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1. Introduction

The standard invariant GN,M of an inclusion of II1 factors N ⊂ M with finite Jones
index is an extremely powerful invariant which leads to a complete classification of
all subfactors of the hyperfinite II1 factor R with index ≤ 4 (see for instance [13],
[8], [7], [23]). It turns out that there are countably many non-isomorphic subfactors
with index ≤ 4, and their (countably many distinct) standard invariants are enough
to reconstruct these subfactors. However, when the Jones index becomes > 4 the
standard invariant will no longer be a complete invariant for the subfactor in general.
In [23] a notion of amenability for GN,M was introduced, and it was shown that
subfactors N of the hyperfinite II1 factor R with amenable GN,R are classified by
this invariant. It is still open whether a converse of this result is true. In other words,
it is not known whether, given a subfactor P ⊂ R with non-amenable standard
invariant GP,R, there is another subfactor Q ⊂ R such that GP,R and GQ,R coincide,
but the inclusions P ⊂ R and Q ⊂ R are not isomorphic. Compare this with the
results of Ocneanu and Jones on outer actions of groups on the hyperfinite II1 factor
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([18], [11]). Namely, it is shown in [18] that an amenable group has only one outer
action on the hyperfinite II1 factor (up to outer conjugacy) whereas the result in
[11] shows that non-amenable groups have always at least two.

We show in this paper that one can construct uncountably many examples of
irreducible, hyperfinite subfactors with integer index which are not isomorphic, but
have all the same standard invariant. The smallest Jones index for which our con-
struction works is 6. This is a rather surprising result since the standard invariant
has so far been sufficiently powerful to classify subfactors with small index. Our
work shows that 6 has to be considered as a ”big” index from this point of view.
The construction of our exotic subfactors relies mainly on two ingredients. One is
the class of subfactors introduced in [5]. Those subfactors are simple quantum dy-
namical systems that arise from outer actions of finite groups H and K on a II1
factor M . The subfactor MH is the fixed point algebra under the H action. It is
contained in the crossed product algebra M oK. The second ingredient is a rigidity
result in [25], which says that infinite discrete groups with Kazhdan’s property (T)
have continuously many non-cocycle conjugate cocycle actions on the hyperfinite II1
factor. Since there are many property (T) groups which can be written as a quotient
of Z2∗Z3 = PSL(2, Z) (for instance SL(2n+1, Z) for n ≥ 14), we obtain irreducible,
hyperfinite subfactors with index 6 of the form RZ2 ⊂ RoZ3, whose relative funda-
mental group is trivial. This means that the subfactors pRZ2p ⊂ p(R o Z3)p, where
p ∈ RZ2 is a projection of trace t, are mutually non-isomorphic as t runs through
(0, 1]. They have of course all the same standard invariant.

Here is a more detailed description of the sections in this article. In section 2 we
collect and prove several results on cocycle actions of discrete groups on II1 factors.
In particular we identify the reduction of a crossed product subfactor by a projection
with a cocycle crossed product built on the reduced factor. We give several explicit
examples of groups with non-cocycle conjugate (cocycle) actions on the hyperfinite
II1 factor. In section 3 we prove the main result (theorem 3.2). We show that if G

is a discrete ICC group, generated by a finite abelian group H and a cyclic group
K of prime order, with an outer and ergodic action α on the hyperfinite II1 factor
R, then the relative fundamental group of the subfactor RH ⊂ R oα K is contained
in the fundamental group of the action α. As a corollary we obtain numerous 1-
parameter families of irreducible, hyperfinite subfactors of index 6 which have all
the same standard invariant.
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2. Preliminaries

For the convenience of the reader we collect in this section several results on crossed
products by cocycle actions. Most of these are well-known to experts.

Definition 2.1. (Cocycle Actions). Let G be a discrete group and M a II1 factor.
Let Aut(M), U(M) denote the automorphism group, respectively the unitary group
of M . A cocycle action α of G on M is a map α : G → Aut(M) such that there
exists a map v : G×G → U(M), with the properties:

(i) αe = id and αgαh = Ad vg,hαgh, for all g, h ∈ G,
(ii) vg,hvgh,k = αg(vh,k)vg,hk, for all g, h, k ∈ G.

The map v is called a 2-cocycle for α. v is normalized if vg,e = ve,g = 1 for all
g ∈ G, where e denotes the identity of G. Any 2-cocycle v can be normalized by
replacing it, if necessary, by v′g,h = v∗e,evg,h, g, h ∈ G (note that ve,e is a scalar since
M is a factor).

