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ABSTRACT. We consider a condition for non-degenerate commuting squares
of matrix algebras (finite dimensional von Neumann algebras) called the span
condition, which in the case of the n-dimensional standard spin models is
shown to be satisfied if and only if n is prime. We prove that the commut-
ing squares satisfying the span condition are isolated among all commuting
squares (modulo isomorphisms). In particular, they are finiteley many for any
fixed dimension. Also, we give a conceptual proof of previous constructions
of certain one-parameter families of complex Hadamard matrices.
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INTRODUCTION

In this paper we prove some finiteness results for commuting squares of ma-
trix algebras, i.e. finite dimensional von Neumann algebras. Commuting squares
were introduced in [9], as invariants and construction data in Jones’ theory of
subfactors. They encode the generalized symmetries of the subfactor, in a lot of
situations being complete invariants [9],[10]. In particular, all finite groups and
finite dimensional C∗-Hopf algebras can be encoded in commuting squares.

One of the simplest examples of commuting squares is

C =




D ⊂ Mn(C)
∪ ∪
C ⊂ U∗DU

, τ




where D is the algebra of diagonal matrices, U =
( 1√

n ε(i−1)(j−1))
i,j with ε =

cos 2π
n + i sin 2π

n , so U∗DU is the algebra of circulant permutation matrices [11].
We call U the standard biunitary matrix of order n. More generally, one can

ask for what unitaries U is C a commuting square. The commuting square condi-
tion asks that D, U∗DU be orthogonal moduloC, which is equivalent to U having
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all entries of the same absolute value 1√
n . Such a matrix is called a biunitary matrix

or complex Hadamard matrix.
In [8] Petrescu showed that, for n positive integer, the standard biunitary of

order n is isolated among all normalized biunitary matrices of order n if and only
if n is prime.

We introduce a condition for arbitrary non-degenerate commuting squares,
which we call the span condition, and prove that it is sufficient to ensure isolation.
We show that when the commuting square is given by the standard biunitary of
order n the span condition is satisfied if and only if n is prime. Thus our result
generalizes Petrescu’s finiteness theorem and the span condition can be regarded
as a primeness condition.

We also show how one can use our theorem to check if a given biunitary
is isolated. As an application we show that all circulant biunitaries of order 7
(computed in [3]) are isolated among all biunitary matrices.

Conversely, we find sufficient conditions for the span condition to fail and
prove that if these conditions are satisfied then there exists a continuum of non-
isomorphic commuting squares.

It is not known if for every n > 5 prime there exists a one-parameter family
of (different) normalized biunitary matrices. For n = 7, 13, 19, 31 Petrescu found
such examples, using a computer; we find a conceptual explanation for these
examples. A main point of interest of Petrescu’s result is that it might produce
examples of one-parameter families of non-isomorphic subfactors of same index
n and same graph, conjectured to be A∞.

1. PRELIMINARIES AND A TECHNICAL RESULT

We recall the following definition from [10] (see also [11], [9]):

DEFINITION 1.1. A commuting square of matrix algebras is a square of inclu-
sions: 


P−1 ⊂ P0
∪ ∪

Q−1 ⊂ Q0

, τ




with P0, P−1, Q0, Q−1 finite dimensional von Neumann algebras (i.e. algebras of
the form

⊕
i
Mni (C), or equivalently ∗-subalgebras ofMn(C) for some n > 1) and

τ a faithful positive trace on P0, τ(1) = 1, satisfying the condition:

(1.1) EP−1 EQ0 = EQ−1

where EA = EP0
A denotes the τ-invariant conditional expectation of P0 onto the

subalgebra A ⊂ P0. We say that the commuting square is non-degenerate if P0 =
spanP−1Q0.

The following definition is from [2]:
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DEFINITION 1.2. Let A be a finite dimensional von Neumann algebra with
identity I and normalized trace τ. Denote S(A) the set of all ∗-subalgebras of A
containing I. For B1, B2 ∈ S(A) and δ > 0 we say that B1 is δ-contained in B2 if for
every element x ∈ B1 of ‖x‖ = 1 there exists y ∈ B2 such that ‖x− y‖2 < δ. If B1
is δ-contained in B2 and B2 is δ-contained in B1 we write ‖B1 − B2‖2,A < δ.

REMARK 1.3. Arguments from [2] show that there exists a continous in-
creasing function f : [0, ∞) → [0, ∞), f (0) = 0, such that if δ is small and
‖B1 − B2‖2,A < δ, then B2 = Ad(U)(B1) for some unitary element U ∈ A,
‖U − I‖2 < f (δ) (where ‖x‖2 = τ(x∗x)1/2).

