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Abstract

We introduce the defect d(G) of a finite group G. The definition of d(G) is inspired
by previous work of the first author ([Ni1]), and it is given in terms of the commuting
square CG associated to G. We can interpret d(G) as an upper bound for the number of
independent directions in which CG can be deformed in the class of commuting squares.
We compute d(G) in terms of the orders of the elements of G, and characterize the
groups of (dephased) defect 0. When G is abelian, CG is a spin model commuting
square given by a (generalized) Fourier matrix FG, and our notion of defect for G
agrees with the previously existing notion of defect for the matrix FG (see [TaZy2],
[Ba]).

1 Introduction
Commuting squares were introduced in [Po1], as invariants and construction data in
Jones’ theory of subfactors ([Jo], [JS]). They encode the generalized symmetries of the
subfactor, in a lot of situations being complete invariants ([Po2],[Po1]). In particular,
any finite group G can be encoded in a group commuting square:

CG =

 D ⊂ Mn(C)
∪ ∪

CIn ⊂ C[G]

 .

where D ' l∞(G) is the algebra of n × n diagonal matrices, and C[G] denotes the
group algebra of G. It can be shown that two group commuting squares are isomorphic
if and only if the corresponding groups are isomorphic. The subfactor associated to CG

∗partially supported by a grant of the Romanian National Authority for Scientific Research, CNCS -
UEFISCDI, project number PN-II-ID-PCE-2012-4-0201

1



by iterating Jones’ basic construction is a cross product subfactor, hence of depth 2.
Moreover, if G is abelian then CG is a spin model commuting square, and the associated
subfactor is a Hadamard subfactor in the sense of [Ni2].

In [Ni1], the first author initiated a study of the deformations of a commuting square,
in the class of commuting squares. It was shown that if a commuting square satisfies a
certain span condition, then it is isolated among all non-isomorphic commuting squares.
In the case of CG, the span condition asks that V be equal to Mn(C), where V is the
subspace of Mn(C) given by:

V = span{du− ud : d ∈ D,u ∈ C[G]}+ C[G] + C[G]′ +D

When the span condition fails, the dimension d′(G) of V ⊥ = Mn(C) 	 V can be
interpreted as an upper bound for the number of independent directions in which CG

can be deformed by non-isomorphic commuting squares. In this paper we study this
dimension, which we call the dephased defect of the group G. We also study a related
quantity d(G) = dimC([D,C[G]]⊥), called the undephased defect of G (or just the defect
of G), which can be interpreted as an upper bound for the number of independent
directions in which CG can be deformed by (not necessarily non-isomorphic) commuting
squares. The terminologies ’dephased defect’ and ’undephased defect’ are based on
previous work of [Ka], [TaZy2] and [Ba], which we explain below.

The concept of defect for unitary matrices can be traced back to [Ka]. The termi-
nology ’defect’ was first explicitly introduced in [TaZy2]. The (dephased) defect of the
Fourier matrix Fn = 1√

n
(ei

2πkl
n )1≤k,l≤n was computed, and it was proved that it gives

an upper bound on the number of parameters in an analytic family of complex (non-
equivalent) n×n Hadamard matrices stemming from Fn. In the language of commuting
squares, the matrix Fn gives rise to a spin model commuting square (in the sense of
[JS]), associated to G = Zn. Indeed, it is easy to check that C[Zn] = FDF ∗.

In [Ba], Banica extended the computation of the defect to generalized Fourier ma-
trices FG = Fn1 ⊗ . . .⊗ Fnr , which correspond to abelian groups G = Zn1 ⊕ . . .⊕ Znr

(see also [Ka] for an earlier version of this result). The same formula was very recently
rediscovered in [Ta]. Notice that C[G] = FGDF

∗
G, so in our language the matrix FG

yields the spin model, group-type commuting square CG. Banica introduced the notions
of dephased and undephased defects for matrices FG, and showed that they give upper
bounds for the tangent spaces at FG to the real algebraic manifold of dephased com-
plex Hadamard matrices, respectively to the the real algebraic manifold of all complex
Hadamard matrices.