All 2-cocycles considered from now on will be normalized. All (cocycle) actions
considered in this paper will be assumed properly outer, i.e. αg cannot be imple-
mented by unitary elements in M , for all g 6= e. Also, we will usually denote a
cocycle action as a pair (α, v).

The next lemma shows that the cocycle v is unique up to a perturbation by a
scalar 2-cocycle µ.

Lemma 2.1. If v, v′ are normalized 2-cocycles for the cocycle action α of G on M

then v = µv′ for some normalized scalar 2-cocycle µ (i.e. µ : G×G → T satisfying
µe,e = 1 and µg,hµgh,k = µh,kµg,hk, for all g, h, k ∈ G).

Proof. Ad vg,h = Ad v′g,h, for all g, h ∈ G implies v∗g,hv′g,h ∈ Z(M) = C, so there
exists µ : G×G → T such that v = µv′. Since v, v′ are normalized we have µe,e = 1.
Using v′ = µv in the relation v′g,hv′gh,k = αg(v′h,k)v′g,hk it follows

µg,hµgh,kvg,hvgh,k = µh,kµg,hkαg(vh,k)vg,hk

so µ satisfies the 2-cocycle relation µg,hµgh,k = µh,kµg,hk, for all g, h, k ∈ G.

A 2-cocycle v for the action α is called a coboundary (or a trivial cocycle) if there
exists a map w : G → U(M) such that we = 1 and vg,h = αg(w∗

h)w∗
gwgh, for all g,

h ∈ G.

Definition 2.2. (Conjugacy of actions). We say that two cocycle actions
(α1, v

1), (α2, v
2) of the groups G1 resp. G2 on the II1 factors M1, M2 are cocycle

conjugate if there exists a *-isomorphism Φ : M1 → M2 (onto), a group isomorphism
γ : G1 → G2 and wg ∈ U(M2) such that:

(i) Φα1
gΦ

−1 = Adwg ◦ α2
γ(g), for all g ∈ G1,

(ii) Φ(v1
g,h) = wgα

2
γ(g)(wh)v2

γ(g),γ(h)w
∗
gh, for all g, h ∈ G1.
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The cocycle actions (α1, v
1), (α2, v

2) of G1 resp. G2 are said to be outer con-
jugate (or weakly cocycle conjugate) if condition (i) holds. If α1, α2 are properly
outer, (i) is equivalent to saying that the images of Gi under αi in Out(Mi)

def=
Aut(Mi)/Int(Mi), i = 1, 2, are conjugate by a *-isomorphism Φ : M1 → M2.

Indeed, if Φα1(G1)Φ−1 = α2(G2) in Out(M2), there exists a bijection γ : G1 →
G2 and unitaries wg ∈ U(M2), such that Φα1

gΦ
−1 = Ad wg ◦ α2

γ(g), for all g ∈ G1.
Since g → Φα1

gΦ
−1 = α2

γ(g) ∈ Out(M2) is a group morphism and α2 is properly
outer, it follows that γ is a group morphism.

The cocycle actions α1, α2 are called conjugate if both conditions (i), (ii) are
satisfied with w = 1.

Jones proved that any two outer actions of a finite group on the hyperfinite II1
factor R are conjugate ([10]). In fact, any two outer actions of an amenable group
on R are cocycle conjugate ([18]). The situation is very different when the group is
not amenable. Any non-amenable group has at least two outer actions on R which
are not outer conjugate ([11]). If the group is rigid, a much stronger result is true.
Following [25] we call a group G weakly rigid (or w-rigid) if it has an infinite normal
subgroup such that the pair (G, H) has the Kazhdan-Margulis relative property (T)
([14], [16]). It is shown in [25] that if G is w-rigid, then there exists a continuous
family of non-outer conjugate cocycle actions of G on R. We will use this fact in
the next section.

The next lemma shows that perturbing a cocycle action α by unitaries of M

gives a cocycle action that is cocycle conjugate to α.

Lemma 2.2. Let (α, v) be a cocycle action of G on M and let wg be unitaries in
M for all g ∈ G. Then βg = Adwgαg is a cocycle action of G on M with cocycle v′,
where v′g,h = wgαg(wh)vg,hw∗

gh for all g, h ∈ G. Note that β is (trivially) cocycle
conjugate to α.

