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Abstract

Let G be a finite group and denote by CG the commuting square associated to G.
The defect of the group G, given by the formula d(G) =

∑
g∈G

|G|
order(g) , was introduced

in [NiWh] as an upper bound for the number of linearly independent directions in which
CG can be continuously deformed in the class of commuting squares. In this paper we
show that this bound is actually attained, by constructing d(G) analytic families of
commuting squares containing CG.

In the case G = Zn, the defect d(Zn) can be interpreted as the dimension of the
enveloping tangent space of the real algebraic manifold of n × n complex Hadamard
matrices, at the Fourier matrix Fn (in the sense of [TaZy1], [Ba1]). The dimension of
the enveloping tangent space gives a natural upper bound on the number of continuous
deformations of Fn by complex Hadamard matrices, of linearly independent directions
of convergence. Our result shows that this bound is reached, which is rather surpris-
ing. In particular our construction yields new analytic families of complex Hadamard
matrices stemming from Fn.

In the last section of the paper we use a compactness argument to prove non-
equivalence (i.e. non-isomorphism as commuting squares) for dephased versions of the
families of Hadamard matrices constructed throughout the paper.

1 Introduction

Commuting squares were introduced in [Po2], as invariants and construction data in Jones’
theory of subfactors ([Jo], [JS]). They encode the generalized symmetries of the subfactor,
in a lot of situations being complete invariants ([Po1],[Po2]). In particular, any finite group
G can be encoded in a group commuting square:
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CG =

 D ⊂ Mn(C)
∪ ∪
CIn ⊂ C[G]


where D ' l∞(G) is the algebra of n × n diagonal matrices, and C[G] denotes the group
algebra of G. It can be shown that two group commuting squares are isomorphic if and only
if the corresponding groups are isomorphic. The subfactor associated to CG by iterating
Jones’ basic construction is a cross product subfactor, hence of depth 2. Moreover, if G
is abelian then CG is a spin model commuting square, and the associated subfactor is a
Hadamard subfactor in the sense of [Ni2].

In [Ni1], the first author initiated a study of the deformations of a commuting square, in
the class of commuting squares. It was shown that if a commuting square satisfies a certain
span condition, then it is isolated among all non-isomorphic commuting squares. In the case
of CG, the span condition is V = Mn(C), where V is the subspace of Mn(C) given by:

V = span{du− ud : d ∈ D, u ∈ C[G]}+ C[G] + C[G]′ +D

When the span condition fails, the dimension d′(G) of V ⊥ = Mn(C)	V can be interpreted
as an upper bound for the number of independent directions in which CG can be deformed
by non-isomorphic commuting squares. In [NiWh] we computed this dimension, which we
called the dephased defect of the group G. We also studied the related quantity d(G) =
dimC([D,C[G]]⊥), called the undephased defect of G (or just the defect of G), which can
be interpreted as an upper bound for the number of independent directions in which CG
can be deformed by (not necessarily non-isomorphic) commuting squares. The terminologies
’dephased defect’ and ’undephased defect’ are based on previous work of [Ka], [TaZy1] and
[Ba1], which we explain below.

The concept of defect for unitary matrices can be traced back to [Ka]. The terminology
’defect’ was first explicitly introduced in [TaZy1]. The (dephased) defect of the Fourier matrix

Fn = 1√
n
(ei

2πkl
n )1≤k,l≤n was computed, and it was proved that it gives an upper bound on the

number of parameters in an analytic family of complex (non-equivalent) n × n Hadamard
matrices stemming from Fn. In the language of commuting squares, the matrix Fn gives rise
to a spin model commuting square (in the sense of [JS]), associated to G = Zn. Indeed, it is
easy to check that C[Zn] = FnDF

∗
n .

In [Ba1], Banica extended the computation of the defect to generalized Fourier matrices
FG = Fn1 ⊗ . . .⊗Fnr , which correspond to abelian groups G = Zn1 ⊕ . . .⊕Znr (see also [Ka]
for an earlier version of this result). The same formula was also recently rediscovered in [Ta].
Notice that C[G] = FGDF

∗
G, so in our language the matrix FG yields the spin model, group-

type commuting square CG. Banica introduced the notions of dephased and undephased
defects for matrices FG, and showed that they give upper bounds for the tangent spaces
at FG to the real algebraic manifold of dephased complex Hadamard matrices, respectively
to the the real algebraic manifold of all complex Hadamard matrices. Our notion of defect
agrees with Banica’s in the case of abelian groups, and thus generalizes it.
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Our main motivation for studying the defect of group commuting squares is to better
understand the structure of the moduli space of non-isomorphic commuting squares around
some of its ’easier’ points. Even in the case of commuting squares arising from Fourier
matrices (cyclic groups), this is an unsolved problem with far-reaching consequences. For
example, the structure of the moduli space of non-equivalent 6× 6 Hadamard matrices in a
neighborhood of F6 has applications in quantum information theory (see [We], [TaZy2]).

From our previous work in [NiWh] it follows that the defect d(G) is an upper bound
for the number of one-parameter continuous deformations of C(G), of linearly independent
directions of convergence. In this paper we show that this bound is reached. More precisely,
we construct a basis B of [D,C[G]]⊥, such that for each a ∈ B there exists an analytic
family (Ct)t∈R of commuting squares

Ct =

 D ⊂ Mn(C)
∪ ∪
CIn ⊂ UtC[G]U∗t


where Ut are unitaries with Ut 6= I for t 6= 0, Ut → U0 = I as t→ 0, and a = limt→0

Ut−I
i||Ut−I|| .

We refer to a as the direction of convergence of the family (Ct)t∈R.
Thus we obtain d(G) analytic deformation of CG, of linearly independent directions of

convergence. Note that the choice of the basis B is crucial to the proof; it is not true in
general that every (hermitian of unit length) a ∈ [D,C[G]]⊥ is a direction of convergence of
some continuous deformation of CG.