In this paper we compute d(G) and d′(G) for any finite group G. When particular-
ized to the case of abelian groups, our computations agree with Banica’s computations
for the Fourier matrix of G, and yield a different proof of this result.

We also investigate when d′(G) = 0, or equivalently when does the span condition
hold for a group commuting square CG. This turns out to happen if and only if G ' Zp

with p prime. Since C[Zp] = FpDF
∗
p , a consequence of this result together with the

isolation result from [Ni1] is Petrescu’s result, that the Fourier matrix Fp is isolated
among all dephased Hadamard matrices when p is prime.

Our definition of the defect can be easily extended to any (not necessarily group-
type) commuting square. Our main motivation for studying the defect of group com-
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muting squares is to better understand the structure of the moduli space of non-
isomorphic commuting squares around some of its ’easier’ points. Even in the case
of commuting squares arising from Fourier matrices, this is an unsolved problem with
far-reaching consequences. For example, the structure of the moduli space of non-
equivalent 6× 6 Hadamard matrices in a neighborhood of F6 has applications in quan-
tum information theory (see [We], [TaZy1]).

In a related paper ([NiWh]) we show that d(G) is the best possible bound for the
number of independent directions of convergence, in the following sense: there exists
a basis for [D,C[G]]⊥, such that for every a in the basis there is an analytic family of
commuting squares containing CG and of direction a. However, it is not true in general
that every (hermitian of unit length) a ∈ [D,C[G]]⊥ is a direction of convergence.

2 The Defect of a Group

Let G be a finite group with n elements. In the following, we will use the indexes
g, g′, h, h′ to represent group elements, while i, k will be reserved for natural numbers.

Fix some order on G. For each g ∈ G, let eg ∈ Cn denote the column vector with
a 1 in position g and 0 otherwise. Then the group algebra of G is C[G] = span{ug :
g ∈ G} where ug ∈ Mn(C) satisfies ug(eh) = egh for all h ∈ G. In other words,
ug =

∑
h∈G eh,g−1h, where eg,h are the matrix units of Mn(C).

One associates to G the commuting square

CG =

 D ⊂ Mn(C)
∪ ∪

CIn ⊂ C[G]

 .

where D ' l∞(G) denotes the algebra of diagonal n× n matrices.
In [Ni1], the first author introduced a sufficient condition for a commuting square

to be isolated in the class of all non-isomorphic commuting squares, which he called the
span condition. In the case of CG, the span condition reads

[D,C[G]] + C[G] + C[G]′ +D = Mn(C)

where C[G]′ = {a ∈ Mn(C) : aug = uga for all g ∈ G} and [D,C[G]] = span{du− ud :
d ∈ D,u ∈ C[G]}

More generally, from work in [Ni1] and [Ni3] it follows that if the commuting square
CG is not isolated then we have:
• All possible directions of convergence of sequences of commuting squares converg-

ing to CG are contained in the vector space

Mn(C)	 [D,C[G]]

• All possible directions of convergence of sequences of non-isomorphic commuting
squares converging to CG are contained in the vector space

Mn(C)	 ([D,C[G]] + C[G] + C[G]′ +D)
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The orthogonal complements above are considered with respect to the inner product
on Mn(C) given by < x, y >= τ(xy∗), where τ is the normalized trace on Mn(C).

We refer the reader to [Ni3] for the definition of a direction of convergence of a
sequence of commuting squares.

This inspires the following definitions of the undephased and dephased defect for
CG, or equivalently for the group G. The name defect comes from the terminology used
for Hadamard matrices, developed in [TaZy2] (see also [TaZy1]). The dephased and
undephased defect were introduced, for Hadamard matrices, in [Ba].

Definition 2.1. The undephased defect of a finite group G is

d(G) = n2 − dimC([D,C[G]])

The dephased defect of G is

d′(G) = n2 − dimC([D,C[G]] + C[G] + C[G]′ +D)

Remark 2.2. The span condition is equivalent to d′(G) = 0, in which case CG is
isolated in the class of all non-isomorphic commuting squares.

