f, f ′ ∈ F and g, g′ ∈ G. Note that the pair (g, f) can be
identified with the unique element gf ∈ L, since the factorization L = GF is
also exact. With these notations, we have:

u(g, f) = uρg#f =
∑
x∈F

e(g,fx),(gCf,x).

The algebra CF#C[G] is embedded in Mn(C) by identifying each element
ρf#g of its canonical basis with the unitary matrix v(f, g) given by:

v(f, g) = vρf #g =
∑
y∈G

e(y,y−1Bf),(g−1y,y−1Bf)

We call CLCG#C[F ] the bismash product commuting square associated to the
exact factorization L = FG.

Remark 4. It is easy to check that the formula from Definition 5 gives an
embedding of CF#C[G] in Mn(C). Indeed, let g, g′ ∈ G and f, f ′ ∈ F and
consider the matrices

v(f, g) =
∑
y∈G

e(y,y−1Bf),(g−1y,y−1Bf)

and
v(f ′, g′) =

∑
x∈G

e(x,x−1Bf ′),(g′−1x,x−1Bf ′)
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as in Definition 5. We show that

v(f, g)v(f ′g′) = v(f, gg′)

if f = g B f ′, and v(f, g)v(f ′g′) = 0 otherwise.
First note that v(f, gg′) =

∑
y∈G

e(y,y−1Bf),(g′−1g−1y,y−1Bf).

It follows that

v(f, g)v(f ′, g′) =
∑
x,y∈G

e(y,y−1Bf),(g−1y,y−1Bf)e(x,x−1Bf ′),(g′−1x,x−1Bf ′)

This product is 0 except when

g−1y = x and y−1 B f = x−1 B f ′.

Note that in this case, we have that

y−1 B f = x−1 B f ′ = (y−1g) B f ′ = y−1 B (g B f ′),

which implies that f = g B f ′. Therefore, we have that

v(f, g)v(f ′, g′) =
∑
y∈G

e(y,y−1Bf),(g′−1g−1y,y−1Bf) = v(f, gg′).

Example 3. Consider again the exact factorization L = A5 = FG, where
F = A4 and G = Z5.

Figure 1 shows the form of a typical element in the algebra CZ5#C[A4].

Figure 2 shows the form of a typical element in the dual algebra CA4#C[Z5].

Similar shadings represent identical matrix entries. The white shading rep-
resents the zero entries.
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Figure 1: A typical element in the bismash product CZ5#C[A4] associated to
the group A5. Identical entries are represented by the same color.
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Figure 2: A typical element in the bismash product CA4#C[Z5], as the dual
of CZ5#C[A4]. Identical entries are represented by the same color.

We now check that the square of inclusions from Definition 5 is indeed a
commuting square. Note that this requires a proof, since the corners of CLCG#C[F ]
are embedded in a different way than the traditional Hopf algebra commuting
squares considered in [6].

Theorem 1. Let (F,G,C,B) be a matched pair of groups arising from the exact
factorization L = FG, where L is a group with n elements containing F,G as
subgroups. Then the square of inclusions

CLCG#C[F ] =

CF#C[G] ⊂ Mn(C)
∪ ∪

CIn ⊂ CG#C[F ]


is a commuting square.
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Proof. We recall the commuting square condition:

(CG#C[F ])	 CIn ⊥ (CF#C[G])	 CIn

where the orthogonality and orthogonal complements are considered with re-
spect to the inner product induced by the normalized trace of Mn(C). Equiv-
alently, we must show that τ(uv) = τ(u)τ(v) for all u ∈ CG#C[F ] and v ∈
CF#C[G].

Consider general basis elements u(g, f) = uρg#f , v(f ′, g′) = vρf′#g′ of
CG#C[F ], CF#C[G] respectively. We show τ(uρg#fv

∗
ρf′#g′) = τ(uρg#f )τ(v∗ρf′#g′).

Indeed, we have:

τ(u(g, f)v(f ′g′)∗) = τ

∑
x∈F

∑
y∈G

e(g,fx),(gCf,x)e(g′−1y,y−1Bf ′),(y,y−1Bf ′)


= τ

(
e(g,fx),(y,y−1Bf ′)

)
with y = g′(g C f) and x = y−1 B f ′.