Proof. We show that (β, v′) satisfies conditions 2.1 (i) and 2.1 (ii). We compute
βgβh = AdwgαgAdwhαh

= Ad (wgαg(wh))αgαh

= Ad (wgαg(wh))Ad vg,hαgh

= Ad (wgαg(wh)vg,hw∗
gh)Adwghαgh

= Ad (v′g,h)βgh

for all g, h ∈ G, which proves 2.1 (i). We check 2.1 (ii).

βg(v′h,k)v′g,hk = (Ad wgαg)(v′h,k)v′g,hk

= wgαg(whαh(wk)vh,kw∗
hk)w∗

gwgαg(whk)vg,hkw∗
ghk

= wgαg(wh)Ad vg,h(αgh(wk))αg(vh,k)αg(w∗
hk)αg(whk)vg,hkw∗

ghk

= wgαg(wh)vg,hαgh(wk)(v∗g,hαg(vh,k)vg,hk)w∗
ghk

= wgαg(wh)vg,hw∗
ghwghαgh(wk)vgh,kw∗

ghk

= v′g,hv′gh,k.
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The next lemma shows that if two cocycle actions (α1, v1), (α2, v2) are outer
conjugate then there exists a scalar 2-cocycle µ such that (α1, v1), (α2, µv2) are
cocycle conjugate.

Lemma 2.3. If the cocycle actions (α1, v
1), (α2, v

2) of G1, G2 on M1, M2 are outer
conjugate by Φ : M1 → M2, then there exists a group isomorphism γ : G1 → G2,
unitaries wg ∈ U(M2), for all g ∈ G1 and a scalar 2-cocycle µ : G2 ×G2 → T such
that

(i) Φα1
gΦ

−1 = Adwg ◦ α2
γ(g), for all g ∈ G1.

(ii) Φ(v1
g,h) = µγ(g),γ(h)wgα

2
γ(g)(wh)v2

γ(g),γ(h)w
∗
gh, for all g, h ∈ G1.

Proof. Since α1, α2 are outer conjugate, there exist wg ∈ U(M2), g ∈ G1, and an
isomorphism γ : G1 → G2 such that Φα1

gΦ
−1 = Adwg α2

γ(g), for all g ∈ G1.
Since v1 is a 2-cocycle for α1, Φ(v1) is a 2-cocycle for the cocycle action Φα1Φ−1.

On the other hand, lemma 2.2 implies that v′g,h = wgα
2
γ(g)(wh)v2

γ(g),γ(h)w
∗
gh is a 2-

cocycle for the cocycle action g → Adwg ◦ α2
γ(g) = Φα1

gΦ
−1.

Since by lemma 2.1 any two 2-cocycles of the same cocycle ac-
tion differ by a scalar 2-cocycle, there exists µ such that Φ(v1

g,h) =
µγ(g),γ(h)wgα

2
γ(g)(wh)v2

γ(g),γ(h)w
∗
gh, for all g, h ∈ G1.

Definition 2.3. (Crossed Products by Cocycle Actions). Let M be a II1
factor and τ its unique normalized faithful trace. Let (α, v) be a cocycle action of
the discrete group G on M .

The crossed product algebra (M oα,v G, τ) is defined as the von Neumann subal-
gebra of B(l2(G, L2(M, τ))) generated by unitaries ug ∈ B(l2(G, L2(M, τ))), g ∈ G,
where ug(f)(h) = vg,g−1hf(g−1h), for all f ∈ l2(G, L2(M, τ)), g, h ∈ G, and
by a copy of the algebra M given by (x · f)(g) = α−1

g (x)f(g), for all x ∈ M ,
f ∈ l2(G, L2(M, τ)), g ∈ G. In this paper we will most of the time drop the cocycle
from the notation and simply write (M oα G, τ). The formula τ(X) = 〈Xδe, δe〉,
for all X ∈ M oα G, where δe ∈ l2(G, L2(M, τ)) is the L2(M, τ)-valued function on
G that takes value 1 at e and 0 elsewhere, defines a trace τ on M oα G. See for
instance [29], [30] for more details.