When G = Zn, we obtain d(Zn) analytic deformations of the standard spin model com-
muting square CZn . Each of these deformations is of the form (Ct)t∈R, where:

Ct =

 D ⊂ Mn(C)
∪ ∪
CIn ⊂ UtFnDF

∗
nU
∗
t

→ CZn =

 D ⊂ Mn(C)
∪ ∪
CIn ⊂ FnDF

∗
n


Equivalently, this gives an analytic family of complex Hadamard matrices UtFn → Fn (for
details see for instance [Ni1]). Hence we obtain d(Zn) analytic families of complex Hadamard
matrices, of linearly independent directions of convergence.

Let C(n) = Mn(T) ∩
√

nU(n) denote the real algebraic manifold of n × n complex
Hadamard matrices, where U(n) ⊂ Mn(T) denotes the set of unitary matrices. The de-
fect d(Zn) can be interpreted as the dimension of the enveloping tangent space of C(n) at
the matrix Fn:

T̃FnC(n) = TFnMn(T) ∩ TFn

√
nU(n)

(see [TaZy1], [Ba1], [Ba2]). Thus the defect can be regarded as an upper bound for the
dimension of the tangent space to C(n), at the point Fn. Our main result shows that this
bound is reached, which is rather surprising. Note that, for general n, the manifold C(n) is
not smooth or connected.

In the last section we use a compactness argument to prove a non-equivalence result for
the dephased parametric families of complex Hadamard matrices that we construct in this
paper. This sheds some light on the structure of the moduli space E(n) of equivalence classes
of complex Hadamard matrices, around the point Fn.
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2 Preliminaries

Let G be a finite group with n elements. In the following, we will use the indexes g, g′,
h, h′ to represent group elements, while i, j will be reserved for natural numbers.

Fix an order on G. For each g ∈ G, let eg ∈ Cn denote the column vector with a 1 in
position g and 0 otherwise. Then the group algebra of G is C[G] = span{ug : g ∈ G} where
ug ∈ Mn(C) satisfies ug(eh) = egh for all h ∈ G. In other words, ug =

∑
h∈G eh,g−1h, where

eg,h are the matrix units of Mn(C).
One associates to G the following group-type commuting square:

CG =

 D ⊂ Mn(C)
∪ ∪
CIn ⊂ C[G]


where D ' l∞(G) denotes the algebra of diagonal n× n matrices.

In [Ni1], the first author introduced a sufficient condition for a commuting square to
be isolated in the class of all non-isomorphic commuting squares, which he called the span
condition. In the case of CG, the span condition reads

[D,C[G]] + C[G] + C[G]′ +D = Mn(C)

where C[G]′ = {a ∈ Mn(C) : aug = uga for all g ∈ G} and [D,C[G]] = span{du− ud : d ∈
D, u ∈ C[G]}

More generally, from work in [Ni1] and [Ni3] it follows that if the commuting square CG
is not isolated then we have:
• All possible directions of convergence of sequences (in the sense of [Ni3]) of commuting

squares converging to CG are contained in the vector space

Mn(C)	 [D,C[G]]

•All possible directions of convergence of sequences of non-isomorphic commuting squares
converging to CG are contained in the vector space

Mn(C)	 ([D,C[G]] + C[G] + C[G]′ + D)

We refer the reader to [Ni3] for the definition of a direction of convergence of a sequence
of commuting squares. The orthogonal complements above are considered with respect to
the inner product on Mn(C) given by < x, y >= τ(xy∗), where τ is the normalized trace on
Mn(C).

In [NiWh] we defined the undephased and dephased defect of a groupG, as the dimensions
of the two vector spaces above. The name defect comes from the terminology used for
Hadamard matrices, developed in [TaZy1] (see also [TaZy2]).
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Definition 2.1. The undephased defect of a finite group G is

d(G) = n2 − dimC([D,C[G]])

The dephased defect of G is

d′(G) = n2 − dimC([D,C[G]] + C[G] + C[G]′ +D)

Remark 2.2. In [NiWh] we showed that

d(G) =
∑
g∈G

|G|
ord(g)

and
d′(G) = d(G)− 3n+ 1 + cl(G)

where ord(g) denotes the order of the element g, and cl(G) denotes the class number of the
group G.

Remark 2.3. The span condition is equivalent to d′(G) = 0. Thus the main result in
[Ni1] can be interpreted as follows: if d′(G) = 0 then CG is isolated in the class of all
non-isomorphic commuting squares.

Remark 2.4. If G is abelian, G = Zn1 ⊕ . . . ⊕ Znr , then CG is a spin model commuting
square (i.e. given by a Hadamard matrix). Indeed, this is because C[G] = FGDF

∗
G where

FG = Fn1 ⊗ . . . ⊗ Fnr is the (generalized) Fourier matrix associated to G. In this case
cl(G) = n and the dephased defect is d′(G) = n2 − dimC([D,C[G]]) + 2n − 1, which can be
computed to be the same as the defect of the Hadamard matrix FG, as introduced in [TaZy1].
Also, d(G) equals the undephased defect of FG, as defined in [Ba1].

If G is abelian, the defect d(G) has a very nice interpretation as the number of entries
equal to 1 of the matrix FG (see [Ka]). For generalG finite we give the following interpretation
of the defect:

Proposition 2.5. d(G) equals the number of times (counted with geometric multiplicity)
that 1 shows up as an eigenvalue in the matrices {ug : g ∈ G}.