In order to better relate the quantities d(G) and d′(G), we will need the dimension
of C[G]′ and C[G] ∩ C[G]′.

Proposition 2.3. A matrix a ∈ Mn(C) is in C[G]′ if and only if

ag−1g′,h = ag′,gh

for all g, g′, h ∈ G. Furthermore, dimCC[G]′ = n and C[G]′ ∩D = CIn.

Proof. Fix g ∈ G. Routine calculations show that

(uga)g′,h =
∑
h′

(ug)g′,h′ah′,h = ag−1g′,h

and
(aug)g′,h =

∑
h′

ag′,h′(ug)h′,h = ag′,gh

Thus, it follows that a commutes with all ug’s if and only if ag−1g′,h = ag′,gh for any
g, g′, h ∈ G.

If we make h = e we obtain ag′,g = ag−1g′,e. This shows that all entries of a depend
on its first column. Conversely, if we fix any (cg)g∈G ∈ C, we can consider the matrix
a given by ag′,g = cg−1g′ . This matrix will have the first column given by the cg’s, and
it is easy to check that it satisfies ag−1g′,h = ag′,gh for any g, g′, h ∈ G. Consequently,
dimCC[G]′ = n.

The claim C[G]′ ∩D = CIn easily follows from the above.
�

Let cl(G) denote the class number ofG; i.e. cl(G) is the number of distinct conjugacy
classes of G. We have:
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Proposition 2.4. A matrix a =
∑

g cgug ∈ C[G] is also in C[G]′ if and only if

cg = chgh−1

for all g, h ∈ G. Thus dimC(C[G] ∩ C[G]′) = cl(G).

Proof. Fix h ∈ G. It is easy to see that auh =
∑

g cgugh and uha =
∑

g cguhg.
Relabeling, from auh = uha it follows that∑

g′

cg′h−1ug′ =
∑
g′

ch−1g′ug′ .

We conclude that cg′h−1 = ch−1g′ for all g′, h ∈ G. Setting g = h−1g′, this is equivalent
to

chgh−1 = cg.

�

Theorem 2.5. The dephased and undephased defect of a finite group G are related as
follows:

d(G) = d′(G) + 3n− 1− cl(G)

Proof. We need to relate d′(G) = n2−dimC([D,C[G]]+C[G]+C[G]′+D) and d(G) =
n2 − dimC([D,C[G]]). It is easy to check that D ⊥ C[G] 	 CIn, which just says that
CG is a commuting square. Using this, it follows that [D,C[G]] is orthogonal to C[G],
C[G]′ and D. Indeed, let’s check for instance that [D,C[G]] ⊥ C[G] (the other two
follow similarly). For d ∈ D and a, b ∈ C[G] we have:

τ([d, a]b∗) = τ(dab∗ − adb∗) = τ(dab∗ − db∗a) = τ(d[a, b∗]) = 0

since [a, b∗] ∈ C[G]	 C.
Also notice that D is orthogonal to C[G]′ 	 CIn. Indeed, from the previous propo-

sition we know that and a ∈ C[G]′ is of the form ag′,g = cg−1g′ . In particular, all the
diagonal entries of a are equal to ce. If a is orthogonal onto CIn, then τ(a) = 0 so
ce = 0. It follows that the projection of a onto D, which is the diagonal of a, is 0. Thus
a is orthogonal to D.

Since the intersection of the algebras C[G] and C[G]′ has dimension cl(G), we obtain:

dimC([D,C[G]] + C[G] + C[G]′ +D) = dimC([D,C[G]]) + n+ (n− cl(G)) + (n− 1))

which shows that d(G) = d′(G) + 3n− 1− cl(G).
�

Remark 2.6. If G is abelian, G = Zn1⊕ . . .⊕Znr , then CG is a spin model commuting
square (i.e. given by a Hadamard matrix). Indeed, this is because C[G] = FGDF

∗
G

where FG = Fn1 ⊗ . . .⊗Fnr is the (generalized) Fourier matrix associated to G. In this
case cl(G) = n and the dephased defect is d′(G) = n2−dimC([D,C[G]])+2n−1, which
can be computed to be the same as the defect of the Hadamard matrix FG, as introduced
in [TaZy2]. Also, d(G) equals the undephased defect of FG, as defined in [Ba].
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Remark 2.7. If G is abelian, the defect d(G) has a very nice interpretation as the
number of entries equal to 1 in the matrix FG (see [Ka]). This raises the following
question, for which we don’t have an answer:

For a finite group G, can d(G) be interpreted as the number of ′1′ entries of some
matrix naturally associated to G?

