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Abstract

We investigate the structure of the moduli space of non-isomorphic commuting
squares around the Fourier spin model commuting square, or equivalently the structure
of the moduli space of normalized complex n × n Hadamard matrices around

√
nFn,

where Fn denotes the Fourier matrix. If a belongs to the enveloping tangent space
to the real algebraic manifold of complex Hadamard matrices at

√
nFn, we find new

restrictions for a to be a direction of convergence (in the sense of [12],[14]) of a sequential
deformation of

√
nFn by complex Hadamard matrices.

As an application, we show that if n = 30 then not every norm-one element a in
the enveloping tangent space at

√
nFn corresponds to a sequential family of complex

Hadamard matrices converging to
√
nFn in the direction of a. It follows that for n = 30

the dimension of any differentiable family of complex Hadamard matrices containing√
nFn is strictly less than the dimension of the enveloping tangent space at

√
nFn

(called the defect of Fn). This is particularly surprising considering that, for every
n, there exist sufficiently many 1-dimensional analytic families of complex Hadamard
matrices through

√
nFn to form a basis of tangents at

√
nFn in the enveloping tangent

space (as shown in [14]).

1 Introduction

Commuting squares were introduced by S. Popa in [18], as invariants and construction data
in V. Jones’ theory of subfactors ([7],[6]). They encode the symmetries of a subfactor, and
for some large classes of subfactors they are complete invariants ([18],[19]). In particular,
any finite group G can be encoded in a group commuting square:

CG =

Dn ⊂ Mn(C)
∪ ∪
CIn ⊂ C[G]


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where Dn ≃ l∞(G) is the algebra of n× n diagonal matrices with complex entries, and C[G]
denotes the group algebra of G. The subfactor associated to CG by iterating Jones’ basic
construction is a cross product subfactor, hence of depth 2. Moreover, if G is abelian then CG

is a spin model commuting square, and the associated subfactor is a Hadamard subfactor in
the sense of [11]. When G = Zn we have C[Zn] = FnDnF

∗
n , where Fn = 1√

n
(exp 2πikl

n
)1≤k,l≤n

is the Fourier matrix of size n. We refer to CZn as the Fourier Commuting Square, or the
Standard Spin Model commuting square.

In [10],[12] the second author initiated a study of the deformations of a commuting
square, in the moduli space of non-isomorphic commuting squares. It was shown that if
a commuting square satisfies a certain span condition, then it is isolated among all non-
isomorphic commuting squares. In the case of CG, the span condition is V = Mn(C), where
V is the subspace of Mn(C) given by:

V = [Dn,C[G]] + C[G] + C[G]′ +Dn.

We used the notation [Dn,C[G]] = span{du− ud : d ∈ Dn, u ∈ C[G]}.
When the span condition fails, the dimension d′(G) of V ⊥ = Mn(C)⊖V can be interpreted

as an upper bound for the number of independent directions in which CG can be deformed by
non-isomorphic commuting squares. In [13] we computed this dimension, called the dephased
defect of the group G. We also studied the related quantity d(G) = dimC([Dn,C[G]]⊥), called
the undephased defect of G (or just the defect of G), which can be interpreted as an upper
bound for the number of independent directions in which CG can be deformed by (not
necessarily non-isomorphic) commuting squares. The terminology ’defect’ was chosen to
coincide with the notion of defect introduced independently in [22] in the study of complex
Hadamard matrices (see also [1]).

From the second author’s previous work in [10],[13] it follows that the defect d(G) is an
upper bound for the number of one-parameter sequential deformations of C(G), of linearly
independent directions of convergence. In fact in [14] it was shown that this bound is always
reached. More precisely, a basis B of [Dn,C[G]]⊥ was constructed, such that for each a ∈ B
there exists an analytic family (Ct)t∈R of commuting squares

Ct =

Dn ⊂ Mn(C)
∪ ∪
CIn ⊂ UtC[G]U∗

t


where Ut (t ∈ R) are unitaries with Ut ̸= I for t ̸= 0, Ut → U0 = I as t → 0, and
a = limt→0

Ut−I
i||Ut−I|| . We will refer to a as the direction of convergence of the family (Ct)t∈R.

Note that the choice of the basis B was crucial to this construction; it does not follow that
every (hermitian, norm-one) a ∈ [Dn,C[G]]⊥ is a direction of convergence of some analytic,
or even sequential, deformation of CG.

If we let G = Zn, we have C[Zn] = FnDnF
∗
n and the commuting square condition for Ct is

equivalent to
√
nUtFn being a complex Hadamard matrix (i.e., all its entries are of absolute

value 1 and its rows are mutually orthogonal). Thus there exist d(Zn) one-parameter ana-
lytic families of complex Hadamard matrices containing

√
nFn, and of linearly independent

directions of convergence.
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LetH(n) = Mn(T)∩
√
nU(n) denote the real algebraic variety of n×n complex Hadamard

matrices, where U(n) ⊂ Mn(C) denotes the set of unitary matrices and Mn(T) denotes the
set of n×n matrices with entries of absolute value 1 . The defect d(Zn), also called the defect
of the Fourier matrix Fn, can be interpreted as the dimension of the enveloping tangent space
of H(n) at the matrix

√
nFn:

T̃√
nFn

H(n) = T√
nFn

Mn(T) ∩ T√
nFn

√
nU(n)

(see [22], [1], [2]). Thus the defect can be regarded as an upper bound for the dimension of
the tangent space to H(n) at the point

√
nFn, and the construction mentioned above shows

that this bound is reached (see [14] for details). This is quite surprising, considering that the
manifold H(n) is not smooth or connected for general n. Note that the general structure of
H(n) is not known, even for n as small as 6.

In this paper we shed more light on the structure of the moduli space of non-isomorphic
commuting squares (or equivalently, of non-equivalent complex Hadamard matrices) around
the Fourier commuting square. We introduce third order necessary conditions for a unit
vector a in the enveloping tangent space T̃√

nFn
H(n) to be the direction of convergence of

a sequential family of non-equivalent Hadamard matrices converging to
√
nFn. The second

author found in [12] first and second order conditions on a for general commuting squares,
then showed in [15] that the second order conditions are always implied by the first order
conditions in the case of the Fourier spin model, i.e. they are true for any norm-one a in
T̃√

nFn
H(n). We now introduce third order conditions on a, which turn out to be much more

restrictive.
As an application, we show that for n = 30 not every norm one hermitian a in T̃FnH(n) is

a direction of convergence of a sequential family of complex Hadamard matrices approaching√
nFn. In particular, it follows that the dimension of any differentiable family of complex

Hadamard matrices containing
√
nFn (with n = 30) is strictly less than the dimension of the

tangent space T̃√
nFn

H(n) (i.e., the defect of Fn). This is quite surprising, considering that for

every n the space T̃√
nFn

H(n) admits a basis of directions of convergence for one-parameter
analytic families of complex Hadamard matrices (see [14]).