It follows that

τ(u(g, f)v(f ′g′)∗) = τ
(
e(g,fx),(y,y−1Bf ′)

)
= 1
|F ||G|

δgg′(gCf)δ
fx
x

= 1
|F ||G|

δgg′(gCf)δ
f
1F

Note that

τ(u(g, f)) = τ

(∑
x∈F

e(g,fx),(gCf,x)

)
= 1
|F |

δggCfδ
f
1F

and

τ(v(f ′, g′)∗) = τ

∑
y∈G

e(g′−1y,y−1Bf ′),(y,y−1Bf ′)

 = 1
|G|

δg
′

1G
.

If f 6= 1F then we have

τ(u(g, f)v(f ′g′)∗) = 0 = τ(u(g, f))τ(v(f ′, g′)∗).

If f = 1F , then we have g C f = g and so δgg′(gCf) = δ1G

g′ and δggCf = 1.
Therefore, we obtain

τ(u(g, f)v(f ′g′)∗) = τ(u(g, f))τ(v(f ′, g′)∗) = 1
|F ||G|

δgg′(gCf)δ
f
1F

= 1
|F ||G|

δ1G

g′ δ
f
1F
.

This shows that the commuting square condition holds.
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5 The Undephased Defect of a Bismash Com-
muting Square

In this section we give computations of the undephased defect (in the sense of
[4]) of some classes of bismash product commuting squares.

Let

A = spanC

{
u(g,f) =

∑
a∈F

e(g,fa),(gCf,a) : f ∈ F, g ∈ G
}
,

A∗ = spanC

{
v(f,g) =

∑
x∈G

e(x,x−1Bf),(g−1x,x−1Bf) : f ∈ F, g ∈ G
}

be the representations of CG#C[F ], CF#C[G] respectively in Mn(C).
Let

[A,A∗] = spanC{[u, v] = uv−vu : u = u(g, f), v = v(f ′, g′), g, g′ ∈ G, f, f ′ ∈ F}.

It follows that

{[A,A∗] =spanC{e(g,f((gCf)−1Bf ′)),(g′−1(gCf),(gCf)−1Bf ′)

− e(g′g,g−1g′−1Bf ′),(gCf,f−1(g−1g′−1Bf ′)) : f, f ′ ∈ F, g, g′ ∈ G}
(1)

The defect of the associated bismash product commuting square is given by

d(A) := dimC[A,A∗]⊥.

This is the same as the dimension over C of the vector space

V :=

(z(g,f),(g′,f ′))g,g′∈G
f,f ′∈F

∈Mn(C) :
∑
g,g′∈G
f,f ′∈F

z(g,f),(g′,f ′)
[
u(g,f), v(f ′,g′)

]
= 0

 .

Note that the condition∑
g,g′∈G
f,f ′∈F

z(g,f),(g′,f ′)[u(g,f), v(f ′,g′)] = 0

is equivalent to∑
g,g′∈G
f,f ′∈F

z(g,f),(g′,f ′)e(g,f((gCf)−1Bf ′)),(g′−1(gCf),(gCf)−1Bf ′)

=
∑
g,g′∈G
f,f ′∈F

z(g,f),(g′,f ′)e(g′g,g−1g′−1Bf ′),(gCf,f−1(g−1g′−1Bf ′))
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5.1 Computing d(CL
CG#C[F ]) when L = F ×G

We show that when the exact factorization is a direct product, the defect of the
commuting square d(CLCG#C[F ]) is just the defect of the group L (in the sense
of [4]). Note that an exact factorization L = FG yields L ' F × G if and
only if both F,G are normal in G. This is because the elements of two normal
subgroups with trivial intersection must commute with each other.

Theorem 2. Let L = FG be an exact factorization of a finite group L, where
F and G are normal subgroups of L. We have

d(CLCG#C[F ]) = d(L).