We now compute d(G) for any finite group G, in terms of the orders of its elements.

Theorem 2.8.
d(G) =

∑
g∈G

|G|
ord(g)

.

Proof. Let dg = eg,g denote the diagonal matrix with a 1 on position g, g and 0 else-
where. Let

W = [D,C[G]] = span{[dg, uh] : g, h ∈ G})

We want to compute d(G) = n2−dim(W ). This number is the same as the dimension
of the space

V = {(cg,h)g,h∈G ∈ Mn(C) :
∑
g,h

cg,h[dg, uh] = 0}

Indeed, if s denotes the n2× n2 matrix, indexed by G×G, which has as its (g, h)th

column the “row by row" column vector form of [dg, uh], then dim(V ) is the nullity of
s and dim(W ) is the rank of s.

Routine calculations show that dguh = eg,h−1g and uhdg = ehg,g. Thus,

0 =
∑
g,h

cg,h[dg, uh] =
∑
g,h

cg,heg,h−1g −
∑
g,h

cg,hehg,g

After changing variables g′ = g, h′ = h−1g in the first sum and g′ = hg, h′ = g in
the second sum, we obtain:∑

g′,h′

(cg′,g′h′−1 − ch′,g′h′−1)eg′,h′ = 0

which is equivalent to cg′,g′h′−1 = ch′,g′h′−1 for all g′, h′ ∈ G. Changing variable again
by g = h′, h = g′h′−1, we obtain

chg,h = cg,h for all g, h ∈ G

It follows that for all g′ ∈ 〈h〉g we must have cg′,h = cg,h. It follows that we have
[G : 〈h〉] choices to make for the column associated to h. Thus

d(G) =
∑
h∈G

|G|
ord(h)

. �
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Remark 2.9. The formula that we obtained for the undephased defect d(G) coincides
with the formula obtained by Banica in [Ba], for the undephased defect of the generalized
Fourier matrix FG = Fn1⊗ . . .⊗Fnr associated to the abelian group G = Zn1⊕ . . .⊕Znr .
Thus, if we particularize our result to abelian groups we obtain a different proof of
Banica’s result.

Remark 2.10. When the group G = Zn1⊕ . . .⊕Znr is abelian, a more explicit formula
for

∑
g∈G

|G|
ord(g) can be given (see [Ba]).

Corollary 2.11. If G is a finite group, we have

d′(G) =
∑
g∈G

|G|
ord(g)

− 3n+ 1 + cl(G)

Remark 2.12. If for fixed g, h ∈ G we define c(h, g) ∈Mn (C) by

(c(h, g))p,q =

{
1 if p = hkg and q = h for some k ∈ N
0 otherwise

then the distinct c(h, g) form a basis for {(cg,h)g,h∈G ∈ Mn(C) :
∑

g,h cg,h[dg,uh] = 0}.

We now give a basis for the W⊥. The interest in this space is justified by a result
of [Ni1]: any direction of convergence of a sequence of commuting squares approaching
CG must belong to W⊥.

Theorem 2.13. For every g, h ∈ G let a(h, g) ∈Mn (C) be the matrix

(a(h, g))p,q =

{
1 if p = hkg and q = hk+1g for some k ∈ N
0 otherwise

For each h ∈ G, let gh1 , ...g
h
n(h) be a choice of representatives of the right cosets of

G/ < h >, where n(h) = |G|/ord(h) is the number of elements of G/ < h >. Then the
matrices {a(h, ghk ) : h ∈ G, 1 ≤ k ≤ n(h)} form a basis for W⊥.