DEFINITION 1.4. We say that the commuting square

C =




P−1 ⊂ P0
∪ ∪

Q−1 ⊂ Q0

, τ




is isomorphic to the commuting square

C̃ =




P̃−1 ⊂ P̃0
∪ ∪

Q̃−1 ⊂ Q̃0

, τ̃




with trace τ̃, if there exists a trace-invariant ∗-isomorphism φ : P0 → P̃0 such that
φ(P−1) = P̃−1, φ(Q−1) = Q̃−1, φ(Q0) = Q̃0.

DEFINITION 1.5. We say that the commuting square of matrix algebras

C =




P−1 ⊂ P0
∪ ∪

Q−1 ⊂ Q0

, τ




is isolated if there exists δ > 0 such that if

C̃ =




P̃−1 ⊂ P̃0
∪ ∪

Q̃−1 ⊂ Q̃0

, τ̃




is a commuting square and φ : P0 → P̃0 a trace-invariant ∗-isomorphism satisfy-
ing

‖φ(P−1)− P̃−1‖2,P̃0
< δ, ‖φ(Q−1)− Q̃−1‖2,P̃0

< δ, ‖φ(Q0)− Q̃0‖2,P̃0
< δ

then C̃ is isomorphic to C.

For algebras B ⊂ A we will use the notation: B′ ∩A = {a ∈ A such that ab =
ba, ∀b ∈ B}.
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LEMMA 1.6. Let P0, P−1, Q0, Q−1 be finite dimensional von Neumann algebras,
and U a unitary element of P0 such that

C(U) =




P−1 ⊂ P0
∪ ∪

Q−1 ⊂ U∗Q0U
, τ




is a commuting square. Let q ∈ Q0, q′ ∈ Q
′
0 ∩ P−1, p ∈ Q′

−1 ∩ P−1, p′ ∈ P
′
−1 ∩ P0 be

unitary elements. Then C(qq
′
Upp

′
) is a commuting square isomorphic to C(U).

Proof. Modifying U to the left by q, q′ does not change the algebra U∗Q0U
and thus does not change the commuting square: C(qq

′
Upp

′
) = C(Upp

′
). By

applying Ad(pp′) to C(Upp
′
) (which leaves P0, P−1, Q−1 invariant) we see that

C(Upp
′
) is isomorphic to C.

To check in practical situations if a certain commuting square is isolated, we
need the following lemma:

LEMMA 1.7. Let

C =




P−1 ⊂ P0
∪ ∪

Q−1 ⊂ Q0

, τ




be a commuting square of finite dimensional von Neumann algebras, with trace τ. Then
C is isolated if and only if there exists ε > 0 such that if U ∈ Q′

−1 ∩ P0 is a unitary,
‖U − I‖2 < ε, and

C(U) =




P−1 ⊂ P0
∪ ∪

Q−1 ⊂ U∗Q0U
, τ




is a commuting square; then C(U) is isomorphic to C.

Proof. We only have to show the implication from right to left. Assume
C is isolated among commuting squares of the form C(U), U ∈ Q′

−1 ∩ P0, ‖U −
I‖2 < ε and let δ > 0 be such that f (2 f (δ)) + f (δ) + f ( f (δ) + f (2 f (δ))) < ε,
where f is as in Remark 1.3. We show that C, δ satisfy the definition of isolation
in Definition 1.5. Assume C̃ is δ-close to C as in Definition 1.5. For δ small the
inclusions Q̃−1 ⊂ P̃−1 ⊂ P̃0 and φ(Q−1) ⊂ φ(P−1) ⊂ P̃0 are unitary conjugate.
Because our definition of isolation is invariant to isomorphisms of commuting
squares, it follows that to check if C is isolated it is enough to check isolation
among commuting squares of the form:

P−1 ⊂ P0
∪ ∪

Q−1 ⊂ Q̃0

.

If ‖Q̃0 −Q0‖2,P0 < δ then by Remark 1.3 we have Q̃0 = U∗Q0U, for some unitary
U ∈ P0, ‖U − I‖2 < f (δ).



A FINITENES RESULT FOR COMMUTING SQUARES 105

Since UQ−1U∗ ⊂ Q0 and ‖UQ−1U∗ − Q−1‖2,Q0 < 2 f (δ), Remark 1.3 im-
plies the existence of a unitary r1 ∈ Q0, ‖r1− I‖2 < f (2 f (δ)), such that UQ−1U∗ =
r1Q−1r∗1 . So Ad(r∗1U) is an isomorphism of Q−1 f (δ) + f (2 f (δ))-close to identity,
therefore: Ad(r∗1U)|Q−1

= Ad(r2), for some r2 ∈ Q−1, ‖r2 − I‖2 < f ( f (δ) +
f (2 f (δ))). Thus, by changing U to r∗1Ur∗2 (which does not change the isomor-
phism class of the commuting square), we may assume that U ∈ Q

′
−1 ∩ P0 and,

since ε > f (2 f (δ)) + f (δ) + f ( f (δ) + f (2 f (δ))), we obtain C̃ isomorphic to C.