It follows that the d(F30) = 135 independent 1-dimensional families of Hadamard de-
formations of

√
30F30 found in [14] cannot be ”joined” into a 135-dimensional family of

Hadamard deformations of
√
30F30. We note that 30 is the smallest integer with three dis-

tinct prime divisors. Based on numerical evidence for n < 100 from [3], it seems likely that
the same might be true more generally for any n with three distinct prime divisors. Note
that for n = 6, which only has two distinct prime divisors, the dephased defect of F6 is equal
to 4 and there exists a 4-dimensional smooth family of Hadamard matrices through

√
6F6

(see [20]).
Our motivation for studying deformations of the Fourier matrix by Hadamard matrices

is two-fold: On one hand, such deformations give insight into the classification of Hadamard
matrices around

√
nFn, with applications to Quantum Information Theory for n ≥ 6 (see

[24], [3], [21], [20]). On the other hand, families of complex Hadamard matrices can be used
to construct families of (possibly non-isomorphic) subfactors (see [8],[6],[17],[18],[11]).
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This paper is structured as follows:
In Section 2 we recall background information and introduce various notations.
In Section 3 we give k-th order necessary conditions (k = 1, 2, 3, ...) for a ∈ Mn(C) to be

the direction of convergence of an analytic family of complex Hadamard matrices approaching
the Fourier matrix.

In Section 4 we discuss in more detail the 3rd order conditions for an arbitrary a ∈ Mn(C)
and prove that they can be written in an equivalent tracial form.

In Section 5 we show that the 3rd order conditions on a hold whenever a is the direction
of convergence of a sequential family of complex Hadamard matrices approaching the Fourier
matrix. This is where we introduce the most important technique of this paper: We gener-
alize the notion of higher order derivatives, which can be used to easily identify coefficients
of analytic deformations, to a notion of higher order directional derivatives for convergent
sequences.

In Section 6 we construct, for n = 30, norm-one elements a in T̃√
nFn

H(n) which do not
satisfy the 3rd order condition. We conclude that the dimension of any C1 family of complex
Hadamard matrices containing

√
nFn (with n = 30) is strictly less than the dimension of the

tangent space at
√
nFn (i.e., the defect of Fn).
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2 Preliminaries

In this section we recall classification results for complex Hadamard matrices, including ex-
amples connecting them to Quantum Information Theory, Harmonic Analysis, and Subfactor
Theory. We also review how Hadamard matrices can be encoded in spin model commuting
squares, and thus can be used as construction data in V. Jones’ theory of subfactors.

2.1 Complex Hadamard Matrices

Definition 2.1. An n × n complex Hadamard matrix H is an n × n matrix with complex
entries satisfying the following properties:

1. All entries of H have absolute value 1.

2. The rows of H are mutually orthogonal.

Note that this definition is equivalent to saying that U = 1√
n
H is a unitary with all

entries of the same absolute value.
Complex Hadamard matrices are natural generalizations of real Hadamard matrices.

For more details on real Hadamard matrices and their connections to complex Hadamard
matrices see [21]. For the remaining of this paper, when talk about a Hadamard matrix we
mean one with complex entries.

For each n ≥ 2 there exists at least one n×n Hadamard matrix,
√
nFn, where Fn denotes

the Fourier matrix of size n:

Definition 2.2. Let n ≥ 2 and let ε = e2πi/n. The n× n Fourier matrix, denoted Fn, is the
unitary matrix having 1√

n
εkl in the (k, l)th entry for all 0 ≤ k, l ≤ n− 1.

Example 2.1.

F2 =
1√
2

(
1 1
1 −1

)
, F3 =

1√
3

1 1 1
1 ω ω2

1 ω2 ω

 , F4 =
1

2


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i


(where ω = e2πi/3).

There are a couple of natural ways to create from a Hadamard matrix H new Hadamard
matrices: If we permute the rows or columns of H, the resulting matrix is still a Hadamard
matrix. Additionally, if we multiply any row or column of H by a complex number with
modulus 1, the resulting matrix is still a Hadamard matrix. These constructions suggest a
notion of equivalence for complex Hadamard matrices.

Definition 2.3. IfH1, H2 are two n×n Hadamard matrices, then we say thatH1 is equivalent
to H2 if there exist unitary diagonal matrices D,D′ and permutation matrices P, P ′ such
that

H2 = DPH1P
′D′.
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One of the central problems in the theory of complex Hadamard matrices is to classify all
n× n Hadamard matrices up to equivalence. Such a classification is currently not available
even for n as low as 6. For n ≤ 5, Hadamard matrices have been completely classified by
Haagerup in [5]. For n = 2, 3, 5 the Fourier matrix Fn is the only Hadamard matrix (up to
equivalence). When n = 4, there exists a 1-parameter analytic family of Hadamard matrices:

Example 2.2. For all |t| = 1, the following is a Hadamard matrix.

U(t) =


1 1 1 1
1 it −1 −it
1 −1 1 −1
1 −it −1 it


The family of matrices described above contains all of the equivalence classes of 4 × 4

Hadamard matrices. Note in particular that 2U(1) = F4.
For n = 6, the classification of Hadamard matrices remains an open problem, with

potential applications in quantum information theory [24]. Only some partial classification
results are available so far: In [4] all 6 × 6 self-adjoint Hadamard matrices were classified
as a 1-dimensional smooth family; in [9] a 3-dimensional smooth family was constructed; in
[20] a 4-dimensional smooth family through

√
6F6 was constructed; in [23] the so-called Tao

matrix was constructed, which is isolated among the 6× 6 non-equivalent matrices.

Example 2.3. The following complex Hadamard matrix was discovered by T. Tao ([23]),
as a counterexample to Fuglede’s conjecture in harmonic analysis. For ω = e2πi/3 let

T6 =


1 1 1 1 1 1
1 1 ω ω ω2 ω2

1 ω 1 ω2 ω2 ω
1 ω ω2 1 ω ω2

1 ω2 ω2 ω 1 ω
1 ω2 ω ω2 ω 1


For general n, it is known that there exist smooth families of Hadamard matrices through√

nFn (and not equivalent to
√
nFn) if and only if n is not prime. When n is prime, a theorem

of Petrescu ([16]) shows that
√
nFn is isolated among all complex Hadamard matrices, up to

equivalence. Nevertheless, for certain prime values of n it is still possible to construct other
smooth parametric families of Hadamard matrices. The following example was found in [16].

Example 2.4. Let ω = e2πi/6. Petrescu’s family of Hadamard matrices, depending on a
parameter |t| = 1, is defined as follows:

P (t) =



ωt ω4t ω5 ω3 ω3 ω 1
ω4t ωt ω3 ω5 ω3 ω 1
ω5 ω3 ωt ω4t ω ω3 1
ω3 ω5 ω4t ωt ω ω3 1
ω3 ω3 ω ω ω4 ω5 1
ω ω ω3 ω3 ω5 ω4 1
1 1 1 1 1 1 1


6



2.2 Commuting Squares

Commuting squares were introduced by S. Popa in [18], as invariants and construction data
in V. Jones’ theory of subfactors ([7]). They encode the symmetries of a subfactor, and for
some large classes of subfactors they are complete invariants ([18],[19]).

