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Abstract. We show that for every prime number p there exist finitely many circulant core complex

Hadamard matrices of size p ` 1. The proof uses a ’derivative at infinity’ argument to reduce the problem

to Tao’s uncertainty principle for cyclic groups of prime order (see [Tao]).

1. Introduction

A complex Hadamard matrix is a matrix H P MnpCq having all entries of absolute value 1 and all rows

mutually orthogonal. Equivalently, 1?
n
H is a unitary matrix with all entries of the same absolute value. For

example, the Fourier matrix Fn “ pω
ijq1ďi,jďn, ω “ e2πi{n, is a Hadamard matrix.

In the recent years, complex Hadamard matrices have found applications in various topics of mathematics

and physics, such as quantum information theory, error correcting codes, cyclic n-roots, spectral sets and

Fuglede’s conjecture. A general classification of real or complex Hadamard matrices is not available. A

catalogue of most known complex Hadamard matrices can be found in [TaZy]. The complete classification

is known for n ď 5 ([Ha1]) and for self-adjoint matrices of order 6 ([BeN]).

Hadamard matrices arise in operator algebras as construction data for hyperfinite subfactors. A unitary

matrix U is of the form 1?
n
H, H Hadamard matrix, if and only if the algebra of nˆn diagonal matrices Dn

is orthogonal onto UDnU˚, with respect to the inner product given by the trace on MnpCq. Equivalently,

the square of inclusions:

CpHq “

¨

˚

˚

˚

˝

Dn Ă MnpCq

Y Y

C Ă UDnU˚
, τ

˛

‹

‹

‹

‚

is a commuting square, in the sense of [Po1],[Po2], [JS]. Here τ denotes the trace on MnpCq, normalized such

that τp1q “ 1. The standard invariant of the subfactor constructed from this commuting square is not at all

well understood, except for some very basic examples of complex Hadamard matrices.
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In this paper we look at one of the more elegant classes of complex Hadamard matrices, called circulant

core matrices. These are Hadamard matrices of the form:
»

—

—

—

—

—

—

—

—

—

–

1 1 1 ¨ ¨ ¨ 1

1 x0 x1 ¨ ¨ ¨ xn´2

1 xn´2 x0 ¨ ¨ ¨ xn´3

...
...

. . .
. . .

...

1 x1 x2 ¨ ¨ ¨ x0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

That is to say, a circulant core matrix A is a matrix of the form A “

»

–

1 1

1 A1

fi

fl, where A1 is a circulant

matrix. The addition of 1’s on the first row and column is motivated by the normal form of a Hadamard

matrix.

In this paper we prove that for every prime p there exist finitely many circulant core Hadamard matrices

of size p` 1. Examples of such matrices are known for instance when p “ 3 mod 4 (see [Pa]). We first turn

the problem into one involving a complex algebraic variety, rather than working within the real algebraic

variety of complex Hadamard matrices. Since any compact algebraic variety in Cn is finite, it is sufficient to

show that our variety is compact. We prove it is bounded by employing a ’derivative at infinity’ argument,

which allows us to obtain new relations that lead to a contradiction. The contradiction is obtained by using

Tao’s uncertainty principle for cyclic groups of prime order, which relies on a theorem of Chebotarev (see

[Tao], [Ha2]).
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2. Diagonalizing Circulant Core Matrices

Let n be a fixed positive integer. Denote by Q the set of all circulant core matrices

X “

»

—

—

—

—

—

—

—

—

—

–

1 1 1 ¨ ¨ ¨ 1

1 x0 x1 ¨ ¨ ¨ xn´2

1 xn´2 x0 ¨ ¨ ¨ xn´3

...
...

. . .
. . .

...

1 x1 x2 ¨ ¨ ¨ x0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

defined by the vector px0, ¨ ¨ ¨ , xn´2q P Cn´1, and such that 1` x0 ` x1 ` ...` xn´2 “ 0.

Note that the set of circulant core Hadamard matrices is a subset of Q, since the condition 1` x0 ` x1 `

...` xn´2 “ 0 is equivalent to the orthogonality of the first two rows of X for a matrix X P Q.

We prove that Q is closed to taking adjoints, and its elements commute. This motivates finding a unitary

matrix which simultaneously diagonalizes the matrices in Q.

We first show that if X P Q, then X˚ P Q. Indeed, this follows from the fact that the set of circulant

matrices of size n´ 1 is ˚-closed (it is in fact an abelian ˚-algebra), and
řn´2
k“0 xk “

řn´2
k“0 xk “ ´1.

We now show that the elements of Q commute. Let X,Y P Q with circulant cores X 1 and Y 1 respectively.