According to Lemma 1.7, if a commuting square C is not isolated then there
exists a sequence of unitaries Un → I such that C(Un) are non-isomorphic to
C, ∀n > 1. In our main theorem we prove that commuting squares satisfying a
certain span condition are isolated. To do this, we contradict isolation by assum-
ing the existence of such Un, then we write the commuting square relations for
each n and take the "derivative" of this relations along some "direction of conver-
gence" of Un. We start by giving a clear meaning to the notion of "direction of
convergence".

Let P0 be a finite dimensional von Neumann algebra and let Un = exp(ihn),
n > 1, for some hn ∈ P0 hermitian non-zero elements converging to 0. Because
of the compactness of the unit ball in the finite dimensional algebra P0 we may
assume, after eventually passing to a subsequence, that hn

‖hn‖ → h ∈ P0, ‖h‖ = 1.
We will refer to h as a direction of convergence of (Un)n.

Since Un−I
i‖hn‖ → h as n → ∞, it follows ‖Un−I‖

‖hn‖ → ‖h‖ = 1 so:

(1.2) h = lim
n→∞

Un − I
i‖Un − I‖ .

The following technical lemma is essential for the proof of the main theo-
rem. It gives a normalization of h, obtained by modifying Un as in Lemma 1.6.

LEMMA 1.8. With the notations of Lemma 1.6, assume that Un ∈ Q′
−1 ∩ P0, n >

1 are unitary elements converging to I such that C(Un) are commuting squares non-
isomorphic to C.

Then, after replacing (Un)n with one of its subsequences, there exist unitaries qn ∈
Q′
−1 ∩Q0, q′n ∈ Q

′
0 ∩ P−1, pn ∈ Q′

−1 ∩ P−1, p′n ∈ P
′
−1 ∩ P0 such that:

Ũn = qnqn
′Un p′n pn → I, lim

n→∞

Ũn − I
i‖Ũn − I‖ = h̃ ∈ P0,

and

EP′−1∩P0
(h̃) = EQ′

0∩P0
(h̃) = EQ′

−1∩P−1
(h̃) = EQ′

−1∩Q0
(h̃) = 0, [h̃, Q−1] = 0.

Proof. Let X = U(Q′
−1 ∩ Q0) × U(Q′

0 ∩ P0) × U(P′−1 ∩ P0) × U(Q′
−1 ∩ P−1)

be the set of quadruples of unitaries in the four algebras. X being compact in
‖ · ‖2, for every n there exist elements qn ∈ Q′

−1 ∩Q0, pn ∈ Q
′
0 ∩ P−1, q′n ∈ Q′

−1 ∩
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P−1, p′n ∈ P
′
−1 ∩ P0 that realize the minimum:

‖qnqn
′Un p′n pn − I‖2 = inf

(q,q′ ,p,p′)∈X
‖qq′Un p′p− I‖2.

Define Ũn = qnqn
′Un p′n pn. Then Ũn → I, since for p = p′ = q = q′ = I we

have: ‖Ũn − I‖2 6 ‖Un − I‖2. Note that Un 6= I because the commuting squares
were assumed non-isomorphic. Since for every unitary U we have ‖U − I‖2

2 =
2− 2<τ(U) (where <τ is the real part of τ), it follows:

<τ(Ũn) > <τ(qq′Un p′p), ∀(q, q′, p, p′) ∈ X.

Let λ be a real number, let q0 ∈ Q′
−1 ∩ Q0 be a hermitian element, and let

q = exp(iλq0)qn, q′ = q′n, p = pn, p′ = p′n. Then:

<τ(Ũn) > <τ(exp(iλq0)Ũn) =⇒ <τ((exp(iλq0)− I)Ũn) 6 0.

By dividing with λ > 0 and taking limit as λ approaches 0, we obtain
<τ(iq0Ũn) 6 0; doing the same for λ < 0, we have <τ(iq0Ũn) > 0, and thus

<τ(iq0Ũn) = 0.

Since for hermitians q0 we have <τ(iq0 I) = 0, we can rewrite the previous
equality as

<τ(iq0(Ũn − I)) = 0.

Let now h̃ = lim
n→∞

Ũn−I
i‖Ũn−I‖ (after passing to a subsequence if needed) . Dividing

the previous equality by the real number ‖Ũn − I‖ and taking the limit we have:

<τ(iq0(ih̃)) = 0 =⇒ τ(q0h̃) = 0.