Proof. We first show that the matrices {a(h, ghk ) : h ∈ G, 1 ≤ k ≤ n(h)} are linearly
independent. This follows from the stronger fact that no two of them have non-zero
entries on the same position. To check this, observe that if a(h, g)p,q = a(h′, g′)p,q for
some h, g, h′, g′ ∈ G, then p = hkg = (h′)lg′ and q = hk+1g = (h′)l+1g′ for some k, l
positive integers. It follows that h = qp−1 = h′. This together with hkg = (h′)lg′

implies that g′ ∈< h > g. Since this is not the case for any two matrices in the set
{a(h, ghk ) : h ∈ G, 1 ≤ k ≤ n(h)}, it follows that no two of them have non-zero entries
on the same position, so in particular they are linearly independent.

We now show that {a(h, ghk ) : h ∈ G, 1 ≤ k ≤ n(h)} span W⊥. An n × n matrix
a is in W⊥ if and only if it τ(a[dg, uh]) = 0 for all g, h ∈ G (we used here that W is
∗-closed). Thus τ(a(eg,h−1g−ehg,g)) = 0, or equivalently ah−1g,g = ag,hg for all g, h ∈ G.

By replacing g by hkg for k = 1, 2, ..., ord(h), it follows that:

ag,hg = ahg,h2g = . . . = ahord(h)−1g,g for all h, g ∈ G
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Conversely, any matrix a satisfying the relation above must satisfy ah−1g,g = ag,hg
for all h, g ∈ G, which shows that a ∈ W⊥. And any such a can be written as a span
of matrices of the form a(h, ghk ):

a =
∑

h∈H,1≤k≤n(h)

aghk ,hg
h
k
· a(h, ghk )

This shows that {a(h, ghk ) : h ∈ G, 1 ≤ k ≤ n(h)} is a basis of W⊥.
�

Remark 2.14. The cardinality of the basis {a(h, ghk ) : h ∈ G, 1 ≤ k ≤ n(h)} is
d(G) = dim(W⊥) =

∑
h∈G n(h) =

∑
h∈G

|G|
ord(h) , which gives a somewhat different proof

of Theorem 2.8.

We now give an example of a computation of the defect for the smallest non-abelian
group, G = S3.

Example 2.15. If G = S3, it is easy to see that d(G) = 6 + 3 + 3 + 3 + 2 + 2 = 19.
Thus, d′(G) = d(G)− ((2n− 1) + (n− cl(G)) = 19− (11 + 3) = 5.

We now describe the groups G which satisfy the span condition, i.e. have d′(G) = 0.

Theorem 2.16. Let G be a finite group with at least 2 elements. Then d′(G) = 0 if
and only if G ' Zp with p prime.

Proof. Let G be a group with n elements with d′(G) = 0. We have

d(G) = 3n− 1− cl(G)

On the other hand, in the previous theorem we showed that

d(G) =
∑
g∈G

|G|
ord(g)

If G is not cyclic, then for every g ∈ G we have |G|
ord(g) ≥ 2. Note that for g = e

we have |G|
ord(e) = n. Thus, d(G) ≥ n + 2(n − 1) = 3n − 2. However, since d(G) =

3n − 1 − cl(G), it follows that cl(G) = 1, which is impossible if G has at least 2
elements.

Thus, G must be cyclic. In this case d(G) = 3n−1− cl(G) = 2n−1. But |G|
ord(g) ≥ 1

for all g ∈ G, and |G|
ord(e) = n, which imply

d(G) =
∑
g∈G

|G|
ord(g)

≥ 2n− 1

We must thus have equality in all above inequalities, meaning that ord(g) = |G| for
all g 6= e. Thus G ' Zp with p prime.

�
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Remark 2.17. Since d′(G) = 0 is equivalent to CG satisfying the span condition, in this
case CG is isolated ([Ni1]). Combining this with the ’if ’ implication of the preceding
corollary, we recover Petrescu’s result ([Pe]) that the Fourier matrix of prime order
is isolated among all Hadamard matrices. Indeed, this follows from C[Zp] = FpDF

∗
p ,

where Fp is the Fourier matrix of order p.
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