Definition 2.4. A commuting square of finite dimensional von Neumann Algebras is a
square of inclusions: P−1 ⊂ P0

∪ ∪
Q−1 ⊂ Q0

, τ


where P0, P−1, Q0, Q−1 are finite dimensional *-algebras (i.e., matrix algebras) and τ is a
positive, faithful trace on P0 such that

Q0 ⊖Q−1 ⊥ P−1 ⊖Q−1

Here the inner product on P0 given by ⟨x, y⟩ = τ(xy∗), and the symbol “⊖” is defined by
A⊖B := (B ∩ A⊥).

Before giving examples of commuting squares, we introduce some notations for matrix
units that will be used throughout this paper.

Definition 2.5. The matrix unit ei,j for i, j ∈ S, where S is a finite indexing set, is the
matrix in M|S|(C) which has 1 in the (i, j)th entry, and 0 elsewhere. These matrices satisfy
the following multiplicative relation for i, j, k, l ∈ S:

ei,jek,l =

{
ei,l if j = k

0 if j ̸= k
.

The most basic examples of commuting squares arise from finite groups.

Example 2.5. Let G be a finite group of order n, let Dn denote the n×n diagonal matrices,

and set ug =
∑
h∈G

eh,g−1h for all g ∈ G. If C[G] := span{ug : g ∈ G}, then the following is a

commuting square:

CG :=

Dn ⊂ Mn(C)
∪ ∪
C ⊂ C[G]

, Tr

 .

A particularly interesting special case arises for G = Zn. One can check that the matrices
in C[Zn] are those which are constant on each diagonal. Such matrices are know as circulant
matrices.

Definition 2.6. The n×n circulant matrices, denoted Cn, are the collection of n×n matrices
C = (ci,j)0≤i,j≤n−1 which satisfy ci,j = ck,l if i− j ≡ k − l mod n.
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Example 2.6. The 4× 4 circulant matrices are given by

C4 =



x0 x1 x2 x3

x3 x0 x1 x2

x2 x3 x0 x1

x1 x2 x3 x0

 : x0, x1, x2, x3 ∈ Mn(C)


Since Zn is an abelian group, C[Zn] = Cn is a maximal abelian *-subalgebra (MASA) of

the matrices, and thus isomorphic to Dn. This isomorphism is realized by conjugating the
diagonal matrices with the Fourier matrix, Fn.

Proposition 2.1.
Cn = C[Zn] = FnDnF

∗
n .

Proof. We show that C[Zn] = FnDnF
∗
n . We use the Fourier basis of Dn given by qk :=∑

i∈Zn
εikei,i for each k ∈ Zn and check that

1

n
Fnq−kF

∗
n =

∑
i∈Zn

ei,i−k = uk.

Since Fn is unitary and Dn and C[Zn] both have dimension n it follows that C[Zn] = FnDnF
∗
n .
■

With this particular example in mind it is natural to ask which MASA’s, when placed
in the bottom right corner, form a commuting square. That is to say, we are looking for
unitaries U for which the following is a commuting square:

C(U) =

Dn ⊂ Mn(C)
∪ ∪
C ⊂ UDnU

∗
, Tr


Such commuting squares are known as spin model commuting squares (see [6] for details).
The name comes from connections to Statistical Mechanics.

It turns out that the commuting square condition for a spin model is equivalent to U
being a (complex) Hadamard matrix.

Proposition 2.2. For a unitary matrix U , the following are equivalent

1. C(U) is a commuting square.

2.
√
nU is a Hadamard matrix.

3. For all d, d′ ∈ Dn, τ(UdU∗d′) = τ(d)τ(d′).
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Proof. We start with a trace computation that will be used throughout the proof. For

d, d′ ∈ Dn with d =
∑
k∈Zn

dkek,k and d′ =
∑
k′∈Zn

d′kek′,k′ we have

UdU∗d′ =

(∑
i,j∈Zn

ui,jei,j

)
·

(∑
k∈Zn

dkek,k

)
·

( ∑
i′,j′∈Zn

ui′,j′ej′,i′

)
·

(∑
k′∈Zn

d′k′ek′,k′

)
=

∑
i,j,i′∈Zn

ui,jdjui′,jd
′
i′ei,i′

so taking the trace,

τ(UdU∗d′) =
1

n

∑
i,j∈Zn

ui,jdjui,jd
′
i

=
1

n

∑
i,j∈Zn

|ui,j|2djd′i.

(1) ⇒ (2). Suppose C(U) is a commuting square. To proceed we will need to use the Fourier

basis for the diagonal matrices qk :=
∑
i∈Zn

εikei,i. Note that qk ∈ Dn ⊖ C and UqkU
∗ ∈

UDU∗ ⊖ C, for all k ̸= 0. So for all k ̸= 0 and l ̸= 0 we have, using the commuting square
relation, that

0 = τ(UqkU
∗q−l) =

1

n

∑
i,j∈Zn

εjk|ui,j|2ε−il.

Note also that for k = 0 and l ̸= 0 (and vice versa) we have qk = I so

τ(UqkU
∗q−l) = τ(UU∗q−l) = τ(ql) = 0

if k = 0 and l = 0 we have
τ(UqkU

∗ql) = τ(I) = 1.

Now if we denote V = (|ui,j|2)i,j∈ZN
note that we have

τ(UqkU
∗q−l) = (FnV F ∗

n)k,l

so the above computations are equivalent to

e0,0 = FnV F ∗
n , or equivalently, F

∗
ne0,0Fn = V.

Thus we have for each i, j ∈ Zn

Vi,j = (F ∗
ne0,0Fn)i,j =

1

n

so we have |ui,j| = 1√
n
for all i, j ∈ Zn.
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(2) ⇒ (3) This follows immediately from the computation done at the beginning of the
proof:

τ(UdU∗d′) =
1

n

∑
i,j∈Zn

|ui,j|2did′j =

(
1

n

∑
i∈Zn

di

)(
1

n

∑
j∈Zn

d′j

)
= τ(d)τ(d′).

(3) ⇒ (1) If UdU∗ ∈ UDnU
∗ ⊖ C and d′ ∈ Dn ⊖ C then we have

τ(UdU∗d′) = τ(d)τ(d′) = 0.

Thus UDnU
∗ ⊖ C ⊥ Dn ⊖ C. ■

The goal of this paper is to study sequential deformations of the Fourier spin model CFn

in the moduli space of commuting squares. We say that the sequence

Cj =

Dn ⊂ Mn(C)
∪ ∪
CIn ⊂ UjC[Zn]U

∗
j

 converges to C(Fn) =

Dn ⊂ Mn(C)
∪ ∪
CIn ⊂ C[Zn]


if Uj → In as j → ∞. Here (Uj)j≥1 are unitary matrices such that Cj are commuting squares.