Here we used that τ(q0h̃) is a real number, since q0, h̃ are hermitians. Since Q′
−1 ∩

Q0 is the span of its self-adjoint elements, it follows that EQ′
−1∩Q0

(h) = 0.
Similarly it follows that all four expectations are zero. For instance, choose

q′ to be exp(iλq′0)q′n and do the same trick, using the fact that exp(iλq′0) commutes
with qn, so it can be moved to the left of the formula for Ũn.

Since we only modified Un by elements commuting with Q−1, we also have
[h̃, Q−1] = 0.

2. THE SPAN CONDITION

We introduce the span condition and show that a commuting square satisfy-
ing it is isolated among all commuting square (modulo isomorphisms).

In the next lemmas we will often use the following relation that holds true
for every a, b, c ∈ P0:

(2.1) τ([a, b]c) = τ(a[b, c]) = τ([c, a]b)
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as it can be easily checked: τ([a, b]c) = τ(abc− bac) = τ(abc)− τ(bac) = τ(abc)−
τ(acb) = τ(a[b, c]) = τ(cab)− τ(acb).

We present a lemma that justifies the definition of the span condition. For
V, W vector subspaces of the algebra P0, denote

V + W = {v + w : v ∈ V, w ∈ W},

[V, W] = span{vw− wv : v ∈ V, w ∈ W}.

LEMMA 2.1. Let 


P−1 ⊂ P0
∪ ∪

Q−1 ⊂ Q0

, τ




be a commuting square with normalized trace τ. Then the vector space Q′
−1 ∩ P−1 +

Q′
−1 ∩ Q0 + P′−1 ∩ P0 + Q′

0 ∩ P0 is orthogonal on [P−1, Q0], with respect to the inner
product defined by τ on P0.

Proof. Let p ∈ P−1 and q ∈ Q0. The commuting square condition

EP−1 EQ0 = EQ−1

implies EP−1(q) = EQ−1(q) so EP−1(q − EQ−1(q)) = 0, which implies τ((q −
EQ−1(q))p) = 0, wich in turn implies

τ(qp) = τ(EQ−1(q)p) = τ(EQ−1(q)EQ−1(p)) = τ(qEQ−1(p)).

Let [p0, q0] ∈ [P−1, Q0], and p1 ∈ Q′
−1 ∩ P−1, q1 ∈ Q′

−1 ∩ P−1, p′1 ∈ P′−1 ∩ P0, q′1 ∈
Q′

0 ∩ P0. Using Lemma (2.1) and [p1, p0] ∈ P−1 we obtain:

τ([[p0, q0]p1]) = τ([p1, p0]q0) = τ([p1, p0]EQ−1(q0)) = τ([EQ−1(q0), p1]p0) = 0,

since [EQ−1(q0), p1] = 0. Similarly τ([p0, q0]q1) = 0. We also have:

τ([p0, q0]p′1) = τ([p′1, p0]q0) = 0, τ([p0, q0]q′1) = τ(p0[q0, q′1]) = 0,

which ends the proof of the lemma.

DEFINITION 2.2. We say that the commuting square from Lemma 2.1 satis-
fies the span condition if:

[P−1, Q0] + (Q′
−1 ∩ P−1) + (Q′

−1 ∩Q0) + (P′−1 ∩ P0) + (Q′
0 ∩ P0) = P0.

REMARK 2.3. Lemma 2.1 implies that

dim[P−1, Q0] 6 dim(P0)− dim(Q′
−1 ∩ P−1 + Q′

−1 ∩Q0 + P′−1 ∩ P0 + Q′
0 ∩ P0),

so in some sense the span condition asks for the dimension of the commutator
[P−1, Q0] to be maximal.

The span condition is a reasonable restriction as long as we assume that
the commuting square satisfies some non-degeneracy properties, like dim(P′−1 ∩
Q0) = dim(Q−1), P0 = spanP−1Q0. Indeed, the dimension of [P−1, Q0] is typ-
ically big, P−1, Q0 are mutually orthogonal (modulo their intersection Q−1) and
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in most of the examples (like the commuting squares associated to groups, Hopf
algebras [12], or those corresponding to complex Hadamard matrices [8]) their
commutants are also orthogonal, because of the existence of some modular invo-
lutions.

We can now prove our main result, which shows that the span condition is
sufficient for isolation.

THEOREM 2.4. If the commuting square of finite dimensional von Neumann alge-
bras

C =




P−1 ⊂ P0
∪ ∪

Q−1 ⊂ Q0

, τ




satisfies the span condition of Definition 2.2, then C is isolated.

Proof. Assume, by contradiction, that C satisfies the span condition but it
is not isolated. According to Lemma 1.7, this implies the existence of unitaries
Un ∈ P0, n > 1 converging to I such that:

Cn =




P−1 ⊂ P0
∪ ∪

Q−1 ⊂ U∗
n Q0Un

, τ




are commuting squares non-isomorphic to C. Using Lemma 1.8 we may assume:

lim
n→∞

Un − I
i‖Un − I‖ = h ∈ Q′

−1 ∩ P0 ,

EP′−1∩P0
(h) = EQ′

0∩P0
(h) = EQ′

−1∩P−1
(h) = EQ′

−1∩Q0
(h) = 0.