Alternatively, (M oα G, τ) can be viewed in the following way: Consider the
Hilbert algebra M of finite formal sums M = {

∑
g∈G xgug, xg ∈ M}, with multi-

plication rules

uguh = vg,hugh, ugx = αg(x)ug, x = xue = 1x,

for all g, h ∈ G, x ∈ M , and ∗-operation (ugx)∗ = ug−1αg(x∗). The trace is given
by τ(

∑
g∈G xgug) = τ(xe). Then M oα G is defined as the closure of M in norm

‖ ‖2,τ on bounded sequences.

(M oα G, τ) is a finite von Neumann algebra with normal faitful trace τ . If the
cocycle action α is outer then M ′ ∩M oα G = C. In particular, if α is outer then
(M oα G, τ) is a II1 factor.
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For the convenience of the reader we include a proof of the well-known result
that the isomorphism class of the inclusion (M ⊂ M oα,v G) is determined by the
cocycle conjugacy class of the (cocycle) action (α, v) ([10]).

Proposition 2.1. Let α1, α2 be cocycle actions of the discrete groups G1, G2 on the
II1 factors M1, M2, with 2-cocycles v1, v2. If there exists a surjective ∗-isomorphism
Φ : M1 oα1 G1 → M2 oα2 G2 such that Φ(M1) = M2, then α1 and α2 are cocycle
conjugate. More precisely, there exists a group isomorphism γ : G1 → G2, and
unitaries wg ∈ U(M2), for all g ∈ G1, such that:

(i) Φα1
gΦ

−1 = Adwg α2
γ(g), for all g ∈ G1,

(ii) Φ(v1
g,h) = wgα

2
γ(g)(wh)v2

γ(g),γ(h)w
∗
gh, for all g, h ∈ G1.

Conversely, if Φ : M1 → M2 is a ∗-isomorphism (onto), γ : G1 → G2 is a group
isomorphism, and there exist unitaries wg ∈ U(M2) for all g ∈ G1 such that (i), (ii)
are satisfied, then Φ can be extended to an isomorphism M1 oα1 G1 ' M2 oα2 G2

(hence Φ is an isomorphism of the associated inclusions).

Proof. For i = 1, 2 let ui
g denote the unitaries implementing the action αi on

Mi, i.e. αi
g = Adui

g, u
i
gu

i
h = vi

g,hui
gh, for all g, h ∈ G. Let NM1oα1G1(M1) = {u ∈

U(M1 oα1 G1)|uM1u
∗ = M1} be the normalizer of M1 in M1 oα1 G1.

There exists an isomorphism NM1oα1G1(M1)/U(M1) ' G1 taking u1
g to g,

and similarly NM2oα2G2(M2)/U(M2) ' G2. Since Φ induces an isomorphism from
NM1oα1G1(M1) to NM2oα2G2(M2), there exists a group isomorphism γ : G1 → G2

such that

Φ(u1
g) = u2

γ(g)(mod U(M2))

for all g ∈ G1.
Thus Φ(u1

g) = wgu
2
γ(g), for some unitaries wg ∈ U(M2), g ∈ G1. So Φα1

gΦ
−1 =

AdΦ(u1
g) = Ad (wgu

2
γ(g)) = Adwg α2

γ(g), for all g ∈ G1, which proves (i).
Let g, h ∈ G1. Then Φ(v1

g,h) = Φ(u1
g)Φ(u1

h)Φ(u1
gh)∗ = wgu

2
γ(g)whu2

γ(h)(u
2
γ(gh))

∗

w∗
gh = wg(Adu2

γ(g))(wh)u2
γ(g)u

2
γ(h)(u

2
γ(gh))

∗w∗
gh = wgα

2
γ(g)(wh)v2

γ(g),γ(h)w
∗
gh, which

proves (ii).
The converse follows easily by noticing that π : L2(M1oα1G1) ' L2(M2oα2G2),

defined by π(
∑

g∈G xgu
1
g) =

∑
g∈G Φ(xg)wgu

2
γ(g), for all xg ∈ M1, g ∈ G, is a Hilbert

space isomorphism intertwining the M1 oα1 G1 resp. M2 oα2 G2-actions (and hence
the M1 and M2-actions) on L2(M oα1 G1) resp. L2(M oα2 G2).

Recall the simple fact that if the subfactors N ⊂ M and Ñ ⊂ M̃ are isomorphic,
then the basic constructions M1 and M̃1 are isomorphic as well (see e.g. [13]).