Equivalently, we can work exclusively with Hadamard matrices:
√
nUjFn is a sequence

of Hadamard matrices converging to
√
nFn. We will also want the matrices

√
nUjFn to not

be equivalent to
√
nFn. In the language of commuting squares, this says that Cj is not

isomorphic to C(Fn) (see for instance [10]).
Our motivation for studying deformations of the Fourier matrix by Hadamard matri-

ces is two-fold: On one hand, such deformations shed further light on the classification of
Hadamard matrices, with applications to Quantum Information Theory (see [24], [3], [21],
[20]). On the other hand, families of complex Hadamard matrices can be used to construct
families of (possibly non-isomorphic) subfactors (see [8],[6],[17],[18],[11]).
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3 Analytic deformations of the Fourier matrix

In this section we find necessary conditions for the existence of analytic 1-parameter families
of n×n Hadamard matrices containing

√
nFn, where Fn denotes the Fourier matrix. Concrete

examples of such families were given in Section 2.1: Example 2.2 for n = 4 and Example 2.4
for n = 7.

We introduce higher order relations that a tangent vector to an analytic family, at the
Fourier matrix, must satisfy. Due to the analyticity of the family, this is easy to do by
identifying the coefficients of the Taylor series. In a latter section we will prove the surprising
result that the first three of these relations still hold true for directions of convergence of
sequential (rather than analytic) families approaching

√
nFn.

Let a0 = In, aj ∈ Mn(C) for j ≥ 1, and assume that Ut =
∑∞

j=0 ajt
j converges for all

t in a real neighborhood of 0. Let Ht =
√
nUtFn, and further assume that Ht are complex

Hadamard matrices and Ht ̸=
√
nFn when t ̸= 0. Note Ht →

√
nFn as t → 0.

Since Ht is Hadamard, by Proposition 2.2 we have:

τ(UtpU
∗
t q) =

1

n
τ(HtF

∗
npFnH

∗
t q) =

1

n
τ(HtF

∗
npFnH

∗
t )τ(q) = τ(p)τ(q) = τ(pq).

for all p ∈ Cn and q ∈ Dn. Here we used the fact that FnpF
∗
n ∈ Dn and Cn = FnDnF

∗
n .

In light of these two facts, we introduce the following bilinear continuous functions on
Mn(C)×Mn(C):

f0(x, y) = xy

fp,q(x, y) = τ(xpyq) for all p ∈ Cn, q ∈ Dn.

Proposition 3.1. If F = {fp,q : p ∈ Cn, q ∈ Dn} ∪ {f0}, then Ht =
√
nUtFn are Hadamard

matrices if and only if f(Ut, U
∗
t ) = f(I, I) for all f ∈ F .

Proof. The forward direction of this proof follows from the computations above. Indeed, for
f = fp,q the condition f(Ut, U

∗
t ) = f(I, I) is the same as τ(UtpU

∗
t q) = τ(pq), which is true

for Ht Hadamard. Note that for f = f0 the condition f(Ut, U
∗
t ) = f(I, I) holds true because

Ht, hence also Ut are unitary matrices.
For the reverse direction, first note that Ut unitary follows from UtU

∗
t = f0(Ut, U

∗
t ) =

f0(I, I) = I. Since Ut, Fn are unitary, we have H∗
t Ht = nIn for all t. Additionally, we have

for all p ∈ Cn and q ∈ Dn that

τ(UtpU
∗
t q) = fp,q(Ut, U

∗
t ) = fp,q(I, I) = τ(pq).

Using this fact, for all q, q′ ∈ Dn we have

τ(HtqH
∗
t q

′) = nτ(UtFnqF
∗
nU

∗
t q) = nτ(FnqF

∗
nq) = nτ(FnqF

∗
n)τ(q) = τ(HtqH

∗
t )τ(q).

We used the fact that FnqF
∗
n ∈ Cn, and in the last equality we introduced UtU

∗
t = I into the

first trace and used the property of the trace to rearrange. ■

We now find relations between the coefficients aj of the Taylor series of Ut.
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Proposition 3.2. If Ht are Hadamard for all t in a neighborhood of 0, then we have:

f(aj, I) + f(I, a∗j) = −
j−1∑
k=1

f(aj−k, a
∗
k)

for all j ≥ 1.

Proof. We have f(Ut, U
∗
t ) = f(I, I) for all f ∈ F . This gives the following chain of equivalent

equalities:

f(Ut, U
∗
t ) = f(I, I).

f

(
∞∑
l=0

alt
l,

∞∑
k=0

a∗kt
k

)
= f(I, I).

∞∑
j=1

(∑
l+k=j

f(al, a
∗
k)

)
tj = 0.

∞∑
j=1

(
j∑

k=0

f(aj−k, a
∗
k)

)
tj = 0.

j∑
k=0

f(aj−k, a
∗
k) = 0 for all j ≥ 1.

f(aj, I) + f(I, a∗j) = −
j−1∑
k=1

f(aj−k, a
∗
k) for all j ≥ 1.

■

We now analyze in more detail these equalities. Applying Proposition 3.2 to f = f0 gives
for all j that

aj + a∗j = −
j−1∑
k=1

aj−ka
∗
k.

Solving for a∗j and plugging into the relation given by Proposition 3.2 for f ∈ F ′, we obtain

f(aj, I)− f(I, aj) =

j−1∑
k=1

f(I, aj−ka
∗
k)− f(aj−k, a

∗
k).

Equivalently:

τ(aj[p, q]) =

j−1∑
k=1

τ([p, aj−k]a
∗
kq) for all p ∈ Cn, q ∈ Dn.

When j = 1, it follows that a1 must satisfy a1 + a∗1 = 0 and τ(a1[p, q]) = 0 for all
p ∈ Cn, q ∈ Dn. In other words, a1 ∈ [Cn,Dn]

⊥ and a1 is skew-adjoint: a∗1 = −a1. We
introduce a notation for the set of n× n matrices satisfying these conditions.
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Definition 3.1. Let An = {a ∈ [Cn,Dn]
⊥ : a∗ = −a}. We say that an n×n matrix a satisfies

the first order relations if and only if a ∈ An.

This definition is justified by the fact that the elements of An are the only candidates for
tangents to the analytic family Ht of Hadamard matrices at Fn, i.e. for the linear coefficient
a1 in the Taylor series of Ht. We can interpret the rest of the relations from Proposition 3.2
as further restrictions on a1. Note that An is only a real vector space.