Also

lim
n→∞

U∗
n − I

i‖Un − I‖ = −h.

Let p ∈ P−1 such that EQ−1(p) = 0 and let q ∈ Q0. The commuting square
condition implies EU∗

n Q0Un(p) = EQ−1(p) = 0, thus

τ(pU∗
nqUn) = 0 = τ(pq) =⇒ τ(p(Un − I)∗qUn) + τ(pq(Un − I)) = 0.

Dividing by i‖Un − I‖ and taking the limit as n → ∞ it follows

τ(p(−h)q) + τ(pqh) = 0 =⇒ τ([p, q]h) = 0.

Thus h is orthogonal on all vectors [p, q] with EQ−1(p) = 0. We show that h is in
fact orthogonal on all vectors in [P−1, Q0]. Indeed, if p1 is an arbitrary element of
P−1, using EQ−1(p1 − EQ−1(p1)) = 0 we obtain:

τ([p1, q]h) = τ([p1 − EQ−1(p1), q]h + [EQ−1(p1), q]h)

= 0 + τ([EQ−1(p1), q]h) = τ([h, EQ−1(p1)]q) = 0.

We used formula (2.1) and [h, Q−1] = 0. This shows that h is orthogonal on
[P−1, Q0]. Since h is also orthogonal on the algebras Q′

−1 ∩ P−1, Q′
−1 ∩ Q0, P′−1 ∩
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P0, Q′
0 ∩ P0, it follows that if the span condition holds we must have EP0(h) = 0

so h = 0, which contradicts ‖h‖ = 1.

COROLLARY 2.5. For every N > 2 there are only finitely many isomorphism
classes of commuting squares C with dim(P0) = N, satisfying the span condition.

3. ONE-PARAMETER FAMILIES OF NON-ISOMORPHIC COMMUTING SQUARES

In the previous section we have showed that the span condition is sufficient
for isolation, but we did not discuss wether it is also necessary. We give partial
converses to Theorem 2.4, which consider some of the simplest cases in which the
span condition fails. The next theorem shows that one can construct a continuum
of commuting squares if there exist two non-trivial elements p0 ∈ P−1, q0 ∈ Q0
that commute.

THEOREM 3.1. Let

C =




P−1 ⊂ P0
∪ ∪

Q−1 ⊂ Q0

, τ




be a commuting square of finite dimensional von Neumann algebras, and assume there
exist hermitian elements p0 ∈ Q′

−1 ∩ P−1, q0 ∈ Q′
−1 ∩ Q0, that are not in Q−1, such

that p0q0 − q0 p0 = 0. If Ut = exp(itp0q0), t ∈ R, then

Ct =




P−1 ⊂ P0
∪ ∪

Q−1 ⊂ U∗
t Q0Ut

, τ




is a one-parameter family of commuting squares.

Proof. We show that the commuting square condition holds for each t. Let
p ∈ P−1 such that EQ−1(p) = 0, and q ∈ Q0. We need to show that τ(pU∗

t qUt) =

0. Writing Ut = exp(ipqt) = ∑
k

iktk

k! pkqk we have:

τ(pU∗
t qUt) = ∑

k,l

(−1)lik+ltk+l

k!l!
τ(ppl

0ql
0qqk

0 pk
0)

= ∑
k,l

(−1)lik+ltk+l

(k + l)!
Cl

k+lτ(pk
0 ppl

0ql
0qqk

0)

= ∑
n

∑
k+l=n

(−1)lintn

n!
Cl

nτ(pk
0 ppl

0ql
0qqk

0)

= ∑
n

( intn

n!
τ(pn

0 pqn
0 q)

(
∑

k+l=n
(−1)lCl

n

))
= τ(pq) = τ(p)τ(q) = 0.
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We used:

τ(pk
0 ppl

0ql
0qqk

0) = τ(EQ−1(pk
0 ppl

0)EQ−1(ql
0qqk

0))

= τ(EQ−1(pn
0 p)EQ−1(qn

0 q)) = τ(pn
0 pqn

0 q),

since p0 ∈ Q′
−1 ∩ P−1, q0 ∈ Q′

−1 ∩Q0. We also used ∑
l
(−1)lCl

n = 0 for n > 1.

If p, q are projections then the unitaries in Theorem 3.1 can be written as
U(λ) = I + (λ− 1)pq, λ = eit ∈ T. This justifies the class of unitaries we con-
struct in the next theorem, that aplies to situations when there exists a linear de-
pendence relation between 2 commutators in the span.