Since X 1 and Y 1 are circulant matrices, we have X 1Y 1 “ Y 1X 1. If i ‰ 0 ‰ j, then we have

pXY qij “
n´1
ÿ

k“0

xikykj

“ 1`
n´1
ÿ

k“1

xk´iyj´k

“ 1` pX 1Y 1qij

“ 1` pY 1X 1qij

“ pY Xqij

If i “ 0, j ‰ 0, then

pXY q0j “
n´1
ÿ

k“0

x0kykj “
n´1
ÿ

k“0

ykj “ 1`
n´1
ÿ

k“1

yj´k “ 0

pY Xq0j “
n´1
ÿ

k“0

y0kxkj “
n´1
ÿ

k“0

xkj “ 1`
n´1
ÿ

k“1

xj´k “ 0

A similar calculation can be shown when i ‰ 0, j “ 0. Also note that

pXY q00 “
n´1
ÿ

k“0

x0kyk0 “
n´1
ÿ

k“0

1 “ n “
n´1
ÿ

k“0

1 “
n´1
ÿ

k“0

y0kxk0 “ pY Xq00.

Therefore, we have XY “ Y X for any X,Y P Q.
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Consider now the matrix

w “

»

—

—

—

—

—

—

–

1´
?
n 1`

?
n 0 ¨ ¨ ¨ 0

1
... Fn´1

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1´
?
n 1`

?
n 0 0 ¨ ¨ ¨ 0

1 1 1 1 ¨ ¨ ¨ 1

1 1 λ1 λ2 ¨ ¨ ¨ λn´2

1 1 pλ1q
2 pλ2q

2 ¨ ¨ ¨ pλn´2q
2

...
...

...
... ¨ ¨ ¨

...

1 1 pλ1q
n´1 pλ2q

n´1 ¨ ¨ ¨ pλn´1q
n´2

1 1 pλ1q
n´2 pλ2q

n´2 ¨ ¨ ¨ pλn´2q
n´2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

where Fn´1 is the Fourier matrix of order n´ 1 and λj “ ei2πj{pn´1q (1 ď j ď n´ 2).

The definition of w is inspired by the fact that the Fourier matrix Fn´1 diagonalizes the circulant matrices

of size n ´ 1. We will check that w˚aw is a diagonal matrix, for any a P Q. Note however that w is not

a unitary matrix. We will use the polar decomposition of w, w “ u|w| (where |w| “
?
w˚w) to create a

unitary u “ w|w|´1 that also diagonalizes Q.

We first show that |w| is a diagonal matrix with non-zero entries, so |w|´1 is well defined.

Let us list the entries wjk of the matrix w:

w00 “ 1´
?
n

w01 “ 1`
?
n

w0k “ 0 for 2 ď k ď n´ 1

wj0 “ 1 for 1 ď j ď n´ 1

wjk “ ei2πpj´1qpk´1q{pn´1q for 1 ď j, k ď n´ 1
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It follows that

pw˚wq00 “ p1´
?
nq2 ` pn´ 1q “ 2pn´

?
nq

pw˚wq10 “ pw
˚wq01 “ p1`

?
nqp1´

?
nq ` pn´ 1q “ 0

pw˚wqk0 “ pw
˚wq0k “ 0`

n´1
ÿ

k“1

ei2πk{pn´1q “ 0 for 2 ď k ď n´ 1

pw˚wq11 “ p1`
?
nq2 ` pn´ 1q “ 2pn`

?
nq

pw˚wqkk “ 0 ˚ 0`
n´2
ÿ

k“0

ei2πk{pn´1qe´i2πk{pn´1q “ n´ 1 for 2 ď k ď n´ 1

pw˚wq21 “ pw
˚wq12 “

n´1
ÿ

j“0

pw˚q2jwj1 “ 0p1`
?
nq `

n´1
ÿ

j“1

e´i2πpk´1q{pn´1q ¨ 1 “ 0

pw˚wq2k “ pw
˚wqk2 “

n´1
ÿ

j“0

wj2wjk “
n´1
ÿ

j“1

wj2wjk “
n´1
ÿ

j“1

e´i2πpj´1q{pn´1q ¨ ei2πpk´1qpj´1q{pn´1q

“

n´1
ÿ

j“1

ei2πpj´1qpk´2q{pn´1q “ pn´ 1qδ2k for 2 ď k ď n´ 1

pw˚wqjk “
n´1
ÿ

m“0

wmjwmk “
n´1
ÿ

m“1

wmjwmk “
n´1
ÿ

m“1

ei2πpm´1qpk´jq{pn´1q

“ pn´ 1qδjk for 2 ď j, k ď n´ 1

Hence, we have that

w˚w “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

2pn´
?
nq 0 0 0 ¨ ¨ ¨ 0

0 2pn`
?
nq 0 0 ¨ ¨ ¨ 0

0 0 n´ 1 0 ¨ ¨ ¨ 0

0 0 0
. . .

