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ABSTRACT. We show that for every prime number p there exist finitely many circulant core complex
Hadamard matrices of size p + 1. The proof uses a ’derivative at infinity’ argument to reduce the problem

to Tao’s uncertainty principle for cyclic groups of prime order (see [Tao]).

1. INTRODUCTION

A complex Hadamard matrix is a matrix H € M,,(C) having all entries of absolute value 1 and all rows
mutually orthogonal. Equivalently, ﬁH is a unitary matrix with all entries of the same absolute value. For

2mi/n i a Hadamard matrix.

example, the Fourier matriz F, = (wW")1<i j<n, w =€

In the recent years, complex Hadamard matrices have found applications in various topics of mathematics
and physics, such as quantum information theory, error correcting codes, cyclic n-roots, spectral sets and
Fuglede’s conjecture. A general classification of real or complex Hadamard matrices is not available. A
catalogue of most known complex Hadamard matrices can be found in [TaZy]. The complete classification
is known for n < 5 ([Hal]) and for self-adjoint matrices of order 6 ([BeN]).

Hadamard matrices arise in operator algebras as construction data for hyperfinite subfactors. A unitary
matrix U is of the form ﬁH , H Hadamard matrix, if and only if the algebra of n x n diagonal matrices D,,

is orthogonal onto UD,,U*, with respect to the inner product given by the trace on M, (C). Equivalently,

the square of inclusions:

C < UDU*
is a commuting square, in the sense of [Pol],[Po2], [JS]. Here 7 denotes the trace on M, (C), normalized such
that 7(1) = 1. The standard invariant of the subfactor constructed from this commuting square is not at all

well understood, except for some very basic examples of complex Hadamard matrices.
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In this paper we look at one of the more elegant classes of complex Hadamard matrices, called circulant

core matrices. These are Hadamard matrices of the form:

1 1 1 - 1
1z 1 - Tp2
1 zp2 xo Tn-3
1 X1 i) Zo
That is to say, a circulant core matrix A is a matrix of the form A = , where A’ is a circulant

1 A
matrix. The addition of 1’s on the first row and column is motivated by the normal form of a Hadamard

matrix.

In this paper we prove that for every prime p there exist finitely many circulant core Hadamard matrices
of size p + 1. Examples of such matrices are known for instance when p = 3 mod 4 (see [Pa]). We first turn
the problem into one involving a complex algebraic variety, rather than working within the real algebraic
variety of complex Hadamard matrices. Since any compact algebraic variety in C™ is finite, it is sufficient to
show that our variety is compact. We prove it is bounded by employing a ’derivative at infinity’ argument,
which allows us to obtain new relations that lead to a contradiction. The contradiction is obtained by using
Tao’s uncertainty principle for cyclic groups of prime order, which relies on a theorem of Chebotarev (see

[Tao], [Ha2]).



2. DIAGONALIZING CIRCULANT CORE MATRICES

Let n be a fixed positive integer. Denote by Q the set of all circulant core matrices

1 1 1 .- 1
1 my x1 - T2
X=|1 42 m - Tp-3
71 X1 Xro e ZTo ]

defined by the vector (zg,- -+ ,2,_2) € C*~! and such that 1 + zg + 21 + ... + 7,2 = 0.

Note that the set of circulant core Hadamard matrices is a subset of Q, since the condition 1+ xg + x1 +
... + p—o = 0 is equivalent to the orthogonality of the first two rows of X for a matrix X € Q.

We prove that Q is closed to taking adjoints, and its elements commute. This motivates finding a unitary
matrix which simultaneously diagonalizes the matrices in Q.

We first show that if X € O, then X* € Q. Indeed, this follows from the fact that the set of circulant
matrices of size n — 1 is #-closed (it is in fact an abelian #-algebra), and Zz;g Tj = Zz;g xp = —1.

We now show that the elements of Q commute. Let X,Y € Q with circulant cores X’ and Y respectively.