Proof. 1 is an eigenvalue for ug if there exists a non-zero vector v =
∑

h∈G chuh (with ch ∈ C)
satisfying ugv = v. Equivalently

∑
h∈G chugh =

∑
h∈G chuh. This means cg−1h = ch for all

h ∈ G. It follows ch = cgkh for all 0 ≤ k ≤ ord(g)− 1. Thus the dimension of the eigenspace

of 1 for ug is |G|
ord(g)

. The conclusion follows from the formula for the defect established in

[NiWh]: d(G) =
∑

g∈G
|G|

ord(g)
�
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3 Analytic families of commuting squares

In this section we construct parametric families of commuting squares of the form

Ct =

 D ⊂ Mn(C)
∪ ∪
CIn ⊂ UtC[G]U∗t


where t ∈ R, (Ut)t∈R is a family of unitaries analytic in t, Ut 6= I for t 6= 0, and Ut → U0 = I
as t → 0. (where I denotes the n × n identity matrix). We show that there exist d(G)
such families which are independent in the following sense: their directions of convergence
a = limt→0

Ut−I
i||Ut−I|| (for each family) exist and are linearly independent (in fact they form a

basis of Mn(C)	 [D,C[G]]).
The vector space Mn(C)	[D,C[G]] can be thought of as the space of all possible directions

of convergence of sequences of commuting squares converging to CG (see [Ni1]). Recall that
its dimension is the undephased defect d(G). One consequence of our construction is that
the defect is not just an upper bound for the number of directions of convergence, but it is
in fact attained.

We start by introducing (canonical) bases for Mn(C)	 [D,C[G]].

Theorem 3.1. For every g, h ∈ G let ah,g ∈ Mn (C) be the matrix having the entry on
position (p, q) given by

ah,gp,q =

{
1 if p = hkg and q = hk+1g for some k ∈ N
0 otherwise

for all p, q ∈ G. For each h ∈ G, let gh1 , ...g
h
n(h) be a choice of representatives of the right

cosets of G/ < h >, where n(h) = |G|/ord(h) is the number of elements of G/ < h >. Then
the matrices {ah,ghk : h ∈ G, 1 ≤ k ≤ n(h)} form a basis for Mn(C)	 [D,C[G]].

Proof. We first show that the matrices {ah,ghk : h ∈ G, 1 ≤ k ≤ n(h)} are linearly inde-
pendent. This follows from the stronger fact that no two of them have non-zero entries on
the same position. To check this, observe that if ah,gp,q = ah

′,g′
p,q for some h, g, h′, g′ ∈ G, then

p = hkg = (h′)lg′ and q = hk+1g = (h′)l+1g′ for some k, l positive integers. It follows that
h = qp−1 = h′. This together with hkg = (h′)lg′ implies that g′ ∈< h > g. Since this is not
the case for any pair of distinct matrices in the set {ah,ghk : h ∈ G, 1 ≤ k ≤ n(h)}, we obtain
that no two of them have non-zero entries on the same position, hence they are linearly
independent.

We now show that {ah,ghk : h ∈ G, 1 ≤ k ≤ n(h)} span Mn(C) 	 [D,C[G]]. An n × n
matrix a is in Mn(C) 	 [D,C[G]] if and only if it τ(a[dg, uh]) = 0 for all g, h ∈ G (we used
here that [D,C[G]] is ∗-closed). Thus τ(a(eg,h−1g− ehg,g)) = 0, or equivalently ah−1g,g = ag,hg
for all g, h ∈ G.

By replacing g by hkg for k = 1, 2, ..., ord(h), it follows that:

ag,hg = ahg,h2g = . . . = ahord(h)−1g,g for all h, g ∈ G
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Conversely, any matrix a satisfying the relation above must satisfy ah−1g,g = ag,hg for all

h, g ∈ G. Thus any such a can be written as a span of matrices of the form ah,g
h
k :

a =
∑

h∈G,1≤k≤n(h)

aghk ,hghk · a
h,ghk

�

The following lemma establishes a formula that we will need, for the powers of a = ah,g

and a∗ = ah
−1,g.

Lemma 3.2. Fix g, h ∈ G and let a = ah,g. Then for m ∈ N, am is the matrix with entries
(am)hkg,hk+mg = 1 for k = 1, . . . , |h| and 0 otherwise. Furthermore, a is a partial isometry,
and for all m,n ∈ N, we have

ama∗n =

{
am−n if m ≥ n

a∗(n−m) if n > m

where we define a0 to be the projection matrix with entries (a0)hkg,hkg = 1 for k = 1, . . . , |h|
and 0 otherwise.

Proof. We induct on m for the first part of the claim. The result is trivial when m = 1.
Assume for some m ∈ N, am is as claimed. Let Sh = 〈h〉g (which is a subset of G). Fix

g′, h′ ∈ G. Clearly if g′ /∈ Sh, we have (am+1)g′,h′ = 0. For g′ ∈ Sh, we have (am)g′,h̃ = δh
mg′

h̃

(for all h̃ ∈ G). Hence, for g′ ∈ Sh, 0 6= (am+1)g′,h′ =
∑

h̃∈G a
m
g′,h̃
ah̃,h′ ⇔ h′ = hm+1g.

The second part of the claim follows from the fact that aa∗ = a∗a = a0, which can be
easily checked.

�

We are now ready to prove the main result of this paper. We construct continuous
deformations of the commuting square CG, through parametric families of unitaries given as
exponentials of hermitians constructed from the matrices ah,g.

Theorem 3.3. Fix k, l ∈ G and let a = al,k. For t ∈ R, let Ut = eit(a+a∗) and Vt = e
it
(

a−a∗
i

)
.