Corollary 2.1. Let (α1, v1), (α2, v2) be cocycle actions of the finite groups G1, G2

on the II1 factors M1, M2. For i = 1, 2 let MGi
i = {x ∈ Mi|αi

g(x) = x, for all
g ∈ Gi}. If there exists an isomorphism of inclusions

Φ : (MG1
1 ⊂ M1) → (MG2

2 ⊂ M2)
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then α1 and α2 are outer conjugate via Φ.

Proof. Since MGi
i ⊂ Mi ⊂ Mi oαi Gi, i = 1, 2, is the basic construction ([13]),

the isomorphism Φ can be extended to M1 oα1 G1 ' M2 oα2 G2. Proposition 2.1
implies then that α1 and α2 are outer conjugate via Φ.

The next lemma shows that the “restriction” of an action of a group G on M

to the reduced algebra pMp, p a projection in M , gives rise to a cocycle action of
G on pMp.

Lemma 2.4. Let G be a discrete group, α an action of G on the II1 factor M , and
p a non-zero projection in M . Then there exists a cocycle action β of G on pMp

such that:

(pMp ⊂ p(M oα G)p) ' (pMp ⊂ pMp oβ G)

Proof. Let τ be the unique faithful normalized trace of M . Since τ(αg(p)) = τ(p),
for all g ∈ G, there exist unitaries wg ∈ U(M) such that αg(p) = w∗

gpwg, for all
g ∈ G. Let β(g) = Adwgαg. Denote by ug the unitary that implements αg on M , for
all g ∈ G. Thus βg is implemented by wgug. By lemma 1.4, β is a cocycle action of
G on M with cocycle vg,h = wgαg(wh)w∗

gh. Note that this is of course a coboundary
for the G-action on M , but it may not be a coboundary when restricted to pMp.

We show that β is a cocycle action of G on pMp with cocycle vp. βg is an
automorphism of pMp, since βg(p) = wgαg(p)w∗

g = p, for all g ∈ G. Applying to p

the relation βgβh = Ad vg,hβgh implies that p = Ad vg,h(p). Thus p commutes with
vg,h, for all g, h ∈ G, so vg,hp is a cocycle for the cocycle action β restricted to pMp.
We have vg,hpvgh,kp = βg(vh,kp)vg,hkp, for all g, h, k ∈ G.

Since α, β are cocycle conjugate, the inclusions (M ⊂ M oα G) and (M ⊂
M oβ G) are isomorphic, through an isomorphism that can be assumed to be the
identity on M (lemma 2.2, proposition 2.1). Hence we can identify M oα G with
M oβ G (as von Neumann algebras), the unitaries implementing β being identified
with wgug ∈ MoαG. The inclusions (pMp ⊂ p(MoαG)p) and (pMp ⊂ p(MoβG)p)
are isomorphic, so we only have to show that p(M oβ G)p = pMpoβ G (we identify
the abstract crossed product pMp oβ G with its realization inside M oβ G).

The von Neumann algebra p(M oβ G)p is generated by pxugp (x ∈ M, g ∈ G).
Since pxugp = (pxw∗

gp)(wgug), it follows that (pxugp)x∈M,g∈G generate pMp oβ G

as a von Neumann algebra, so p(M oβ G)p = pMp oβ G.

Remark 2.1. It is easy to see that the cocycle conjugacy class of the cocycle action
β on pMp depends only on t = τ(p) ([25]). We will denote the cocycle conjugacy
class of (β, v, pMp) by (αt, vt,M t), and call it the amplification of α by t. For values
of t greater than 1, define αt to be the t/n-amplification of the action id⊗α of G on
Mn(C)⊗M , for some n ≥ t. Note that αt is a properly outer cocycle action when
α is properly outer ([25]).
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Definition 2.4. ([25]). Let G be a discrete group with (cocycle) action α on the
II1 factor M . The fundamental group of the action α is

F(α) = {t > 0 |αt is outer conjugate to α}.

Similarly we define

Fc(α) = {t > 0 |αt is cocycle conjugate to α}.

F(α) is an outer conjugacy invariant of α, and Fc(α) is a cocycle conjugacy
invariant of α. Note that Fc(α) ⊂ F(α) (see definition 2.2).

Let G be an infinite discrete group, τ0 the normalized trace on M2(C), and
let (R, τ) = ⊗g∈G(M2(C), τ0)

w
be a copy of the hyperfinite II1 factor. The (non-

commutative) Bernoulli G-action on R is the action σ : G → Aut(R) defined as
σg(⊗h∈Gxh) = ⊗h∈Gx′h, where x′h = xg−1h, and {xh}h∈G is such that all but finitely
many xh are equal to 1. It is easy to see (and well-known) that σ is a properly outer,
ergodic action.