Let us recall a different terminology for An, which was introduced in [1], [2]. Let H(n) =
Mn(T) ∩

√
nU(n) denote the real algebraic variety of n × n complex Hadamard matrices,

where U(n) ⊂ Mn(C) denotes the set of unitary matrices and Mn(T) denotes the set of n×n
matrices with entries of absolute value 1. Let T̃√

nFn
H(n) = T√

nFn
Mn(T) ∩ T√

nFn

√
nU(n)

denote the enveloping tangent space of H(n) at the matrix
√
nFn. With these notations, we

have An = T̃√
nFn

H(n). The dimension of this real vector space is called the defect of the
Fourier matrix Fn, and it is denoted d(Fn).

Definition 3.2. Let j ≥ 2, let a ∈ An, and let a1 = a. If there exist a2, . . . , aj ∈ Mn(C)
satisfying for all 2 ≤ l ≤ j

al + a∗l = −
l−1∑
k=1

al−ka
∗
k

and

τ(al[p, q]) =
l−1∑
k=1

τ([p, al−k]a
∗
kq)

for every p ∈ Cn, q ∈ Dn, then we say a satisfies the jth order relations.

We can now restate Proposition 3.2 as follows:

Proposition 3.3. If Ht = (I + a1t + a2t
2 + a3t

3 + ....)(
√
nFn) are Hadamard for all t in a

neighborhood of 0, then a1 satisfies the j-th order relations for all j ≥ 1.
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4 Third order trace relations

In the previous section, motivated by the study of analytic deformations of
√
nFn by complex

Hadamard matrices, we defined j-th order relations (j ≥ 1) on n×n matrices a (Definitions
3.1 and 3.2). In [15] it was shown that every a satisfying the first order relations must
also satisfy the second order relations. Thus the second order relations provide no further
restrictions on a. However, in subsequent sections of this paper we will show that the third
order relations provide significant additional restrictions on a.

In this section we discuss in more detail the third order relations, with two goals in mind:
First, we show that if the third order relations hold for some solution a1, a2 to the second
order relations (with a = a1), then they hold for any solution a1, a2 to the second order
relations (with a = a1). Second, we show that the third order relations can be simplified to
just keeping the second (trace-based) equality from Definition 3.2 for j = 3.

We start by defining, for j ≥ 2, trace relations of order j. These are just the second
equation of Definition 3.2.

Definition 4.1. For a1 ∈ An (i.e., satisfying the first order relations), if there exist a2, . . . , aj ∈
Mn(C) satisfying for all 2 ≤ l ≤ j

τ(al[p, q]) =
l−1∑
k=1

τ([p, al−k]a
∗
kq)

then we say that a1 satisfies the jth order trace relations.

Applying this definition for j = 3 and a1 = a ∈ An, we get the 3rd order trace relations
for a:

There exist a2, a3 ∈ Mn(C) such that

τ(a2[p, q]) = τ([p, a]a∗q)

τ(a3[p, q]) = τ([p, a]a∗2q) + τ([p, a2]a
∗q)

for all p ∈ Cn, q ∈ Dn.
We now present two lemmas that allow us to easily do computations in [Cn,Dn], by

establishing elegant bases for Cn, Dn, [Cn,Dn] and [Cn,Dn]
⊥.

Lemma 4.1. Let ε = e2πi/n be the primitive root of order n of unity, let pi =
∑

k∈Zn
ek,k−i be

the canonical basis of the algebra of circulant matrices (i ∈ Zn), and let qj =
∑

k∈Zn
εkjek,k

be the Fourier basis of Dn (j ∈ Zn). For all i, j ∈ Zn we have:

qjpi = εijpiqj.

Proof. For each i, j ∈ Zn, we have that

pi =
∑
k∈Zn

ek,k−i, qj =
∑
k∈Zn

εkjek,k.
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Thus it follows

qjpi =
∑

k,l∈Zn

εjkek,kel,l−i

=
∑
k∈Zn

εjkek,k−i

and

piqj =
∑

k,l∈Zn

εjlek,k−iel,l

=
∑
k∈Zn

εj(k−i)ek,k−i

= ε−ij
∑
k∈Zn

εjkek,k−i

= ε−ijqjpi.

Thus
qjpi = εijpiqj.

■

Lemma 4.2.

• The set X = {qxpx′ : x, x′ ∈ Zn} is an orthonormal basis of Mn(C).

• The set X ′ = {qxpx′ : xx′ ̸= 0 mod n} is an orthonormal basis of [Cn,Dn].

• The set X ′′ = {qxpx′ : xx′ = 0 mod n} is an orthonormal basis of [Cn,Dn]
⊥.

Proof. For x, x′, y, y′ ∈ Zn see that

τ(qxpx′(qypy′)
∗) = τ(qxpx′p−y′q−y)

= τ(qx−ypx′−y′)

= τ(qx−y)τ(px′−y′)

=

{
1 if x = y and x′ = y′

0 otherwise.

If ax
′

x ∈ X ′, then we have (since xx′ ̸= 0 mod n) that

qxpx′ =
[px′ , qx]

ε−xx′ − 1
∈ [Cn,Dn].
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Conversely, if x ∈ [Cn,Dn], we use the fact that [pi, qj] = 0 if and only if ij = 0 mod n to
write

x =
∑

x,x′∈Zn

αx,x′ [px′ , qx]

=
∑

x,x′∈Zn

(ε−xx′ − 1)qxpx′

=
∑

xx′ ̸=0 mod n

(ε−xx′ − 1)qxpx′ ∈ span{X ′}.

This shows that X ′ is a basis for [Cn,Dn]. The fact that X ′′ = X \X ′ completes the proof. ■

We now give a lemma about zero products in Zn, which will be needed in the subsequent
proposition.

Lemma 4.3. Let x, x′, y, y′ ∈ Zn. If xx′ = yy′ = (x + y)(x′ + y′) = 0 mod n, then
xy′ = x′y = 0 mod n.

Proof. Let x, x′, y, y′ ∈ Zn and suppose xx′ = yy′ = (x+ y)(x′ + y′) = 0 mod n. Let pm be
the largest power of a given prime p that divides n. We must have that pm|xx′. Let t be the
largest nonnegative integer less than or equal to m such that pt|x′. Thus pm−t|x. Similarly,
let v be the largest nonnegative integer, at most m, such that pv|y′. We have pm−v|y. To
summarize:

pt|x′, pm−t|x
pv|y′, pm−v|y

These together imply the following:

pm−v+t|x′y and pm−t+v|xy′.

Either v ≥ t or t ≥ v, so, without loss of generality, suppose t ≥ v. Thus we have that
pm|x′y. However, since

(x+ y)(x′ + y′) = xy′ + x′y = 0 mod pm.

and since pm|x′y, we must also have that pm|xy′. Since this holds for all primes p that divide
n, we must have that both xy′ and x′y are 0 mod n. ■

The following proposition is key to establishing the main results of this section, and will
also be used to prove the main theorem of the next section.