. . .
...

0 0 0 ¨ ¨ ¨ n´ 1 0

0 0 0 ¨ ¨ ¨ 0 n´ 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

It follows that |w|´1 is a well defined diagonal matrix, which also implies ujk “ wjk|w|
´1
kk . Thus

u “

»

—

—

—

—

—

—

—

—

—

—

—

–

1´
?
n?

2pn´
?
nq

1`
?
n?

2pn`
?
nq

0 ¨ ¨ ¨ 0

1?
2pn´

?
nq

1?
2pn`

?
nq

1?
n´1

¨ ¨ ¨ 1?
n´1

1?
2pn´

?
nq

1?
2pn`

?
nq

λ1?
n´1

¨ ¨ ¨
λn´2?
n´1

...
...

... ¨ ¨ ¨
...

1?
2pn´

?
nq

1?
2pn`

?
nq

λn´2
1?
n´1

¨ ¨ ¨
λn´2
n´2?
n´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

where λj “ ei2πj{pn´1q.
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For the following computations, denote x̂j to be the jth entry of the Fourier Transform of the vector

x “ px0, x1, ¨ ¨ ¨ , xn´2q: x̂j “
řn´2
k“0 e

i2πkj{pn´1qxk.

We now show that d “ u˚au is a diagonal matrix, for all a P Q. The entries of the matrix d are

djk :“ pu˚auqjk “ pw
˚awq|w|´1

jj |w|
´1
kk .

From pw˚awqjk “
řn´1
m“0

řn´1
r“0 wmjamrwrk, it follows that

pw˚awq00 “
n´1
ÿ

m“0

«

wm0am0w00 `

n´1
ÿ

r“1

wm0amrwr0

ff

“

n´1
ÿ

m“0

«

wm0

˜

p1´
?
nq `

n´1
ÿ

r“1

amr

¸ff

“ p1´
?
nq

˜

p1´
?
nq `

n´1
ÿ

r“1

a0r

¸

`

n´1
ÿ

m“1

«

wm0

˜

p1´
?
nq `

n´1
ÿ

r“1

amr

¸ff

“ p1´
?
nqpp1´

?
nq ` pn´ 1qq `

n´1
ÿ

m“1

p1´
?
nq `

n´1
ÿ

m“1

n´1
ÿ

r“1

amr

“ p1´
?
nqpp1´

?
nq ` pn´ 1qq `

n´1
ÿ

m“1

p1´
?
nq `

n´1
ÿ

m“1

n´1
ÿ

r“1

xpr´mq mod pn´1q

“ p1´
?
nqpp1´

?
nq ` pn´ 1qq ` p1´

?
nqpn´ 1q ` pn´ 1q

n´2
ÿ

k“0

xk

“ p1´
?
nqpp1´

?
nq ` pn´ 1qq ` p1´

?
nqpn´ 1q ` pn´ 1qp´1q

“ ´2np1´
?
nq

Hence, we have that

d00 “
´2np1´

?
nq

2pn´
?
nq

“ ´
?
n.

We also have

pw˚awq11 “
n´1
ÿ

m“0

«

wm1am0w01 `

n´1
ÿ

r“1

wm1amrwr1

ff

“

n´1
ÿ

m“0

«

wm1

˜

p1`
?
nq `

n´1
ÿ

r“1

amr

¸ff

“ w01pp1`
?
nq `

n´1
ÿ

r“1

a0rq `
n´1
ÿ

m“1

n´1
ÿ

r“1

wm1p1`
?
nq `

n´1
ÿ

m“1

n´1
ÿ

r“1

wm1amr

“ p1`
?
nqpp1`

?
nq ` pn´ 1qq ` p1`

?
nqpn´ 1q `

n´1
ÿ

m“1

n´1
ÿ

r“1

wm1amr

“ p1`
?
nqpp1`

?
nq ` pn´ 1qq ` p1`

?
nqpn´ 1q ´ pn´ 1q

“ 2np1`
?
nq

which yields d11 “
2np1`

?
nq

2pn`
?
nq
“
?
n.
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Next we have

pw˚awq01 “
n´1
ÿ

m“0

«

wm0am0w01 `

n´1
ÿ

r“1

wm0amr

ff

“ w00a00w01 `

n´1
ÿ

r“1

w00a0r `
n´1
ÿ

m“1

wm0am0w01 `

n´1
ÿ

m“1

n´1
ÿ

m“1

wm0amr

“ p1´
?
nqp1qp1`

?
nq ` p1´

?
nqpn´ 1q ` p1`

?
nqpn´ 1q ` p´1qpn´ 1q

“ 0

which gives d01 “ d10 “ 0.