Then the following are commuting squares:

C1
t =

 D ⊂ Mn(C)
∪ ∪
CIn ⊂ UtC[G]U∗t

 ,C2
t =

 D ⊂ Mn(C)
∪ ∪
CIn ⊂ VtC[G]V ∗t


Proof. Since a and a∗ commute, we have:

Ut = I +
∑
p≥1

(it)p

p!

p∑
q=0

(
p

q

)
aq(a∗)p−q
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and

Vt = I +
∑
p≥1

tp

p!

p∑
q=0

(
p

q

)
(−1)p−qaq(a∗)p−q.

To show that C1
t is a commuting square, we need to show that for each elements of the

bases dg ∈ D and uh ∈ C[G] (g, h ∈ G) we have:

τ(dguh) = τ(dgUtuhU
∗
t )

Since τ(dguh) = τ(dguhUtU
∗
t ), it is sufficient to show that

τ(dguhUtU
∗
t ) = τ(dgUtuhU

∗
t )

By using the formula for Ut, Vt and the previous lemma, it follows that Ut, Vt are in the
linear span of I, an (n ≥ 0), (a∗)n (n ≥ 1). Recall that a0 6= I, according to our convention
for a0 in lemma 3.2. Thus we must show that for each g, h ∈ G, we have

τ(dguhxy) = τ(dgxuhy)

for any x and y which are powers of a or a∗, or are equal to I.
Fix p, q ∈ N, g, h ∈ G, and let Sl = 〈l〉k (as a subset of G). We first check the result for

y = I. We have:

τ(dguha
p) =

∑
h′∈Sl

aph−1g,h′Ih′,g

= δl
−pg
h−1g |Sl ∩ {g}|

= δl
p

h |Sl ∩ {g}|

and

τ(dga
puh) =

∑
h′∈Sl

apg,h′Ih−1h′,g

= δl
−phg
g |Sl ∩ {hg}|

= δl
p

h |Sl ∩ {hg}| .

Observe that for h = lp we have |Sl ∩ {g}| 6= ∅ if and only if hg ∈ Sl. This shows that
τ(dguha

p) = τ(dga
puh). A similar argument shows that τ(dguha

∗p) = τ(dga
∗puh).

Next, we check the result when x = ap and y = aq. Indeed:
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τ(dguha
paq) =

∑
h′∈Sl

aph−1g,h′a
q
h′,g

=
∑
h′∈Sl

δl
qh′

g aph−1lqh′,h′

=
∑
h′∈Sl

δl
qh′

g δl
−ph′

h−1lqh′

= δl
q+p

h |Sl ∩ {g}|

and similarly

τ(dga
puha

q) =
∑
h′∈Sl

apg,h′a
q
h−1h′,g

=
∑
h′∈Sl

δl
−ph′

g δl
−ql−ph′

h−1h′

= δl
q+p

h |Sl ∩ {g}| .

Thus τ(dguha
paq) = τ(dga

puha
q). A similar argument establishes that

τ(dguha
∗pa∗q) = δl

p+q

h−1 |Sl ∩ {g}| = τ(dga
∗puha

∗q)

We now check τ(dguha
pa∗q) = τ(dga

puha
∗q).

τ(dguha
pa∗q) =

∑
h′∈Sl

aph−1g,h′a
∗q
h′,g

=
∑
h′∈Sl

δl
−qh′

g aph−1l−qh′,h′

=
∑
h′∈Sl

δl
−qh′

g δl
−ph′

h−1l−qh′

= δl
p−q

h |Sl ∩ {g}|

and similarly

τ(dga
puha

∗q) =
∑
h′∈Sl

apg,h′a
∗q
h−1h′,g

=
∑
h′∈Sl

δl
−ph′

g a∗qh−1h′,l−ph′

=
∑
h′∈Sl

δl
−ph′

g δl
ql−ph′

h−1h′

= δl
p−q

h |Sl ∩ {g}| .
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An almost identical argument shows that

τ(dguha
∗paq) = δl

q−p

h |Sl ∩ {g}| = τ(dga
∗puha

q)

�

Remark 3.4. If a = ah,g then a∗ = ah
−1,g. It follows that a = a∗ if and only if ord(h) ≤ 2.

We construct a basis of hermitians for Mn(C)	 [D,C[G]] as follows: Start with a basis from
theorem 3.1. For each a = ah,g in this basis, keep a if ord(h) ≤ 2. If ord(h) > 2 then
remove a and a∗ from the basis and replace them by the self-adjoint elements a + a∗ and
a−a∗

i
. Since a = 1

2
(a + a∗) + i

2

(
a−a∗

i

)
, these new elements still span Mn(C) 	 [D,C[G]].

Linear independence also follows from span{a, a∗} = span{a + a∗, a−a
∗

i
}. Thus, Theorem

3.3 shows that there exist d(G) analytic deformations of the commuting square CG, whose
directions are the d(G) hermitians forming a basis for Mn(C)	 [D,C[G]].

Remark 3.5. If G = Zn we have C[G] = FnDF
∗
n , where Fn is the Fourier matrix of size n.

In this case the commuting square CG is a spin model, and the analytic deformations from
Theorem 3.3 give analytic 1-parameter families of Hadamard matrices: UtFn and VtFn.

Remark 3.6. Theorem 3.3 shows that d(G) is the best possible bound for the number of inde-
pendent directions of convergence, in the following sense: there exists a basis for [D,C[G]]⊥,
such that for every a in the basis there is an analytic family of commuting squares containing
CG and of direction a. However, it is not true in general that every (hermitian of unit length)
a ∈ Mn(C)	 [D,C[G]] is a direction of convergence. This is shown by the following example.