Since X’ and Y are circulant matrices, we have X'Y’ = Y'X’. If ¢ # 0 # j, then we have

n—1
(XY)i; = Z TikYk;
k=0
n—1

=1+ Z Th—iYj—k
=1

=1+ (X'Y");
=1+ Y'X);;
= (Y X)y

Ifi=0,j # 0, then
n—1 n—1 n—1
(XY)o; = 2 TorYrj = 2 Ykj =1+ 2 Yj—k =0
k=0 k=0 k=1
n—1 n—1 n—1
(YX)oj = Z YokThkj = Z Ty =1+ Z Zj—p =0
k=0 k=0 k=1
A similar calculation can be shown when ¢ # 0,j = 0. Also note that

n—1 n—1 n—1 n—1
(XY)oo = 2 TokYko = Z l=n= Z 1= 2 YorZro = (Y X)oo-
k=0 k=0 k=0 k=0

Therefore, we have XY =Y X for any X,Y € Q.



Consider now the matrix

[1-vn 14y 0 0 o |
/i 7 1 1 1 1 1
1—yn 14+4n 0 - 0
) 1 1 )\1 )\2 )\n72
w = = 1 1 ()\1)2 ()\2)2 ()\n,Q)Q
Fn—l
1
1 1 ()\1)”71 ()\2)7171 ()\n—l)n72
| 1 1 ()\1)“72 (}\2)7172 (}\n72)n72_

where F,_; is the Fourier matrix of order n — 1 and \; = €?27/("=1) (1 < j <n —2).

The definition of w is inspired by the fact that the Fourier matrix F,,_; diagonalizes the circulant matrices
of size n — 1. We will check that w*aw is a diagonal matrix, for any a € Q. Note however that w is not
a unitary matrix. We will use the polar decomposition of w, w = u|w| (where |w| = vw*w) to create a
unitary u = w|w|~! that also diagonalizes Q.

We first show that |w| is a diagonal matrix with non-zero entries, so |w|™! is well defined.

Let us list the entries w;; of the matrix w:

woo =1 —+/n
wor =14 +/n
wor =0for2<k<n—1
wjp=1lforl<j<n—-1

wj, = ei27r(j—1)(k:—1)/(n—1) for 1 < j,k <n-1



It follows that

(w*w)oo = (1 = v/n)* + (n—1) = 2(n — v/n)
(w¥w)io = (w*w)or = (1 +v/n)(1 —v/n) + (n—1) =0

(w*w)ro = (w* Z 2rk/n=1) — 0 for 2 <k <n—1

(w*w)iy = (1+ ) + (n—1) = 2(n + Vi)
n—2

(w*w)e = 00 + Z et 2mh/(n=D) g=i2nk/(n=1) — ] for 2<k<n—1
k=0

|
—

n

(w )2ijl =0 1_’_\/7 Z —i2w(k—1)/(n—1) | 1=0

”M: 1M

n—1 -
(w*w)2k _ ijk _ Z ijwg Z —i2m(j—1)/(n—1) | 127r(k—1)(j—1)/(n—1)
j=1 i=1
:Z 2r(=DkR=2)/(n=1) — (n — 1)§yy, for 2< k <n—1
j=1
n—1 n—1 n—1 . )
(U)*w)jk = WinjWmk = Z WinjWmk = Z BZZﬂ(mil)(kij)/(nil)
m=0 m=1 m=1

(n—1)0jp for2<jk<n-—1

Hence, we have that

2(n — \/n) 0 0 0 0
0 Gn+n) 0 0 0
0 0 n—1 0 0
w¥w =
0 0 0
0 0 0 n—1 0
0 0 0 0 n-1]

It follows that |w|~! is a well defined diagonal matrix, which also implies u;j, = wjy|wl|;,; . Thus

1—n 1+4/n 0 0
V2(n—vn)  \/2(n+vn)
1 1 1 DR 1
V2(n—vn)  A2(ntym) Vil n—1
u = 1 L Ay oo, Dn—2
V2(n—vn)  \2ntvm) Vel n—1
1 1 AR An2
L V2(n—vm)  V2(ntvm) Vil =y

where )\; = ei2mi/(n=1)



For the following computations, denote &; to be the 4th

AL n—2 i2xki 1
xr = ('TO?J:l?.'. 7]"71—2)' x] - Zk=0 67 7T ]/(TL )a’:k.