THEOREM 3.2. Let

C =




P−1 ⊂ P0
∪ ∪

Q−1 ⊂ Q0

, τ




be a commuting square of finite dimensional von Neumann algebras, and assume there
exist orthogonal projections p1, p2 ∈ Q′

−1 ∩ P−1 and orthogonal projections q1, q2 ∈
Q′
−1 ∩Q0, that are not in Q−1, satisfying [p1, q1]− [p2, q2] = 0. Let

U(λ) = I + (λ− 1)p1q1 + (λ− 1)p2q2,

for λ ∈ T. Then

Cλ =




P−1 ⊂ P0
∪ ∪

Q−1 ⊂ U(λ)∗Q0U(λ)
, τ




is a one-parameter family of commuting squares.

Proof. Since

[p1, q1]− [p2, q2] = 0 =⇒ p1q1 + q2 p2 = p2q2 + q1 p1 ,

multiplying by p1 to the right, and then by p2 to the left, we have:

p1q1 p1 = p2q2 p1 + q1 p1, p2q2 p1 + p2q1 p1 = 0.

Similary, multiplying by p2 to the left we have:

p2q2 p2 = p2q2 + p2q1 p1

and summing up the last relations

(3.1)
p1q1 p1 + p2q2 p2 = p2q2 p1 + q1 p1 + p2q2 + p2q1 p1

= q1 p1 + p2q2 + (p2q2 p1 + p2q1 p1) = q1 p1 + p2q2.

We now show that U(λ) is a unitary:

U(λ)U(λ)∗ = (I + (λ− 1)p1q1 + (λ− 1)p2q2)(I + (λ− 1)q1 p1 + (λ− 1)q2 p2)

= I + (λ− 1)(p1q1 + q2 p2) + (λ− 1)(p2q2 + q1 p1)

+ (λ− 1)(λ− 1)(p1q1 p1 + p2q2 p2) = I.
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We used: q1 p1 + p2q2 = p2q2 + q1 p1, (λ− 1)(λ− 1) = −(λ − 1)− (λ − 1) and
equation (3.1):

p1q1 p1 + p2q2 p2 = q1 p1 + p2q2.
Let’s now check that C(U) is a commuting square: for p ∈ P−1 with EQ−1(p) = 0
and q ∈ Q0 we have:

τ(pU(λ)qU(λ)∗)

= τ(pq) + (λ− 1)τ(pp1q1q + pqq2 p2) + (λ− 1)τ(pp2q2q + pqq1 p1)

+ (λ− 1)(λ− 1)τ(pp1q1qq1 p1 + pp2q2qq2 p2)

+ (λ− 1)2τ(pp1q1qq2 p2) + (λ− 1)2τ(pp2q2qq1 p1).

But τ(pp1q1qq2 p2) = τ(p2 pp1q1qq2) = τ(EQ−1(p2 pp1)EQ−1(q1qq2)) = 0, because
EQ−1(q1qq2) = EQ−1(qq2q1) = 0, since q2q1 = 0 and [q1, Q−1] = 0. Similarly
τ(pp2q2qq1 p1) = 0. Also:

τ(pp1q1q + pqq2 p2) = τ(pp2q2q + pqq1 p1) = τ(pp1q1qq1 p1 + pp2q2qq2 p2)

= τ(pq(q1 p1 + q2 p2)).

Indeed:

τ(pp1q1q + pqq2 p2) = τ(pp1q1q) + τ(qq2 p2 p)

= τ(EQ−1(pp1)EQ−1(q1q)) + τ(EQ−1(qq2)EQ−1(p2 p))

= τ(EQ−1(p1 p)EQ−1(qq1)) + τ(EQ−1(p2 p)EQ−1(qq2))

= τ(p1 pqq1) + τ(p2 pqq2) = τ(pq(q1 p1 + q2 p2))

and the other equalities follow similarly. Thus, using (λ− 1)(λ− 1) + (λ− 1) +
(λ− 1) = 0 we have:

τ(pU(λ)qU(λ)∗) = 0
which ends the proof.

4. COMMENTS ON PETRESCU’S RESULTS

We discuss consequences of the theorems from the previous sections for
commuting squares of the form:




D ⊂ Mn(C)
∪ ∪
C ⊂ U∗DU

, τ




with D the diagonal matrices, U unitary in Mn(C) and τ = 1
n Tr the normalized

trace.
Denote by (Ai,j)i,j the matrix units of Mn(C), Ai,j the matrix having 1 at the

intersection of the ith row and jth column, and only zeros on the other positions.
Also, let Dk = Ak,k, k = 1, . . . , n be an orthogonal basis of D.
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The commuting square condition τ(DiU∗DjU) = τ(Di)τ(Dj) can be rewrit-
ten as ujiuij = 1

n if U = (uij)16i,j6n. Thus it amounts to all entries of U having the
same absolute value 1√

n . Such a U is called a biunitary matrix or complex Hadamard
matrix. We say that two biunitaries are equivalent if the corresponding commuting
squares are isomorphic. For every n there exists at least one biunitary of order n
such that U = 1√

n (ε(i−1)(j−1))i,j, ε = cos 2π
n + i sin 2π

n , called the standard biunitary
matrix of order n.