Now let 2 ď j ď n´ 1. It follows that

pw˚awq0j “
n´1
ÿ

m“0

«

wm0am0w0j `

n´1
ÿ

r“1

wm0amrwrj

ff

“

n´1
ÿ

m“0

«

n´1
ÿ

r“1

wm0amrwrj

ff

“

n´1
ÿ

r“1

w00a0rwrj `
n´1
ÿ

m“1

n´1
ÿ

r“1

wm0amrwrj

“ p1´
?
nq

n´1
ÿ

m“1

ei2πpr´1qpj´1q{pn´1q `

n´1
ÿ

m“1

n´1
ÿ

r“1

wm0amrwrj

“

n´1
ÿ

m“1

n´1
ÿ

r“1

wm0amrwrj “
n´1
ÿ

m“1

n´1
ÿ

r“1

ei2πpr´1qpj´1q{pn´1qxpr´mq mod pn´1q

“

n´1
ÿ

r“1

«

ei2πpr´1qpj´1q{pn´1q
n´1
ÿ

m“1

xpr´mq mod pn´1q

ff

“ ´

n´1
ÿ

r“1

ei2πpr´1qpj´1q{pn´1q “ 0

hence d0j “ dj0 “ 0 for 2 ď j ď n´ 1.

Similarly we have

pw˚awq1j “
n´1
ÿ

m“0

«

wm1am0w0j `

n´1
ÿ

r“1

wm1amrwrj

ff

“ w01a00w0j `

n´1
ÿ

r“1

w01a0rwrj `
n´1
ÿ

m“1

wm1am0w0j `

n´1
ÿ

m“1

n´1
ÿ

r“1

wm1amrwrj

“ p1`
?
nqp1qp0q `

n´1
ÿ

r“1

p1`
?
nqp1qei2πpr´1qpj´1q{pn´1q `

n´1
ÿ

m“1

p1qp1qp0q `
n´1
ÿ

m“1

n´1
ÿ

r“1

p1qamrwrj

“

n´1
ÿ

r“1

n´1
ÿ

m“1

amrwrj “
n´1
ÿ

r“1

«

wrj

n´1
ÿ

m“1

amr

ff

“ p´1q
n´1
ÿ

r“1

ei2πpr´1qpj´1q{pn´1q “ 0

which shows that d1j “ dj1 “ 0 for 2 ď j ď n´ 1.

Note that amr “ apm`1qpr`1q for m, r ě 1. For 2 ď j, k ď n´ 1, we have that
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pw˚awqjk “
n´1
ÿ

m“0

«

mjam0w0k `

n´1
ÿ

r“1

wmjamrwrk

ff

“

n´1
ÿ

m“0

«

n´1
ÿ

r“1

wmjamrwrk

ff

“

n´1
ÿ

r“1

w0ja0rwrk `
n´1
ÿ

m“1

n´1
ÿ

r“1

wmjamrwrk

“

n´1
ÿ

r“1

p0qp1qwrk `
n´1
ÿ

m“1

n´1
ÿ

r“1

wmjamrwrk “
n´1
ÿ

m“1

n´1
ÿ

r“1

wmjamrwrk

“

n´2
ÿ

m“0

n´2
ÿ

r“0

ei2πr´mpj´1q`rpk´1qs{pn´1qxpr´mq mod pn´1q

“ pn´ 1qx̂j´1δjk

The last computation proves that djk “ dkj “
pn´1qx̂j´1

pn´1q δjk “ x̂j´1δjk. Thus, d “ u˚au is indeed a diagonal

matrix:

u˚au “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

´
?
n 0 0 0 ¨ ¨ ¨ 0

0
?
n 0 0 ¨ ¨ ¨ 0

0 0 x̂1 0 ¨ ¨ ¨ 0
...

. . .
. . .

. . .
. . .

...

0 0 0 ¨ ¨ ¨ x̂n´3 0

0 0 0 ¨ ¨ ¨ 0 x̂n´2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl
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3. The finiteness result

We are now ready to prove the main result of this paper.

Theorem 3.1. Let p be a prime number. Then there exist at most finitely many circulant core complex

Hadamard matrices of size n “ p` 1.