The following rigidity theorem from [25] will provide the main examples to which
we will apply our construction in the next section.

Theorem 2.1. Let G be a w-rigid group and σ the Bernoulli G-action on R. Then
F(σ) = {1}.

More generally, any of the Connes-Størmer Bernoulli G-actions with countable
spectrum considered in [25] have countable fundamental group.

We will recall next the notion of relative fundamental group. Let N ⊂ M be an
inclusion of II1 factors. The relative fundamental group F(N ⊂ M) is defined as

F(N ⊂ M) = {t > 0 | (N ⊂ M)t is isomorphic to N ⊂ M}

(N ⊂ M)t denotes as usual the t-amplification of N ⊂ M (see [20], [21]). Observe
that F(N ⊂ M) is clearly a multiplicative subgroup of R∗

+. If N ⊂ M is stable, i.e.
splits a common copy of the hyperfinite II1 factor R, then clearly F(N ⊂ M) = R∗

+.
This happens for instance if the subfactor N ⊂ M is constructed from an initial
commuting square by iterating the basic construction. See [2], [3] for more on this.

If F(N ⊂ M) is at most countable, then at most countably many of the inclu-
sions pNp ⊂ pMp, where p runs through the set of inequivalent projections in N ,
are isomorphic (as inclusions). Observe that the subfactors pNp ⊂ pMp have all
the same standard invariant.

Note that if G is a discrete group with cocylc action (α, v) on the II1 factor M ,
then Fc(α) = F(M ⊂ M oα,v G) (this follows simply from the definitions).

The following rigidity result ([26], [17]) provides further examples of actions
having a fundamental group which is at most countable.
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Theorem 2.2. Let M be a separable II1 factor. Assume there exists a diffuse von
Neumann subalgebra B such that B ⊂ M is a rigid inclusion (in the sense of [26])
and B′ ∩M ⊂ B. Then the fundamental group of M is at most countable.

Remark 2.2. Let G be a countable discrete ICC (infinite conjugacy classes) group
with property (T) and let α be an outer and ergodic action of G on the hyperfinite
II1 factor R. For instance, let α be the Bernoulli G-action on R described above.
Let M = R oα G and let ug, g ∈ G, be the unitaries in M implementing α.
Set B = {ug | g ∈ G}′′, and note that B ' L(G). Then B ⊂ M is rigid and
L(G)′∩M = RG = C. Thus, by the above theorem, we deduce that the fundamental
group of R oα G is at most countable. More generally, the same is true if G is w-
rigid and the action α is mixing. In particular, the relative fundamental group
F(R ⊂ Roα G) = Fc(α) is at most countable. If in addition H2(G, T) is countable,
the next lemma implies that F(α) is at most countable.

Lemma 2.5. Let G be a discrete group with countable second cohomology group
H2(G, T). Let M be a II1 factor, I ⊂ R an uncountable set and (αi, vi)i∈I non cocy-
cle conjugate cocycle actions of G on M . Then (αi, vi)i∈I are non outer conjugate
modulo a countable set, i.e. I(i0) = {i ∈ I, (αi, vi) outer conjugate to (αi0 , vi0)} is
at most countable for each i0 ∈ I.

In particular, given uncountably many conjugate actions of G on M , uncountably
many of these are actually cocycle conjugate actions.

Proof. Assume by contradiction that I(i0) is uncountable for some i0. According
to lemma 2.1, for every i there exists µi scalar 2-cocycle such that the actions
(αi, vi) and (αi0 , µiv

i0) are cocycle conjugate. Since H2(G, T) is countable and
I(i0) is uncountable, there exist j1, j2 ∈ I(i0) such that µj1 µ̄j2 is a coboundary.
But (αj1 , vj1) is cocycle conjugate to (αi0 , µj1vi0), which is cocycle conjugate to
(αj2 , µj1 µ̄j2vj2). Thus αj1 and αj2 are cocycle conjugate, which is a contradiction.