Proof. Since F,G are normal subgroups, we have that both C and B are trivial,
i.e. g B f = f and g C f = g for all f ∈ F and g ∈ G. Using these specific
actions, the defect is given by the dimension of the vector space of matrices
z(g,f),(g′,f ′) ∈M|G||F |(C) satisfying:∑

g,g′∈G
f,f ′∈F

z(g,f),(g′,f ′)e(g,ff ′),(g′−1g,f ′) −
∑
g,g′∈G
f,f ′∈F

z(g,f),(g′,f ′)e(g′g,f ′),(g,f−1f ′) = 0

Using the change of variables x = g, a = ff ′, y = g′−1g, and b = f ′ for the
first sum, and x = g′g, a = f ′, y = g, and b = f−1f ′ for the second sum, we
have:

z(x,ab−1),(xy−1,b) = z(y,ab−1),(xy−1,a).

Using another change of variables g = x, f = ab−1, g′ = xy−1 and f ′ = b it
follows that

z(g,f),(g′,f ′) = z(g′−1g,f),(g′,ff ′).

Iterating this relationship, we see that, for all n ∈ Z>0

z(g,f),(g′,f ′) = z(g′−ng,f),(g′,fnf ′).

The smallest n that gives g = g′−ng and f ′ = fnf ′ is n = lcm(|g′|, |f |) for each
g ∈ G and f ′ ∈ F . Therefore, the dimension of the space of solutions z(g,f),(g′,f ′)
is equal to ∑

g∈G
f ′∈F

|G||F |
lcm(|g′|, |f |) .

In the above we denoted by lcm(a, b) the least common multiple of a, b.
For each l ∈ L, l = fg′ = g′f , the order of l is |l| = lcm(|g′|, |f |). Using the

formula for the defect of a group L, we obtain

d(CG#C[F ]) =
∑
g∈G
f ′∈F

|G||F |
lcm(|g′|, |f |) =

∑
l∈L

|L|
|l|

= d(L).
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5.2 Computing d(CL
CG#C[F ]) when L = F o G

We now look at semidirect products L = F o G, with G abelian. We show
that it is again true that the defect of the bismash product commuting square
is equal to the defect of the group L.

Theorem 3. Let L = FG be an exact factorization of a finite group L, where
F is a normal subgroup of L and G is an abelian subgroup of L. We have

d(CLCG#C[F ]) = d(L).

Proof. Since L = F o G, we have g B f = gfg−1 and g C f = g for all f ∈ F
and g ∈ G. The defect of the bismash product commuting square is given by
the dimension of the matrix vectors space V of solutions z to the equation∑

g,g′∈G
f,f ′∈F

z(g,f),(g′,f ′)[u(g,f), v(f ′,g′)] = 0.

Equivalently,∑
g,g′∈G
f,f ′∈F

z(g,f),(g′,f ′)e(g,f(g−1f ′g)),(g′−1g,g−1f ′g) =
∑
g,g′∈G
f,f ′∈F

z(g,f),(g′,f ′)e(g′g,g−1g′−1f ′g′g),(g,f−1(g−1g′−1f ′g′g)).

By changing the variable g to g′−1g in the second sum, we obtain the equiv-
alent equation∑
g,g′∈G
f,f ′∈F

z(g,f),(g′,f ′)e(g,f(g−1f ′g)),(g′−1g,g−1f ′g) =
∑
g,g′∈G
f,f ′∈F

z(g′−1g,f),(g′,f ′)e(g,g−1f ′g),(g′−1g,f−1(g−1f ′g)).

After replacing f ′ with gf ′g−1 in both sums, we have∑
g,g′∈G
f,f ′∈F

z(g,f),(g′,gf ′g−1)e(g,ff ′),(g′−1g,f ′) =
∑
g,g′∈G
f,f ′∈F

z(g′−1g,f),(g′,gf ′g−1)e(g,f ′),(g′−1g,f−1f ′).

We will use the change of variables x = g, a = ff ′, y = g′−1g, and b = f ′ in
the first sum, and x = g, a = f ′, y = g′−1g, and b = f−1f ′ in the second sum.
This gives∑

x,y∈G
a,b∈F

z(x,ab−1),(xy−1,xbx−1)e(x,a),(y,b) =
∑
x,y∈G
a,b∈F

z(y,ab−1),(xy−1,xax−1)e(x,a),(y,b)

The above is equivalent to

z(x,ab−1),(xy−1,xbx−1) = z(y,ab−1),(xy−1,xax−1)

for all x, y ∈ G and a, b ∈ F .
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Using the change of variables g = x, f = ab−1, g′ = xy−1, and f ′ = xbx−1

yields
z(g,f),(g′,f ′) = z(g′−1g,f),(g′,(gfg−1)f ′)

for all g, g′ ∈ G and f, f ′ ∈ F .
Iterating this relationship gives

z(g,f),(g′,f ′) = z(g′−ng,f),(g′,(g′−(n−1)gfg−1g′n−1)···(gfg−1)f ′)

for all n positive integers.
Note that (g′−(n−1)gfg−1g′n−1) · · · (gfg−1) = g′−n · (g′gfg−1)n. Since we

are under the assumption that G is abelian, we have

(g′gfg−1)n = (gg′fg−1)n = g(g′f)ng−1.