Example 3.7. Let G = Z2 ⊕ Z2. If

a =


0 −1 0 1
−1 0 −1 0
0 −1 0 1
1 0 1 0

 .

then a is a hermitian in [D,C[G]]⊥, but there do not exist unitary matrices Ut → I, Ut 6= I
such that  D ⊂ Mn(C)

∪ ∪
CIn ⊂ UtC[G]U∗t


are commuting squares for all t and

lim
t→0

Ut − I
i||Ut − I||

= a

Proof. By [Ni3], if a is a direction of convergence then there must exist a matrix b such that

τ(b[dg, uh]) = τ(dguha
2)− τ(dgauha) for all g, h ∈ G

This gives a linear system whose variables are the entries of b. We checked that this system
has no solutions for the given matrix a, by using Mathematica. �
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4 Dephased analytic families of commuting squares

The families constructed in Theorem 3.3 may contain mutually isomorphic commuting
squares. Indeed, from results in [Ni1] it follows that there exist at most

d′(G) = dim(Mn(C)	 ([D,C[G]] + C[G] + C[G]′ + D))

families of mutually non-isomorphic commuting squares containing CG, whose directions of
convergence are linearly independent. Observe that the dephased defect d′(G) is significantly
smaller than the defect d(G). The bound d′(G) follows from the fact that any family is
isomorphic to a family whose direction of convergence is dephased, i.e. it is orthogonal to
[D,C[G]] + C[G] + C[G]′ +D (for a proof see Lemma 1.8 in [Ni1]).

Thus in order to be able to argue non-isomorphism for some of the families that we
constructed, we will first refine our construction to just d′(G) dephased families. The non-
isomorphism question will be addressed in the next section.

In this section we prove that when G is abelian there exist d′(G) analytic families of
commuting squares whose directions of convergence form a basis for

Mn(C)	 ([D,C[G]] + C[G] + C[G]′ + D)

Let B = {ah,ghk : h ∈ G, 1 ≤ k ≤ n(h)} be a basis for Mn(C) 	 [D,C[G]] as defined in
Theorem 3.1. For each ah,g ∈ B with h, g 6= e, denote αh,g = ah,e − ah,g. Let B′ be the set of
all such αh,g. Clearly B′ ⊂ Mn(C)	 [D,C[G]]. Then next lemma shows that the elements of
B′ are orthogonal to C[G].

Lemma 4.1. Let h, g1, g2 ∈ G. Then ah,g1 − ah,g2 is orthogonal to C[G].

Proof. Note that for a matrix a ∈ Mn(C) we have:

τ(aug) =
∑
h,h′

ah,h′ (ug)h′,h

=
∑
h

ah,gh.

Now let k, l ∈ G, a = al,k and Sl = 〈l〉k. It follows that τ(aug) =
∑

h ah,gh =
∑

h∈Sl ah,gh
is non-zero if and only if gh = lh. Thus τ(al,kug) = 0 if l 6= g and τ(al,kug) = ord(g)/n if
l = g. It follows that τ((ah,g1 − ah,g2)ug) = 0.

�

Proposition 4.2. If G is abelian then B′ is a basis for the vector space Mn(C)	([D,C[G]]+
C[G] + C[G]′ + D).

Proof. Since G is abelian, we have C[G] ⊂ C[G]′. Using dim(C[G]) = dim(C[G]′) = n it
follows that C[G] = C[G]′. Thus

Mn(C)	 ([D,C[G]] + C[G] + C[G]′ + D) = Mn(C)	 ([D,C[G]] + C[G] + D)
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It is easy to see that [D,C[G]] is orthogonal to C[G]+D, and that C[G]∩D = C (see [NiWh]
for these computations). Thus the dimension d′(G) of Mn(C) 	 ([D,C[G]] + C[G] + D) is
equal to d(G)− 2n+ 1.

Observe that B′ has exactly d(G)− 2n+ 1 elements, since B has cardinality d(G) and we
ask that h, g 6= e for each αh,g ∈ B′. Thus to show that B′ is a basis it is sufficient to show
that its elements are linearly independent, and that they are contained in the vector space
Mn(C)	 ([D,C[G]] + C[G] + D).

We first show that B′ ⊂ Mn(C) 	 ([D,C[G]] + C[G] + D). Indeed, from the previous
lemma we know that B′ ⊥ C[G]. Also B′ ⊥ D, since each matrix ah,g has 0 on the diagonal
if h 6= e.

Finally, the elements of B′ are linearly independent. This is because the nonzero entries
of ah,g are zero entries for al,k, whenever h 6= l or h = l and k /∈ 〈h〉g, as proven in Theorem
3.3.

�

Lemma 4.3. Let h ∈ G and g /∈ 〈h〉. Then ah,eah,g = 0 = ah,gah,e and ah,e(ah,g)∗ = 0 =
(ah,g)∗ah,e.

Proof. We check ah,eah,g = 0. The other equalities follow in a similar fashion. We have
(ah,eah,g)g′,h′ 6= 0⇔ g′ ∈ 〈h〉, hg′ ∈ 〈h〉g and h′ = h2g′. But hg′ ∈ 〈h〉g implies g′ ∈ 〈h〉g. In
this case we can’t have g′ ∈< h > since g 6∈< h >.

�

Corollary 4.4. Let h ∈ G and g /∈ 〈h〉. For m ∈ N, we have

(αh,g)m = (ah,e)m + (−1)m(ah,g)m.

Theorem 4.5. Let h, g ∈ G such that g /∈ 〈h〉 and h, g 6= e. Let αh,g = ah,e−ah,g. For t ∈ R,

let Ut = eit(α
h,g+(αh,g)∗) and Vt = eit

αh,g−(αh,g)∗
i . Then the following are commuting squares:

C1
t =

 D ⊂ Mn(C)
∪ ∪
CIn ⊂ UtC[G]U∗t

 ,C2
t =

 D ⊂ Mn(C)
∪ ∪
CIn ⊂ VtC[G]V ∗t


Proof. We check that C1

t is a commuting square for all t ∈ R. The computations for C2
t follow

similarly. From Lemma 4.3 we see that αh,g(αh,g)∗ = (αh,g)∗αh,g. By using this together with
the previous corollary, it follows that Ut can be expanded as

Ut = I +
∑
p≥1

(it)p

p!

p∑
q=0

(
p

q

)(
(ah,e)q(ah,e)∗(p−q) + (−1)n(ah,g)q(ah,g)∗(p−q)

)
.