3. The Construction

We consider in this section the class of subfactors introduced in [5]. Let M be a
II1 factor and let G be a countable discrete group with an outer action α on M .
Suppose G = 〈H,K〉 is generated by two finite groups H and K. The subfactor
MH ⊂ M oα K has index |H| · |K| and is irreducible if and only if H ∩K = {e},
where e denotes the identity in G. Note that we could start with a cocycle action
of G and M . By [29], [30] we can modify the induced cocycle actions of the finite
groups H and K to actual actions.

It is shown in [5], [6] that many analytical and algebraic properties of the sub-
factor MH ⊂ M o K are reflected by properties of the group G. For instance, the
following result is shown in [6].

Theorem 3.1. Let H and K be two finite groups with outer actions σ resp. ρ on the
II1 factor M . Then the standard invariant of MH ⊂ M oK has property (T) ([24])
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if and only if the group G generated by σ(H) and ρ(K) in the outer autmorphism
group of M has Kazhdan’s property (T).

We will see below that the next theorem can be used to construct continuous
families of non-isomorphic, irreducible, finite index subfactors of the hyperfinite II1
factor all having the same standard invariant. The construction can be carried out
in such a way that this standard invariant will have property (T).

The main result of this article is the following theorem.

Theorem 3.2. Let H be a finite abelian group and let K = Zq be a cyclic group,
where q is a prime number. Let G = 〈H,K〉 be an infinite ICC group generated by
H and K. Let α be a properly outer and ergodic action of G on R.

Then F(RH ⊂ Roα K) ⊆ F(α). Hence, if F(α) is countable (resp. trivial), one
obtains uncountably many (resp. a 1-parameter family of) irreducible subfactors
of the hyperfinite II1 factor R, which are non-isomorphic, but have all the same
standard invariant.

Before we prove this theorem, let us give several examples of groups and actions
satisfying the hypothesis.

If G has property (T) with H2(G, T) at most countable, and α is any properly
outer and ergodic action of G on R, then we established that F(α) is at most
countable in remark 2.2 and lemma 2.5. For instance, the groups Gn = SL(2n+1, Z)
have Kazhdan’s property (T ) by [14] and are ICC (see also [9]). They are (2,3)-
generated for n ≥ 14 by [31] (see also [32]), i.e. Gn is a quotient of the free product
of H = Z2 and K = Z3 (this free product is of course just PSL(2, Z)). It follows
from results of Steinberg ([27], [28], see also [15]) that the second cohomology group
H2(SL(n, Z), T) is a finite group (in fact it is equal to Z2) for n ≥ 5. These groups
provide therefore (countably many) examples of groups satisfying the hypothesis of
our theorem. We would like to thank Marsden Conder for pointing out reference
[32] and Pierre de la Harpe for the references [27], [28], [15].

Recall that, by theorem 2.1, if G is any w-rigid group and σ the Bernoulli
G-action on R, then F(σ) = {1}. Thus if G = SL(2n + 1, Z), n ≥ 14, and α = σ,
we obtain one-parameter families of non-isomorphic, irreducible, index 6 hyperfinite
subfactors having the same standard invariant. This standard invariant has property
(T) (theorem 3.1).

A much larger class of examples can be obtained as follows: Let G1 be the free
product of any finite abelian group and a cyclic group of prime order. If G1 6= Z2∗Z2

then G1 is a hyperbolic group. Let G2 be any hyperbolic property (T) group. By
results of Olshanskii (see for instance [19], [1]), there exists an infinite hyperbolic
group G which is a common quotient of G1 and G2. In particular, G has property (T)
and is generated by a finite abelian subgroup and a subgroup of prime order. Note
that G is ICC, since any non-elementary hyperbolic group is ICC. Thus, G together
with the Bernoulli G-action (or more generally any of the Connes-Størmer Bernoulli
G-actions with countable spectrum considered in [25]) satisfies the hypothesis of our
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theorem. We would like to thank Mark Sapir for pointing out this class of examples.
Note that similar results as in theorem 3.2 can be obtained by using the rigidity

results in [20] rather than theorems 2.1 and 2.2 quoted above.
We proceed with the proof of theorem 3.2. We start with some lemmas.

Lemma 3.1. Let H be a finite abelian group, let K = Zq be a cyclic group, where
q is a prime number. Suppose that G = 〈H, Zq〉 6= H ·Zq. Let α be an outer cocycle
action of G on the hyperfinite II1 factor R and let Q be the von Neumann algebra
generated by the normalizer of RH in R oα K (notation: Q = NRoK(RH)′′). Then
Q = R.