entry of the Fourier Transform of the vector

We now show that d = u*au is a diagonal matrix, for all @ € Q. The entries of the matrix d are

dyp = (w* aw)ul; [l

-3

(u*au)jr =

n—1 n—1_—

From (w*aw) m=0

n—1 n—1
* — —
(w*aw)oo = Wm0 AmoWoo + Z W0 GmrWro

m=0 r=1

n—1 n—1

= Wmo (1 - \/7) + Z Amer
m=0 r=1
n—1

0 WinjQmrWrk, it follows that

|

m=1 m=1r=1
A= V(= V) + (1 =1)+ X A=V + 3 D ) mod -1)
m=1 m=1r=1
n—2
1=vVa)((1=vn)+n—=1)+ (1 —vn)(n—1)+(n—1) >
k=0
=1 =vVn)(Q=+vn)+(n-1)+ 1 —=+vn)(n—1)+(n-1)(-1)
= —2n(1 - i)
Hence, we have that
We also have
(w*aw)11 = )y lwmlam0w01 + ni] wmlamrwn]
m=0 r=1
= 3 lwml ( 1 + \/ﬁ) + ni am'r')}
m=0 r=1
n—1 n—1 n— —1n—1
=@01((1+\/ﬁ)+2am)+22 (1 +vn) + ZZE 1my
(V) - D) 4 (LYY Y Emmaw

=2n(1+ +/n)

2n(1++/n)

which yields di; = O A/n.



Next we have

n—1 n—1

* _ _
(w*aw)or = Y. | WmoGmowor + Y Wm0y
m=0 r=1
n—1 n—1 n—1
= Wooagowo1 + Z Wooaor + Z Wino@mowWo1 + Z Z Wino@mr
r=1

m=1m=1

(1=vR)()(A +vn) + (1 —vn)(n—1) + (1 +/n)(n—1) + (=1)(n—1)
-0

which giVGS d01 = le =0.

Now let 2 < j < n — 1. It follows that

m=0

— n—1 n—1 | n—1
* J—
(’LU aw)Oj = Z meamOwOJ + Z meamrwr] = 2 2 Wm0 AmrWrj

m= r=1 r=1
n—1 n—1 n—1
WooaorWrj; + Z Z Wm0 Amr Wy

r=1 m=1r=1

n—1 n—1 n—1

= (1—+n) Z e2r(r=1)(j=1)/(n=1) | Z Z Win0 @ W

m=1 m=1r=1

mOamrwr] = Z Z 2m(r—1)(-1)/(n— 1) L(r—m) mod (n—1)

1 -1 —
[ 2 (r—1)(j—1)/(n—1) Z Tr—m) mod (n— 1)1 Z 2n(r—1)(j—1)/(n—1) =0

m=1 r=1

hence do; = djo =0for2<j<n-—1

Similarly we have

n—1 n—1
« _ _
(w*aw)1; = Z W1 GmoWoj + . Win1 Gy

r=1
n—1 n—1n—1
- wOlaOOwOJ + Z wOlaOTw'r‘] + Z wmlam0w0j + 2 Z wmlamrwrj
r=1 m=1 m=1r=1
n—1 ) ) n—1 n—1n—1
= (L+v/n)(1)(0) + D (1+v/n)(1)e?m DO 0 0 S 1)(1)(0) + Y Y (Damewr
r=1 m=1 m=1r=1
n—1n—1 n—1 n—1
= Z Z AmprWrj = Z lwrj Z amr‘|
r=1m=1 r=1 m=1
1) 2 G2r(r=1)(i-1)/(n=1) _
which shows that di; =d;; =0for2<j<n—1.
Note that amr = a(my1)(r+1) for m,r > 1. For 2 < j, k < n — 1, we have that



3
|

1 n—1
* —— JR—
(w*aw) ;i = MJAmoWok + Z Wi j Gy Wrl

m=0 r=1
n—1 | n—1 n—1 n—1 n—1

= Z Winj OmrWrk | = Z Woja0rWrk + Z Z Wi j Q- Wrk
m=0 [ r=1 r=1 m=1r=1
n—1 n—1 n—1 n—1n—1

= (0)(1)w7‘k: + Z Z wmjamrwrk = Z Z wmjamrwrk
r=1 m=1r=1 m=1r=1

|
I\

n

n—2
Z ez27r[—m(]—1)+r(k—1)]/(n—1)x(T_m) mod (n—1)
r=0

0

3
I

—~

n— l)ij_léjk

The last computation proves that d;; = di; = %@k = &j_16;5. Thus, d = u*au is indeed a diagonal
matrix:
[vn 0 0 0 0 |
0 vn 0 0 - 0
0 0 1 0 0
u*au =
0 0 0 Tp_3 0
| 0 0 0 0 Ly




3. THE FINITENESS RESULT

We are now ready to prove the main result of this paper.