Thus, to show that C1
t is a commuting square, it is sufficient to check that

τ(dg′uh′xy) = τ(dg′xuh′y)

12



for any g′, h′ ∈ G and any x, y which are powers of ah,e, (ah,e)∗, ah,g or (ah,g)∗, or are equal
to the identity. By Theorem 3.3 we already know that this statement is true when x, y are
powers of ah,e, (ah,e)∗, respectively when x, y are powers of ah,g or (ah,g)∗ , or the identity.
So it suffices to check that τ(dg′xuh′y) = 0 whenever x is a power of ah,e or (ah,e)∗ and y is a
power of ah,g or (ah,g)∗ and vice-versa (as Lemma 4.3 shows that τ(dg′uh′xy) = 0). To that

end, let l,m ∈ N. Fix h′, g′ ∈ G. We show τ
(
dg′
(
ah,e
)l
uh′
(
ah,g
)m)

= 0. Indeed,

τ(dg′(a
h,e)luh′(a

h,g)m) =
∑
k

(
(ah,e)l

)
g′,k

(
(ah,g)m

)
(h′)−1k,g′

= 0

The last equality follows from the fact that we can not simultaneously have g′ ∈ 〈h〉 and
g′ ∈ 〈h〉g.

The fact that the other mixed powers have trace 0 follows similarly.
�

Remark 4.6. We can construct bases of hermitians for Mn(C) 	 ([D,C[G]] + D + C[G])
as follows: Start with the basis B′ obtained from B. For each α = αh,g in this basis, keep
α if α = α∗. If not, then remove α and α∗ from the basis and replace them by the self-
adjoint elements α + α∗ and α−α∗

i
. Since span{α, α∗} = span{α + α∗, α−α

∗

i
}, it follows

that the new elements form a basis B′′. Thus Theorem 4.5 gives d′(G) analytic families
of commuting squares through CG, and whose directions of convergence form a basis for
Mn(C)	 ([D,C[G]] + D + C[G])

5 A non-equivalence result for continuous families of

complex Hadamard matrices

In this section we use the results from the previous section to construct new (dephased)
families of complex Hadamard matrices, and we prove a non-equivalence result for many of
the matrices in these families.

For the rest of the section we will assume that G = Zn. In this case CG is the so-called
standard spin model commuting square:

CZn =

 D ⊂ Mn(C)
∪ ∪
CIn ⊂ FnDF

∗
n


where Fn is the Fourier matrix of size n. Moreover, if

Ct =

 D ⊂ Mn(C)
∪ ∪
CIn ⊂ UtFnDF

∗
nU
∗
t


13



is a parametric family of (spin model) commuting squares, where Ut → I are unitaries,
then UtFn → Fn are complex Hadamard matrices (see for instance [Ni1]). In particular,
the constructions from Theorem 3.3 and Theorem 4.5 yield analytic families of complex
Hadamard matrices:

Corollary 5.1. Let g, h ∈ Zn and let a = ah,g be defined as in Theorem 3.1. For t ∈ R, let

Ut = eit(a+a∗) and Vt = e
it
(

a−a∗
i

)
.

Then UtFn and VtFn are complex Hadamard matrices for all t ∈ R.

Corollary 5.2. Let h, g ∈ Zn, such that g /∈ 〈h〉 and h, g 6= 0. Let αh,g = ah,0 − ah,g, where
ah,g are defined as in Theorem 3.1. For t ∈ R, let

Ut = eit(α
h,g+(αh,g)∗) and Vt = eit

αh,g−(αh,g)∗
i .

Then UtFn and VtFn are complex Hadamard matrices for all t ∈ R.

Consider now two sequences of complex Hadamard matrices (Uk
1Fn)k≥1 and (Uk

2Fn)k≥1,
where Uk

1 6= I and Uk
2 6= I (k ≥ 1) are unitaries which converge to I as k →∞. We encode

these sequences in two sequences of commuting squares (C1
k)k≥1 and (C2

k)k≥1, where

Cik =

 D ⊂ Mn(C)
∪ ∪
CIn ⊂ Uk

i FnDF
∗
n(Uk

i )∗


for i = 1, 2 and k ≥ 1.

Our goal is to show that there exists a neighborhood of Fn in which many of the complex
Hadamard matrices constructed in Corollary 5.2 are not isomorphic (see Theorem 5.5 for the
precise statement). To prove this, we will assume by contradiction that there exist infinitely
many pairs of such equivalent matrices Uk

1Fn, U
k
2Fn, with Uk

i → I and Uk
i 6= I (i = 1, 2). In

other words, there must exist dk1, dk2 unitary diagonals and pk1, pk2 permutation matrices such
that

Uk
2 = pk1d

k
1U

k
1Fnp

k
2d

k
2F
∗
n

The idea of the proof is to take a directional derivative of the relation Uk
2 = pk1d

k
1U

k
1Fnp

k
2d

k
2F
∗
n

as k →∞, and thus obtain a new relation which leads to a contradiction.
We start with a couple of lemmas. The first lemma gives a normalization for the direc-

tion of convergence of a sequence of unitaries. The second lemma analyses the limit of (a
subsequence of) the equalities Uk

2 = pk1d
k
1U

k
1Fnp

k
2d

k
2F
∗
n .