Proof. We have by definition that Q = {u ∈ U(R o K) |uRHu∗ = RH}′′. Since
H is abelian, we conclude that (RH ⊂ R) ∼= (R0 ⊂ R0 o H), for some R0

∼= R.
Hence R = NR(RH)′′ and we obtain therefore the chain of inclusions RH ⊂ R ⊂
Q ⊂ RoK. Since R ⊂ RoK has no intermediate subfactors by [Bi3, Theorem 3.2]
we must have either Q = R or Q = R o K. If Q = R o K, then (RH ⊂ R o K) ∼=
(R ⊂ R o (N (RH)/U(RH))) ([10], [12]). Hence RH ⊂ R o K would have depth 2,
contradicting the fact that G 6= H · Zq ([5]). Thus indeed Q = R.

Corollary 3.1. Let H be a finite abelian group and K = Zq, q a prime number.
Suppose that G = 〈H,K〉 is an infinite group and let αi be outer cocycle actions of
G on the hyperfinite II1 factor Ri, i = 1, 2. Suppose that there is a surjective ∗-
isomorphism Φ : R1 oα1 K → R2 oα2 K such that Φ(RH

1 ) = RH
2 . Then Φ(R1) = R2.

In particular we have (RH
1 ⊂ R1)

Φ∼= (RH
2 ⊂ R2) and (R1 ⊂ R1 oα1 K)

Φ∼= (R2 ⊂
R2 oα2 K).

Proof. We have seen in lemma 3.1 that NRH
i

(Ri oαi K)′′ = Ri, i = 1, 2. But every
(surjective) ∗-isomorphism takes normalizers to normalizers.

Proposition 3.1. Let H be a finite abelian group and K = Zq, q a prime number.
Suppose that G = 〈H,K〉 is an infinite group and let αi be outer cocycle actions
of G on the hyperfinite II1 factor Ri, i = 1, 2. Suppose that there is a surjective
∗-isomorphism Φ : R1 oα1 K → R2 oα2 K such that Φ(RH

1 ) = RH
2 . Then the cocycle

actions α1, α2 of G are outer conjugate by Φ.

Proof. It follows from corollary 3.1 and proposition 2.1 that Φα1(K)Φ−1 = α2(K)
in Out(R2). From corollary 3.1 and corollary 2.1 we deduce that Φα1(H)Φ−1 =
α2(H) in Out(R2). Since K and H generate G, this implies Φα1(G)Φ−1 = α2(G)
in Out(R2).

We give now the proof of theorem 3.2.

Proof. Let G = 〈H,K〉 be a quotient of the free product H ∗K as in the theorem.
Since G is infinite, we have G 6= H ·K. Since K is of prime order and K 6⊂ H, it
follows that H ∩K = {e}.
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Let α be an outer and ergodic action of G on the hyperfinite II1 factor R. Let
t ∈ F(RH ⊂ R oα K), 0 < t < 1 (which is sufficient since F(RH ⊂ R oα K) is a
group). We will show that t ∈ F(α).

Let p be a projection in RH such that τ(p) = t (τ denotes as usual the normalized
trace of R). Thus, the inclusions RH ⊂ R oα K and pRHp ⊂ p(R oα K)p are
isomorphic.

By lemma 2.4, there exists a cocycle action (β, v) of G on pRp and an iso-
morphism Φ : (pRp ⊂ p(R oα G)p) ' (pRp ⊂ pRp oβ G), which is the identity
on pRp. Moreover, from the construction of Φ (see lemma 2.4) it follows that Φ
takes p(R oα K)p onto pRp oβ K. Since p ∈ RH , the actions α, β coincide on
H so the fixed point algebra RH is the same for both actions. Hence Φ takes
pRHp ⊂ pRp ⊂ p(R ×α K)p onto pRHp ⊂ pRp ⊂ pRp oβ K. Since βg(p) = p, for
all g ∈ G, we have pRHp = (pRp)H as subalgebras of pRp oβ G. This yields

(RH ⊂ R oα K) ' (pRHp ⊂ p(R oα K)p) ' ((pRp)H ⊂ pRp oβ K)

Thus there exists an isomorphism (RH ⊂ R oα K) ' ((pRp)H ⊂ pRp oβ K).
Proposition 3.1 implies that the cocycle actions α, β of G are outer conjugate. Since
β is cocycle conjugate to αt, this implies t ∈ F(α) which ends the proof.
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