Proposition 4.1. There exists a C-bilinear map

φ2 : [Cn,Dn]
⊥ × [Cn,Dn]

⊥ → [Cn,Dn]

satisfying
τ(φ2(a

′, a′′)[p, q]) = τ ([p, a′]a′′q)

for all a′, a′′ ∈ [Cn,Dn]
⊥, p ∈ Cn, q ∈ Dn.
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Proof. It suffices to define φ2 on pairs of elements in a basis of [Cn,Dn]
⊥, then extend it

to [Cn,Dn]
⊥ as a bilinear map. Let qxpx′ and qypy′ be basis elements of [Cn,Dn]

⊥, with
xx′ = yy′ = 0 mod n (as explained in Lemma 4.2). We first show that there exists a unique
element bx,x′,y,y′ ∈ [Cn,Dn] such that

τ(bx,x′,y,y′ [p, q]) = τ([p, qxpx′ ]qypy′q)

for all p ∈ Cn and q ∈ Dn.
Consider the map f : [Cn,Dn] → C given by

f(
∑
i,j∈Zn

ci,j[pi, qj]) =
∑
i,j∈Zn

ci,jτ([pi, qxpx′ ]qypy′qj)

for any ci,j ∈ C. Note that f depends on x, x′, y, y′. We next check that f is well-defined.
Recall that [pi, qj] = 0 when ij = 0 mod n, and that the elements [pi, qj] with ij ̸= 0

mod n form an orthonormal basis for [Cn,Dn] (Lemma 4.2). Thus, in order to show that
f is well-defined, it suffices to check that τ([pi, qxpx′ ]qypy′qj) = 0 whenever ij = 0 mod n.
Indeed:

τ([pi, qxpx′ ]qypy′qj) = τ(piqxpx′qypy′qj)− τ(qxpx′piqypy′qj)

= εxy
′
τ(piqxqypx′py′qj)− τ(qxpx′piqypy′qj)

= εxy
′
τ(qx+ypx′+y′qjpi)− τ(px′+iqypy′qj+x)

= εxy
′
τ(px′+y′+iqx+y+j)− τ(px′+y′+iqx+y+j)

= (εxy
′ − 1)τ(qx+y+jpx′+y′+i)

= (εxy
′ − 1)τ(qx+y+j)τ(px′+y′+i).

In the above computation we used commutation relations implied by [px′ , qx] = 0,
[py′ , qy] = 0, and [pi, qj] = 0. These follow from x′x = y′y = ij = 0 mod n.

If x + y + j ̸= 0 mod n or x′ + y′ + i ̸= 0 mod n, then this product is 0 as desired.
Otherwise, assume x + y + j = 0 mod n and x′ + y′ + i = 0 mod n. Rearranging, this
implies

(x+ y)(x′ + y′) = (−j)(−i) = 0 mod n.

We now apply Lemma 4.3 to see that xy′ = 0 mod n, hence (εxy
′ − 1) = 0 and the desired

trace is 0 in this case as well.
This shows that the map f is well defined. Clearly f is C-bilinear on [Cn,Dn]. Recall also

that f depends on x, x′, y, y′. By the Riesz representation theorem, there exists a unique
bx,x′,y,y′ ∈ [Cn,Dn] such that f(z) = τ(bx,x′,y,y′z) for any z ∈ [Cn,Dn]. Define φ2(qxpx′ , qypy′) =
bx,x′,y,y′ . Hence, for z = [p, q] with p ∈ Cn and q ∈ Dn, we have

τ(φ2(qxpx′ , qypy′)[p, q]) = τ(bx,x′,y,y′ [p, q]) = f([p, q]) = τ([p, qxpx′ ]qypy′q).

In other words, τ(φ2(a
′, a′′)[p, q]) = τ ([p, a′]a′′q) for any (a′, a′′) = (qxpx′ , qypy′). This

defines φ2 on a basis of [Cn,Dn]
⊥×[Cn,Dn]

⊥, hence we can extend φ2 uniquely to a C-bilinear
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map on [Cn,Dn]
⊥ × [Cn,Dn]

⊥. Since the map (a′, a′′) → τ ([p, a′]a′′q) is also C-bilinear, we
have

τ(φ2(a
′, a′′)[p, q]) = τ ([p, a′]a′′q)

for all a′, a′′ ∈ [Cn,Dn]
⊥, p ∈ Cn, q ∈ Dn.

■

We now show that if a matrix a satisfies the third order trace relations, then for any choice
of a2 for which the second order trace relations τ(a2[p, q]) = τ([p, a]a∗q) hold there exists an
a3 for which the third order trace relations hold. In particular, we may use a2 = φ2(a, a),
with φ2 as defined in the previous lemma, to check if a satisfies the third order trace relations.

Proposition 4.2. If a ∈ An satisfies the third order trace relations then for any choice of
a2 ∈ Mn(C) satisfying:

τ(a2[p, q]) = τ([p, a]a∗q) for all p ∈ Cn, q ∈ Dn

there exists a3 ∈ Mn(C) satisfying:

τ(a3[p, q]) = τ([p, a]a∗2q) + τ([p, a2]a
∗q) for all p ∈ Cn, q ∈ Dn.

Proof. Since a satisfies the third order trace relations, there exist a′2 and a′3 satisfying:

τ(a′2[p, q]) = τ([p, a]a∗q) for all p ∈ Cn, q ∈ Dn

and
τ(a′3[p, q]) = τ([p, a]a′∗2 q) + τ([p, a′2]a

∗q) for all p ∈ Cn, q ∈ Dn.

In particular we have τ(a′2[p, q]) = τ([p, a]a∗q) = τ(a2[p, q]) so τ((a2−a′2)[p, q]) = 0. Thus
a2 − a′2 ∈ [Cn,Dn]

⊥. Let y ∈ [Cn,Dn]
⊥ be such that a′2 = a2 + y. Since a ∈ An, in particular

we have a ∈ [Cn,Dn]
⊥. Using the definition of φ2 from the previous proposition, we obtain:

τ(a′3[p, q]) = τ([p, a]a′∗2 q) + τ([p, a′2]a
∗q)

= τ([p, a]a∗2q) + τ([p, a2]a
∗q) + τ([p, a]y∗q) + τ([p, y]a∗q)

= τ([p, a]a∗2q) + τ([p, a2]a
∗q) + τ(φ2(a, y

∗)[p, q]) + τ(φ2(y, a
∗)[p, q]).

By letting a3 = a′3 − φ2(a, y
∗)− φ2(y, a

∗), the conclusion follows:

τ(a3[p, q]) = τ([p, a]a∗2q) + τ([p, a2]a
∗q) for all p ∈ Cn, q ∈ Dn.

■

We end this section by proving that the third order trace relations are equivalent to the
(a priori more general) third order relations.

Proposition 4.3. Let a ∈ An. Then a satisfies the third order relations if and only if a
satisfies the third order trace relations.
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Proof. If a satisfies the third order relations then clearly a must satisfy the less restrictive
third order trace relations.

Now suppose a satisfies the third order trace relations. We must show that a satisfies
the remaining third order relations:

a2 + a∗2 = −aa∗ and a3 + a∗3 = −aa∗2 − a2a
∗.