Thus we obtain

z(g,f),(g′,f ′) = z(g′−ng,f),(g′,g′−ng(g′f)ng−1f ′)

for all n positive integers.
It follows that for given g, f, g′, f ′ there are exactly lcm(|g′|, |g′f |) entries of

z that must be equal to z(g,f),(g′,f ′). All these entries have the same f, g′ indices.
Thus for every f, g′ fixed we have |F ||G|

lcm(|g′|,|g′f |) linearly independent vectors in
the space V of matrices z which are solutions to our system. We obtain

d(CG#C[F ]) = dim(V ) =
∑

f∈F,g′∈G

|L|
lcm(|g′|, |g′f |) .

Note however that when L = FG is an exact factorization with F normal in
L, it is true that |a| divides |ab| for any a ∈ G and b ∈ F . Indeed, let k = |ab|. We
have (ab)k = e, which implies (aba−1)(a2ba−2) · · · (akba−k) = (ab)ka−k = a−k.
Since the left side of the equality is in F , it follows that a−k ∈ F . However, a
is in G and F ∩G = {e}. It follows that a−k = e and thus |a| divides k.

Applying this to the formula above for a = g′ and b = f , we actually have
lcm(|g′|, |g′f |) = |g′f |. It follows that

d(CG#C[F ]) =
∑

f∈F,g′∈G

|L|
|g′f |

=
∑
l∈L

|L|
|l|

= d(L).

We now give a concrete example of an exact factorization arising from a
semidirect product L = F oG, with G abelian and F not abelian. The compu-
tations follow from the previous result together with the group defect formula,
or they can easily be verified using Mathematica.
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Example 4. Let L = S4 be the group of permutations of 4 elements. Consider
its subgroups F = A4 (the alternating group with 12 elements), and G ' Z2
generated by the transposition (12). Note that L = F oG, with G abelian and F
non-abelian. The dimension of the space of solutions z(g,f),(g′,f ′) (for g, g′ ∈ Z2
and f, f ′ ∈ A4) of the equation∑

g,g′∈Z2
f,f ′∈A4

z(g,f),(g′,f ′)[u(g,f), v(f ′,g′)] = 0.

is
d(CLCG#C[F ]) = 232 = d(S4).

Remark 5. While we could not find a closed formula for d(CLCG#C[F ]) in the
case of exact factorizations arising from general semidirect products L = F oG
(without the assumption that G is abelian), such a formula is also possible when
F is abelian. Indeed, let L = F o G be an exact factorization of L with F
abelian and normal. In this case the bismash product Hopf algebra CF#C[G]
is co-commutative and thus it is a group Hopf algebra (see for instance Remark
5.3 of [2]). It follows that the defect of the commuting square is equal to the
defect of the corresponding group.

5.3 Further defect computations
We end with an example of an internal Zappa-Szép product which is not a
semidirect product.

Example 5. Let L = A5 be the alternating group with 60 elements. Embed
F = A4 (the alternating group with 12 elements) in L, by defining F as the
set of all permutations in L that leave 5 invariant. Consider also the subgroup
G = Z5 generated by the 5-cycle 〈(12345)〉. Note that L = FG is not a semidirect
product, since A5 is simple. By employing Mathematica to find the dimension of
the space of solutions z(g,f),(g′,f ′) (for g, g′ ∈ Z5 and f, f ′ ∈ A4) of the equation∑

g,g′∈Z5
f,f ′∈A4

z(g,f),(g′,f ′)[u(g,f), v(f ′,g′)] = 0.

we get that
d(CLCG#C[F ]) = 1168.

Note that this agrees with d(L) = d(A5) = 1168.
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