We can apply Theorem 2.4 to commuting squares given by biunitary ma-
trices. Since the algebras D and U∗DU are abelian and orthogonal modulo their
intersection CI the span condition becomes:

dim([D, U∗DU]) = n2 − 2n + 1.

Thus, we have the following:

PROPOSITION 4.1. If U ∈ Mn(C) is a biunitary matrix such that the dimension
of the vector space [D, U∗DU] is n2 − 2n + 1, then U is isolated among all biunitaries
(up to equivalence).

COROLLARY 4.2 (Petrescu’s Theorem). The standard biunitary of order n is
isolated if and only if n is prime.

Proof. Assume n is prime and let U = (ε(i−1)(j−1))i,j be the standard biu-
nitary matrix of order n, and U∗DU = S is the algebra of circulant permutation
matrices. Then Sk = ∑

i
Ai,i+k, k = 1, . . . , n give a basis for S (all the indices are

considered modulo n).
Thus Xk,l = [Dk, Sl ] = Ak,k+l − Ak−l,k is a set of generators for [D, U∗DU].

Assume that for some complex numbers ck,l we have:

∑
k,l

ck,lXk,l = 0.

It follows

∑
k,l

(ck,l Ak,k+l − ck,l Ak−l,k) = 0 =⇒ ∑
i,j

(ci,j−i − cj,j−i)Ai,j = 0,

so ci,j−i = cj,j−i and if we denote by s = j − i we have ci,s = ci+s,s so ci,s =
ci+ms,s, ∀m = 0, 1, . . . , n− 1. Since n is prime, for every s different from zero the
elements 0, s, 2s, . . . , (n− 1)s cover all possible residues mod n, so ci,s = c0,s.

Thus the dimension of the kernel of the linear transformation

(ck,l)k,l → ∑
k,l

ck,lXk,l

is (2n − 1), so its range has dimension n2 − 2n + 1, which shows that the span
condition holds.
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Conversely, if n is not prime, n = n1n2 with n1, n2 > 1, then the matrices
p = ∑

j6n2

Ajn1,jn1 ∈ D and q = ∑
i,j

Aj,in1+j ∈ U∗DU commute, so by Theorem 3.1

we can construct a one-parameter family of biunitaries U(t) = exp(ipqt).

For n = 5 the standard biunitary matrix is the only complex Hadamard
matrix up to equivalence, as proven by U. Haagerup [3]. For all n > 5 prime
there exists at least another biunitary which is a circulant matrix [1], [4], [7], and
for every n non prime one can easily construct infinitely many biunitaries.

S. Popa conjectured that for every n > 5 prime there exist only finitely
many normalized biunitaries [11]. Surprisingly, this turned out to be false: one-
parameter families of normalized biunitaries where constructed by M. Petrescu
for n = 7, 13, 19, 31, 79 [8]. A main point of interest in this result is that it might
produce one-parameter families of non-isomorphic subfactors with the same
graph, conjectured to be A∞. While Petrescu’s examples have been constructed
using the computer, we give a conceptual proof of their existence as a conse-
quence of Theorem 3.2 . We will work the details for one of the two examples for
n = 7, the other examples having similar proofs.

COROLLARY 4.3 (Petrescu’s biunitaries). Let λ ∈ T, w = cos 2π
6 + i sin 2π

6
and

(4.1) U(λ) =
1√
7




λw λw4 w5 w3 w3 w 1
λw4 λw w3 w5 w3 w 1
w5 w3 λw λw4 w w3 1
w3 w5 λw4 λw w w3 1
w3 w3 w w w4 w5 1
w w w3 w3 w5 w4 1
1 1 1 1 1 1 1




.

Then U(λ) is a 1-parameter family of (non-equivalent) biunitaries.

Proof. Let U = U(1), P0 = Mn(C), P−1 = D, Q0 = U∗DU, Q−1 = C and

p1 = A1,1 + A2,2, p2 = A3,3 + A4,4 ∈ P−1

q1 = U∗(A1,1 + A2,2)U, q2 = U∗(A3,3 + A4,4)U ∈ Q0.

It is easy to check that

[p1, q1]− [p2, q2] = 0, p1 p2 = q1q2 = 0.