Since a ∈ An (i.e. a satisfies the first order relations), there exists a2 such that a satisfies
the second order relations together with a2 (this is the main result of [15]). That is to say:

a2 + a∗2 = −aa∗ and τ(a2[p, q]) = τ([p, a]a∗q) for all p ∈ Cn, q ∈ Dn.

From the previous Proposition 4.2, there exists a′3 such that

τ(a′3[p, q]) = τ([p, a]a∗2q) + τ([p, a2]a
∗q) for all p ∈ Cn, q ∈ Dn.

After taking the adjoint of this relation, replacing p with p∗ and q with q∗in the new relation,
and adding this new relation to the one above, we obtain:

τ((a′3 + a′∗3 )[p, q]) = τ([p, a]a∗2q) + τ([p, a2]a
∗q) + τ(a2[p, a

∗]q) + τ(a[p, a∗2]q)

= τ(paa∗2q)− τ(apa∗2q) + τ(pa2a
∗q)− τ(a2pa

∗q) + τ(a2pa
∗q)− τ(a2a

∗pq)

+ τ(apa∗2q)− τ(aa∗2pq)

= τ(aa∗2qp)− τ(aa∗2pq) + τ(a2a
∗qp)− τ(a2a

∗pq)

= −τ(aa∗2[p, q])− τ(a2a
∗[p, q]).

Rearranging this equality, we have:

τ((a′3 + a′∗3 + aa∗2 + a2a
∗)[p, q]) = 0 for all p ∈ Cn, q ∈ Dn.

Let a3 = a′3 −
a′3+a′∗3 +aa∗2+a2a∗

2
. It follows

τ(a3[p, q]) = τ(a′3[p, q]) = τ([p, a]a∗2q) + τ([p, a2]a
∗q) for all p ∈ Cn, q ∈ Dn.

and

a3 + a∗3 =

(
a′3 −

a′3 + a′∗3 + aa∗2 + a2a
∗

2

)
+

(
a′∗3 − a′∗3 + a′3 + a2a

∗ + aa∗2
2

)
= −aa∗2 − a2a

∗.

Thus a satisfies the third order relations. ■
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5 Sequential deformations of the Fourier matrix

In Section 3 we introduced k-th order relations necessary for the existence of analytic families
of n× n complex Hadamard matrices containing

√
nFn, where Fn is the Fourier matrix. In

this section we prove that, for k ≤ 3, these relations are still necessary for the existence of
sequential families of n×n complex Hadamard matrices converging to

√
nFn. The necessity

of the first and second order relations was already proved in previous papers of the second
author ([10], [13]). We now show that the third order relations hold, and in the process of
doing so we obtain easier proofs for the necessity of the first and second order relations.

The main technique of this section consists in generalizing the notion of higher order
derivatives, which were implicitly used in Section 3 to identify the coefficients of analytic
deformations, to a notion of higher order directional derivatives for convergent sequences.

Let (Hk)k≥0, be a sequence of n× n complex Hadamard matrices such that Hk →
√
nFn

as k → ∞, and Hk ̸=
√
nFn for all k. Let Uk = 1√

k
HkF

∗
n . Uk are unitaries, Uk ̸= I and

Uk → I.
We recall the bilinear continuous functions on Mn(C)×Mn(C) defined in Section 3:

f0(x, y) = xy

fp,q(x, y) = τ(xpyq) for all p ∈ Cn, q ∈ Dn.

The following proposition is just Proposition 3.1 rewritten for sequences instead of ana-
lytic families. The proof is identical, as it just relies on the commuting square characteriza-
tion of complex Hadamard matrices (Proposition 2.2).

Proposition 5.1. If F = {fp,q : p ∈ Cn, q ∈ Dn}∪{f0}, then Hk is a sequence of Hadamard
matrices passing through Fn if and only if for Uk =

1√
k
HkF

∗
n we have f(Uk, U

∗
k ) = f(I, I) for

all f ∈ F .

We recall the definition of a direction of convergence for Uk → I, from [10]:

Definition 5.1. Let {Uk}k≥0 be a sequence of unitary matrices in Mn(C) such that Uk → I
as k → ∞ and Uk ̸= I for all k. We say that a ∈ Mn(C) is a direction of convergence of

{Uk} if a subsequence of ak =
Uk − I

∥Uk − I∥
converges to a.

Note that, since ∥ak∥ = 1 for all k, by a compactness argument we are guaranteed that
some subsequence of ak converges. We will replace the original sequence of unitaries Uk by
the corresponding subsequence, so we may assume ak =

Uk−I
∥Uk−I∥ converges to some matrix a.

Let tk = ∥Uk − I∥ → 0. Rearranging ak =
Uk − I

tk
, we have Uk = tkak + I and applying

Proposition 5.1 we must have for all f ∈ F that

f(tkak + I, tka
∗
k + I) = f(I, I).

Expanding this relation becomes

t2kf(ak, a
∗
k) + tk(f(I, a

∗
k) + f(ak, I)) = 0.
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Dividing both sides by tk and taking a limit as k → ∞ we see that a must satisfy

f(a, I) + f(I, a∗) = 0.

For f = f0 the condition above becomes a + a∗ = 0. For f = fp,q the condition above
becomes τ([p, q]a) = 0. Hence overall the condition f(a, I) + f(I, a∗) = 0 for all f ∈ F is
equivalent to saying that a ⊥ [Cn,Dn] and a+ a∗ = 0. In other words, we showed:

Proposition 5.2. Let (Hk)k≥1 be a sequence of n × n complex Hadamard matrices ap-
proaching

√
nFn, and such that Hk ̸=

√
nFn for all k. Let Uk =

1√
k
HkF

∗
n . If a is a direction

of convergence of {Uk}, then a satisfies the first order relations (i.e. a ∈ An).

We now move on to showing the second order relations. Denote

bk =

Uk−I
tk

− a

tk
=

ak − a

tk
.

In contrast to the first order relations, we now have no control over ∥bk∥, and we cannot
deduce that bk has a convergent subsequence. However, we know that tkbk → 0 since ak → a.
Rearranging the equation defining bk gives t2kbk + tka+ I = Uk, and by applying Proposition
5.1 we obtain:

f(t2kbk + tka+ I, t2kb
∗
k + tka

∗ + I) = f(I, I) for all f ∈ F .

Expanding this relation, we have

t4kf(bk, b
∗
k)+t3k(f(bk, a

∗)+f(a, b∗k))+t2k(f(bk, I)+f(I, b∗k)+f(a, a∗))+tk(f(a, I)+f(I, a∗)) = 0.

From Proposition 5.2, we have that f(a, I)+ f(I, a∗) = 0, which cancels out the last two
terms of the equation above. Dividing the rest of the equation by t2k, letting k → ∞, and
using tkbk → 0, we obtain:

lim
k→∞

(f(bk, I) + f(I, b∗k)) = −f(a, a∗) for all f ∈ F .