Proof. Consider a circulant core Hadamard matrix a:

a “

»

—

—

—

—

—

—

—

—

—

–

1 1 1 ¨ ¨ ¨ 1

1 x0 x1 ¨ ¨ ¨ xn´2

1 xn´2 x0 ¨ ¨ ¨ xn´3

...
...

. . .
. . .

...

1 x1 x2 ¨ ¨ ¨ x0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Since the first two rows of a are orthogonal we know that a P Q, from which it also follows that a˚ P Q.

Let yj “ x̄j , for 0 ď j ď n´ 2. Since a is Hadamard, we have xj ¨ yj “ 1.

Denote by x̃, ỹ the vectors in Cn which are the diagonals of the matrices u˚au, u˚a˚u, where u is the

unitary that diagonalizes Q defined in the previous section. We have

x̃ “ p´
?
n,
?
n, x̂1, ¨ ¨ ¨ , x̂p´1q

and

ỹ “ p´
?
n,
?
n, ŷ´1, ¨ ¨ ¨ , ŷ´pp´1qq.

Note that the indices are considered modulo p.

The fact that the matrix a is Hadamard yields the following system of equations:

p´1
ÿ

k“0

xk “
p´1
ÿ

k“0

yk “ ´1(1)

xkyk “ 1 for k “ 0, ¨ ¨ ¨ , p´ 1(2)

x̂kŷ´k “ n for k “ 1, ¨ ¨ ¨ , p´ 1(3)

The second set of equations encodes the fact that the entries of a are of absolute value 1. The first and

third sets of equations encode the fact that a˚a “ nI. Indeed, this follows by conjugating this relation by

u˚ and using the formulas for the diagonal matrices u˚au, u˚a˚u.

Let W be the complex algebraic variety given by the equations (1), (2), (3). By a classical result, any

compact algebraic variety in Cn is a finite set. Since W is clearly closed, to show W is finite it is sufficient

to show that it is bounded. Reasoning by contradiction, assume that there exists a sequence of elements

pxpmq, ypmqq in W, where xpmq “ px
pmq
0 , ¨ ¨ ¨ , x

pmq
p´1q and ypmq “ py

pmq
0 , ¨ ¨ ¨ , y

pmq
p´1q, such that

›

›xpmq
›

›

2

2
`
›

›ypmq
›

›

2

2
Ñ
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8 as mÑ8. By Cauchy-Schwartz, we have the following inequalities for all m:

1
?
p
ď

›

›

›
xpmq

›

›

›

2

1
?
p
ď

›

›

›
ypmq

›

›

›

2

p ď
›

›

›
xpmq

›

›

›

2

›

›

›
ypmq

›

›

›

2

Since xpmq and ypmq are bounded from below by a positive constant and
›

›xpmq
›

›

2

2
`

›

›ypmq
›

›

2

2
Ñ 8, by

eventually passing to a subsequence we may assume that
›

›xpmq
›

›

2

›

›ypmq
›

›

2
Ñ8 as mÑ8.

Define upmq “ xpmq

}xpmq}
2

, and vpmq “ ypmq

}ypmq}
2

. By using the compactness of the unit ball of Cn, after

eventually passing to a subsequence we may assume the following limits exist:

u “ lim
mÑ8

xpmq
›

›xpmq
›

›

2

and v “ lim
mÑ8

ypmq
›

›ypmq
›

›

2

.

Let u “ pu0, ..., up´1q and v “ pv0, ..., vp´1q. It follows that for k “ 0, ¨ ¨ ¨ , p´ 1 we have

ukvk “ lim
mÑ8

x
pmq
k

›

›xpmq
›

›

2

y
pmq
k

›

›ypmq
›

›

2

“ lim
mÑ8

1
›

›xpmq
›

›

2

›

›ypmq
›

›

2

“ 0.

Similarly, after eventually passing to a subsequence we also have for k “ 1, ¨ ¨ ¨ , p´ 1:

pukpv´k “ 0.

Thus, on the set t1, ..., pu we have

supppuq X supppvq “ H

and

supppûq X p´supppv̂qq “ H

It follows that

|supppuq| ` |supppvq| ď p

|supppûq| ` |supppv̂q| ď p

so

|supppuq| ` |supppvq| ` |supppûq| ` |supppv̂q| ď 2p.

However, by the Uncertainty Principle in [Tao] applied to the map u “ 0 we have: |supppuq|`|supppûq| ě

p` 1, and similarly for v “ 0: |supppvq| ` |supppv̂q| ě p` 1.

10



Hence we obtain

2p` 2 ď |supppuq| ` |supppvq| ` |supppûq| ` |supppv̂q|

ď 2p

which is a contradiction.

�
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