Lemma 5.3. Let x, x1, x2, x3, ... ∈ Mn(C) be unitaries satisfying xk → x as k →∞. Assume
that there exists X ∈ Mn(C) such that xk−x

i||xk−x||
→ X. Then, after replacing (xk)k≥1 by one

of its subsequences, there exists a sequence of complex numbers {λk}k≥1 such that: |λk| = 1,

λkxk → x and λkxk−x
i||λkxk−x||

→ X̃ with τ(X̃x∗) = 0.

14



Proof. Since {λ ∈ C : |λ| = 1} is compact, it follows that for each k there exists λk such
that

||λkxk − x||2 = inf
|λ|=1
{||λxk − x||2}.

Note that ||λkxk − x||2 ≤ ||xk − x||2 → 0. Therefore, λkxk → x.
It is easy to check that for u unitary we have ||u−I||22 = 2−2<τ(u) (where <z denotes the

real part of the complex number z). Thus, the previous relation implies that <τ(λkxkx
∗) ≥

<τ(λxkx
∗) for all |λ| = 1. Hence,

<τ(λk(e
it − 1)xkx

∗) ≤ 0

for all t ∈ R. Now we divide by t for t > 0 and take the limit as t approaches 0, to obtain
<τ(iλkxkx

∗) ≤ 0; doing the same for t < 0, we obtain <τ(iλkxkx
∗) ≥ 0. Thus,

<τ(iλkxkx
∗) = 0.

Equivalently, <τ(i(λkxkx
∗ − I)) = 0. Let X̃ = limk→∞

λkxkx
∗−I

i||λkxkx∗−I||
, after passing to a

subsequence if needed. Dividing the previous equality by ||λkxkx∗− I|| and taking the limit,

we obtain <τ(i(iX̃)) = 0. Since X̃ is hermitian, we have τ(X̃) = <τ(X̃) = 0.
�

Lemma 5.4. Let σ1, σ2 be permutations of Zn and let p1, p2 ∈ Mn(C) be the permutation
matrices associated to σ1, σ2 ∈ Sn. Let d1, d2 ∈ Mn(C) be diagonal matrices. Assume that:

p1d1Fnd2p2F
∗
n = I.

Then there exists b ∈ {0, 1, ..., n− 1} such that (b, n) = 1 and

σ1(k) = σ1(0)− bk, σ−12 (k) = σ−12 (0)− b−1k

for all k ∈ Zn. Furthermore,

d1,σ1(k) = d1,0ε
bkσ−1

2 (0) and d2,σ−1
2 (k) = d2,0ε

b−1kσ1(0)

for all k ∈ Zn, where ε = e
2πi
n and di,k denotes the kth diagonal entry of the matrix di

(i = 1, 2).

Proof. Let ε = e
2πi
n . The relation p1d1Fnd2p2F

∗
n = I is equivalent to:

εkl = εσ
−1
1 (k)σ−1

2 (l)d1,σ1(k)d2,σ−1
1 (l).

Let xk,l = εkl−σ1(k)σ
−1
2 (l). For simplicity let’s denote dk = d1,σ1(k) and d′l = d2,σ−1

1 (l). We
have:

dkd
′
l = xkl.
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It easily follows that for all k, k′, l, l′ ∈ Zn we must have

xkl
xk′l

=
xkl′

xk′l′
.

Note that this set of conditions on (xkl) is also sufficient for the existence of (dk), (d
′
l)

satisfying dkd
′
l = xkl. Indeed, choose d0d

′
0 = x00 and set dk = d0

xk0
x00

and d′l = d′0
x0l
x00

. Then

dkd
′
l = d0

xk0
x00

d′0
x0l
x00

=
xk0x0l
x00

=
xklx00
x00

= xkl.

From xkl
xk′l

=
xkl′
xk′l′

it follows that σ1 and σ2 must satisfy

kl − σ1(k)σ−12 (l) = σ1(0)σ−12 (0)− σ1(0)σ−12 (l)− σ1(k)σ−12 (l) for 0 ≤ k, l ≤ n− 1

or equivalently

kl = (σ1(0)− σ1(k))
(
σ−12 (0)− σ−12 (l)

)
for 0 ≤ k, l ≤ n− 1.

Recall that these equalities are all modulo n, since work with elements of Zn. Choose a
such that 1 = σ−12 (0)− σ−12 (a). Then, we have ka = σ1(0)− σ1(k) for all k. It follows that
(a, n) = 1. Similarly, we get that σ−12 (0)− σ−12 (k) = bk with (b, n) = 1. Since kl = abkl for
all k, l, we must have b = a−1. Thus, there exists b with (b, n) = 1 and

σ1(k) = σ1(0)− bk
and

σ−12 (k) = σ−12 (0)− b−1k.
�

We are now ready to prove the main result of this section, which shows non-equivalence
for many of the complex Hadamard matrices constructed in Corollary 5.2.

Theorem 5.5. For any g, h ∈ Zn let αh,g = ah,0−ah,g, where ah,g are defined as in Theorem
3.1. Let g1, g2, h1, h2 ∈ Zn such that g1 /∈ 〈h1〉, g2 /∈ 〈h2〉 and |h1| 6= |h2|. Then there exists
δ > 0 such that for every t, s ∈ (−δ, δ) \ {0} the complex Hadamard matrices eit(α

h1,g+(αh1,g)∗)

and eis(α
h2,g+(αh2,g)∗) are not equivalent.