Theorem 3.1. Let p be a prime number. Then there exist at most finitely many circulant core complex

Hadamard matrices of size n = p + 1.

Proof. Consider a circulant core Hadamard matrix a:

1 1 1 1

1 Zo 1 o Tp-2
a= |1 z,_o xg Tp—3

1 X1 X9 ce To

Since the first two rows of a are orthogonal we know that a € Q, from which it also follows that a* € Q.
Let y; = z;, for 0 < j < n — 2. Since a is Hadamard, we have z; - y; = 1.
Denote by Z, 4 the vectors in C™ which are the diagonals of the matrices u*au, u*a*u, where u is the

unitary that diagonalizes Q defined in the previous section. We have

T = (_\/ﬁa \/ﬁa‘%lv"' vi.pfl)

and
g = (_\/ﬁv \/ﬁ, gfla T 72&—(1)—1))'
Note that the indices are considered modulo p.

The fact that the matrix a is Hadamard yields the following system of equations:

p—1 p—1
(1) ZkaEyk:_l
k=0 k=0
(2) Ty =1 for k=0,--- ,p—1

3) Tpy_p=mn fork=1,--- ,p—1

The second set of equations encodes the fact that the entries of a are of absolute value 1. The first and
third sets of equations encode the fact that a*a = nl. Indeed, this follows by conjugating this relation by
u* and using the formulas for the diagonal matrices u*au, u*a*u.

Let W be the complex algebraic variety given by the equations (1), (2), (3). By a classical result, any
compact algebraic variety in C™ is a finite set. Since W is clearly closed, to show W is finite it is sufficient
to show that it is bounded. Reasoning by contradiction, assume that there exists a sequence of elements

(Jg(m)7 y(m)) in W, where (™) = (xém)’ e 7x§)”_1)1) and y(™ = (y(()m)7 . ,y;l()iq)’ such that Hx(M) H§+“y(m) H; .
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o as m — o0. By Cauchy-Schwartz, we have the following inequalities for all m:

< x(m) ‘
2

< y(m)

S %"‘%‘H

<z |y H

b,

Since ("™ and y(™ are bounded from below by a positive constant and Hz(m) Hz + ”y(m) H; — o0, by

eventually passing to a subsequence we may assume that Hx(m) H2 Hy(m) ”2 — 00 as m — 0.
:E(rn) (m) _ y(m)
ol 224 VT = e

eventually passing to a subsequence we may assume the following limits exist:

Define u(™ = By using the compactness of the unit ball of C", after

(m) (m)

u = lim x(i) and v = lim y(i)

= |2(m], m= Jytm],
Let u = (uo, ..., up—1) and v = (v, ..., Vp—1). It follows that for k = 0,---,p — 1 we have

(m) (m)
.z m 1
uRvE = lim k = —_— = (.
= e, Jytm ], m=e Jatm], gt

Similarly, after eventually passing to a subsequence we also have for k =1,--- ,p—1:

Ur0_g = 0.
Thus, on the set {1, ..., p} we have
supp(u) N supp(v) = &

and

supp(@) N (—supp(?)) = &

It follows that
|supp(u)| + [supp(v)| < p
|supp()| + [supp(0)| < p

SO

|supp(u)| + [supp(v)| + |[supp(a)| + [supp(9)| < 2p.

However, by the Uncertainty Principle in [Tao] applied to the map w % 0 we have: |supp(u)|+ [supp(@)| =

p + 1, and similarly for v # 0: |supp(v)| + |supp(d)| = p + 1.

10



Hence we obtain

2p + 2 < [supp(u)| + [supp(v)| + [supp(a)| + |supp(d)|

< 2p

which is a contradiction.
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