Thus we are in the conditions of Theorem 3.2, so

U(λ) = (I + (λ− 1)p1q1 + (λ− 1)p2q2)U

are biunitaries for all λ complex numbers of absolute value 1. One can easily
verify that U(λ) are the biunitaries from (4.1).
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REMARK 4.4. One can try to find more examples of complex Hadamard ma-
trices using the following algorithm: fix p1, p2, p3, p4 ∈ D, with p1 p2 = p3 p4 =
0, and find, with the help of a computer and local minimum algorithms, ma-
trices U satisfying the biunitarity condition and the condition ‖[p1, U∗p3U] +
[p2, U∗p4U]‖ = 0. One can construct from U a one-parameter family of biuni-
taries as before.

5. APPLICATION TO CIRCULANT MATRICES

A matrix S is called circulant if all rows are obtained from consecutive circu-
lar permutations of the first row, i.e. S = (sj−i)i,j∈Z/nZ. The problem of classifying
circulant biunitaries is equivalent to Bjorck’s problem of classifying cyclic n-roots
[1]. For every n prime there exists at least one circulant complex Hadamard ma-
trix. If n is a prime of the form n = 4k + 3, k ∈ Z, this matrix can be defined as
si = 1√

n for i quadratic residue modulo n and si = a in rest, where a is the root
of a certain quadratic equation over Q. A similar but slightly more complicated
formula defines a circulant complex Hadamard matrix of order n = 4k + 1 [1],
[4], [7].

U. Haagerup proved that for every n prime there exist finitely many cir-
culant biunitaries (up to equivalence). We conjecture that in fact every circulant
biunitary matrix satisfies the span condition, and thus is isolated among all biu-
nitary matrices. We show this is true for n = 7, by using Haagerup’s classification
of biunitaries of order 7 [3]. We give an algorithm that can be used, more gener-
ally, to check if a given U satisfies the span condition, and thus is isolated among
all normalized biunitary matrices.

PROPOSITION 5.1. If U is a circulant biunitary matrix of order 7 then U is iso-
lated among all biunitary matrices.

Proof. Let U = (uij)i,j∈Z7 be a circulant biunitary of order 7. According to
Proposition 4.1 it is enough to show that dim(span[D, U∗DU]) = 72 − 27 + 1 =
36. Let Di, i = 0, . . . , 6 be a basis for D, where Di is the diagonal having 1 on
the i + 1 position on the diagonal and only 0’s on the other positions. Let: aij

kl =
[Di, U∗DjU]kl = (DiU∗DjU −U∗DjUDi)kl = δk

i ujiujl − δl
i ujkuji = (δk

i − δl
i )ujkujl .

Let A be the 49× 49 matrix given by A(i,j),(k,l) = aij
kl . We need to check that

rank(A) = 36. Because ∑
i

aij
kl = ∑

i
[Di, U∗DjU]kl = [I, U∗DjU]kl = 0 and similarly

∑
j

aij
kl = 0, to find the rank of A we may remove the 13 rows of A indexed after

(i, 0), (0, j), 0 6 i, j 6 6. Similar arguments show that we can remove the 13
columns of A indexed after (i, i), (0, j), 0 6 i, j 6 6. If we denote by M the 36× 36
matrix left, we need to check that det(M) 6= 0.
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We include this computation for one of the circulant matrices of order 7 (of
the type described at the beginning of this section, for a = − 3

4 + i
√

7
4 ). Similarly,

we checked that all circulant biunitaries of order 7 (computed in [3]) are isolated
among all biunitaries. The pairs (i, j), 0 6 i, j 6 6 are encoded in the vector w,
and the selection of rows and columns of A is encoded in v.

with(LinearAlgebra):
ID:=Matrix(7,7,shape=identity);a:=-3/4+I*sqrt(7)/4;
U:=1/sqrt(7)Matrix([[1,1,1,a,1,a,a],[a,1,1,1,a,1,a],[a,a,1,1,1,a,1],
[1,a,a,1,1,1,a],[a,1,a,a,1,1,1],[1,a,1,a,a,1,1],[1,1,a,1,a,a,1]]);
A:=(i,j,k,l)->(ID[k,i]-ID[l,i])*conj(U[j,k])*U[j,l];
w:=m->(1+((m-(1+((m-1) mod 6)))/6),1+((m-1) mod 6));
v := array(1..72,[1,2,1,3,1,4,1,5,1,6,1,7,2,1,2,3,2,4,2,5,2,6,2,7,3,1,3,
2,3,4,3,5,3,6,3,7,4,1,4,2,4,3,4,5,4,6,4,7,5,1,5,2,5,3,5,4,5,6,5,7,6,1,
6,2,6,3,6,4,6,5,6,7]);
g:=(n,m)->A(w(m),v[2*n-1],v[2*n]);
M:=Matrix(36,g); Determinant(M);
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