Proof. Assume by contradiction that the statement does not hold. Then there exist two
sequences (sk)k≥1, (tk)k≥1 of real non-zero numbers, converging to 0, such that the complex
Hadamard matrices U1

k and U2
k are equivalent for all k = 1, 2, 3, ..., where:

U1
k = eitk(α

h1,g+(αh1,g)∗) and U2
k = eisk(α

h2,g+(αh2,g)∗)

It follows that there exists permutation matrices pki and unitary diagonal matrices dki (for
i = 1, 2) satisfying

pk1d
k
1U

k
1Fp

k
2d

k
2F
∗ = Uk

2
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for all k. By passing to subsequences and using that the set of n× n permutations matrices
is finite, we may assume that there exist matrices di and pi (i = 1, 3) such that dki → di and
pki = pi. Note that di are diagonal unitaries and pi are permutation matrices, for i = 1, 2.
Taking the limit of the relation pk1d

k
1U

k
1Fp

k
2d

k
2F
∗ = Uk

2 as k →∞, we obtain:

p1d1Fd2p2F
∗ = I.

Applying Lemma 5.4, we have there exists b with (b, n) = 1 such that

σ1(l) = σ1(0) + bl,

σ−12 (l) = σ−12 (0) + b−1l,

and

d1,σ1(l) = d1,0ε
blσ−1

2 (0) for all l.

By passing to subsequences if needed, we may assume that lim
k

dki − di
||dki − di||

= Di, where

Di is a diagonal matrix for i = 1, 2. By replacing dk1 with λkd
k
1 and dk2 with λkd

k
2 as in

Lemma 5.3, we may assume that τ(D1d
∗
1) = 0. Note that this does not change the relation

p1d
k
1U

k
1Fd

k
2p2F

∗ = Uk
2 .

Let
rk = max{||dk1 − d1||, ||dk2 − d2||, ||Uk

1 − I||, ||Uk
2 − I||}.

By passing again to subsequences if necessary, we may assume that there exist complex

constants δi and αi for i = 1, 2 with αi = lim
k

||Uk
i − I||
rk

and δi = lim
k

||dki − di||
rk

for i = 1, 2.

It follows:

lim
n

dki − di
rk

= δiDi and lim
k

Uk
i − I
kn

= αiα
hi,gi for i = 1, 2.

Furthermore, 0 ≤ α1, α2, δ1, δ2 ≤ 1 and at least one of α1, α2, δ1, and δ2 are nonzero.
Indeed, if all four constants would equal zero, then for large n we have

||Uk
i − I||
rk

<
1

2
and

||dki − di||
rk

<
1

2
for i = 1, 2

which is a contradiction as at least one of these quantities is 1 for each n.
Since p1d1Fd2p2F

∗ = I, we have

Uk
2 − I = p1(d

k
1 − d1)Uk

1Fd
k
2p2F

∗ + p1d1(U
k
1 − I)Fdk2p2F

∗ + p1d1F (dk2 − d2)p2F ∗.

Dividing by rk and taking the limit, we have

α2

(
αh2,g2 + (αh2,g2)∗

)
= p1(δ1D1)Fd2p2F

∗ + p1d1α1

(
αh1,g1 + (αh1,g1)∗

)
Fd2p2F

∗ + p1d1F (δ2D2)p2F
∗

= δ1p1D1d
∗
1p
∗
1 + α1p1d1

(
αh1,g1 + (αh1,g1)∗

)
d∗1p
∗
1 + δ2Fp

∗
2d
∗
2D2p2F

∗.
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Note that p1D1d
∗
1p
∗
1 and p∗2d

∗
2D2p2 are both diagonal matrices.

We have that d1,σ1(p) = d0ε
−σ−1

2 (0)bp for any p. Therefore,

(p1d1α
h1,g1d∗1p

∗
1)k,l = ε−σ

−1
2 (0)b(k−l) (αh1,g1 + (αh1,g1)∗

)
σ1(k),σ1(l)

.

For any g ∈ G, (ah1,g +
(
ah1,g

)∗
)σ1(k),σ1(l) 6= 0 if and only if σ1(k) = h1p + g and σ1(l) =

h1(p± 1) + g for some 1 ≤ p ≤ |h1|, which is equivalent to k = b−1h1p+ b−1(g − σ1(0)) and
b(l − k) = ±h1 for some 1 ≤ p ≤ |h1| . Note that since (b, n) = 1, |b−1h1| = |h1|. Letting
a = ab

−1h1,−b−1σ1(0) − ab−1h1,b−1(g−σ1(0)), we then have that

p1d1
(
αh1,g1 + (αh1,g1)∗

)
d∗1p
∗
1 = ε−h1σ1(0)a+

(
ε−h1σ1(0)a

)∗
.

By Remark 4.1, it follows that p1d1(α
h1,g1 + (αh1,g1)∗)d∗1p

∗
1 is orthogonal to D and FDF ∗.

Hence, we must have α2

(
αh2,g2 + (αh2,g2)∗

)
− α1p1d1

(
αh1,g1 + (αh1,g1)∗

)
d∗1p
∗
1 = 0 which can

only happen if α1 = α2 = 0 since |h1| 6= |h2|. We conclude that

0 = δ1p1D1d
∗
1p
∗
1 + δ2Fp

∗
2d
∗
2D2p2F

∗

with both δ1 and δ2 non-zero. This implies that Di = βidi (i = 1, 2) for some complex

numbers β1 and β2 (since for a diagonal d, FdF ∗ is circulant). It follows that lim
n

dn1 − d1
||dn1 − d1||

=

β1d1 with 0 = τ(β1d1d
∗
1) and hence, β1 = 0. This contradicts ||β1d1|| = 1.

�

Remark 5.6. Under the same hypothesis, a similar proof gives non-equivalence for pairs of
matrices of the form eit(α

h1,g+(αh1,g)∗) and es(α
h2,g−(αh2,g)∗), and also for pairs of matrices of

the form et(α
h1,g−(αh1,g)∗) and es(α

h2,g−(αh2,g)∗), with t, s small and non-zero. This covers all
the types of matrices constructed in Corollary 5.2.
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