If we let f = f0 (recall that f0(x, y) = xy), we get

lim
k→∞

(bk + b∗k) = −aa∗.

If we let f = fp,q (recall that fp,q(x, y) = τ(xpyq)) we have, for all p ∈ Cn, q ∈ Dn:

lim
k→∞

(τ(bkpq)+τ(pb∗kq)) = −f(a, a∗), or equivalently lim
k→∞

(τ(bk(pq−qp))+τ(p(bk+b∗k)q)) = −τ(apa∗q).

After using limk→∞(bk + b∗k) = −aa∗ in the relation above we obtain, for all x ∈ [Cn,Dn]:

lim
k→∞

τ(bk[p, q]) = τ([p, a]a∗q).
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We can uniquely write bk = b′k + b′′k with b′k ∈ [Cn,Dn] and b′′k ∈ [Cn,Dn]
⊥. The relation

above becomes:
lim
k→∞

τ(b′k[p, q]) = τ([p, a]a∗q).

Since these limits exist for any p ∈ Cn, q ∈ Dn, it follows that τ(b′kz) converges for
all z ∈ [Cn,Dn]. Hence b′k converges weakly to some b′. Since we are working in a finite
dimensional Hilbert space, we also have that b′k → b′ in norm. Thus there exists b′ ∈ [Cn,Dn]
such that for all p ∈ Cn and q ∈ Dn

τ (b′[p, q]) = τ([p, a]a∗q) = lim
k→∞

τ(b′k[p, q]).

Note this says that a satisfies the second order trace relations together with b′. If we set

b = b′ − b′ + b′∗ + aa∗

2

then a satisfies the second order trace relations together with b (since b′+b′∗+aa∗ ∈ [Cn,Dn]
⊥),

as well as the rest of the second order relations (since b+ b∗ = −aa∗). We thus proved:

Proposition 5.3. Let (Hk)k≥1 be a sequence of n × n complex Hadamard matrices ap-
proaching

√
nFn, and such that Hk ̸=

√
nFn for all k. Let Uk =

1√
k
HkF

∗
n . If a is a direction

of convergence of {Uk}, then a satisfies the second order relations.

We continue this line of reasoning to show that the direction of convergence a must satisfy
the third order relations.

We already established that a satisfies the second order relations, i.e. a ∈ An and there
exists b ∈ Mn(C) such that, for all f ∈ F ,

f(b, I) + f(I, b∗) = −f(a, a∗).

Moreover, the matrix b we constructed can be written as b = b′ + b′′, with b′ ∈ [Cn,Dn]
as found in the previous argument, and b′′ = − b′+b′∗+aa∗

2
∈ [Cn,Dn]

⊥.
Recall that we showed b′k → b′, but it is not clear if bk converges (or even that it has a

convergent subsequence).
Denote

ck =

Uk−I

tk
−a

tk
− b

tk
=

ak−a
tk

− b

tk
=

bk − b

tk
which after rearranging gives

Uk = ckt
3
k + t2kb+ tka+ I.

We have tkck = bk − b. Thus t2kck = tk(bk − b) = tkbk − tkb → 0, as tkbk = ak − a → 0
and tk → 0.

We use again that for all f ∈ F we have

f(Uk, U
∗
k ) = f(I, I)
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We expand this relation by using Uk = ckt
3
k + t2kb+ tka+ I and grouping terms together

based on the powers of tk. Since f(b, I)+ f(I, b∗) = −f(a, a∗) and f(a, I)+ f(I, a∗) = 0, the
terms corresponding to tk and t2k vanish, as does f(I, I) from both sides of the equality.

After dividing the remaining equality by t3k we obtain:

t3kf(ck, c
∗
k) + t2k(f(b, c

∗
k) + f(ck, b

∗)) + tk(f(ck, a
∗) + f(a, c∗k) + f(b, b∗)) + f(ck, I) + f(I, c∗k)

+ f(a, b∗) + f(b, a∗) = 0. (1)

If we let f = f0 in this relation (recall f0(x, y) = xy), and isolate c∗k = f0(I, c
∗
k), we have

c∗k = −ck − ab∗ − ba∗ − tk(cka
∗ + ac∗k + bb∗)− t2k(bc

∗
k + ckb

∗
k)− t3kckc

∗
k.

By applying f(I, ·) to this equality, for some f ∈ F , we have:

f(I, c∗k) =− f(I, ck)− f(I, ab∗)− f(I, ba∗)− tk(f(I, cka
∗) + f(I, ac∗k) + f(I, bb∗))− t2k(f(I, bc

∗
k)

+ f(I, ckb
∗
k))− t3kf(ck, c

∗
k).

We now substitute this expression for f(I, c∗k) in (1), and group terms together by powers
of tk:

f(I, ab∗)− f(a, b∗) + f(I, ba∗)− f(b, a∗) =

t3k(f(ck, c
∗
k)− f(I, ckc

∗
k))

+ t2k(f(b, c
∗
k)− f(I, bc∗k) + f(ck, b

∗)− f(I, ckb
∗))

+ tk(f(ck, a
∗)− f(I, cka

∗) + f(a, c∗k)− f(I, ac∗k) + f(b, b∗)− f(I, bb∗))

+ f(ck, I)− f(I, ck),

Taking the limit as k → ∞, after using t2kck → 0 and tk → 0, we obtain:

f(I, ab∗)− f(a, b∗) + f(I, ba∗)− f(b, a∗) = lim
k→∞

(t3k(f(ck, c
∗
k)− f(I, ckc

∗
k))+

tk(f(ck, a
∗)− f(I, cka

∗) + f(a, c∗k)− f(I, ac∗k)) + f(ck, I)− f(I, ck)).

We can uniquely decompose each ck = c′k + c′′k with c′k ∈ [Cn,Dn] and c′′k ∈ [Cn,Dn]
⊥.

Since tkc
′
k + tkc

′′
k = tkck = bk − b = (b′k − b′) + (b′′k − b′′) with (b′k − b′), tkc

′
k ∈ [Cn,Dn] and

tkc
′′
k, (b

′′
k − b′′) ∈ [Cn,Dn]

⊥, it follows tkc
′
k = b′k − b′. In particular tkc

′
k → 0. By writing

ck = c′k + c′′k and using tkc
′
k → 0, t2kck → 0, the previous limit simplifies to

f(I, ab∗)− f(a, b∗) + f(I, ba∗)− f(b, a∗) = lim
k→∞

t3k(f(c
′′
k, c

′′∗
k )− f(I, c′′kc

′′∗
k ))+

tk(f(c
′′
k, a

∗)− f(I, c′′ka
∗) + f(a, c′′∗k )− f(I, ac′′∗k )) + f(ck, I)− f(I, ck). (2)

We now let f = fp,q in (2). Note that fp,q(x, y) − fp,q(I, xy) = τ(xpyq) − τ(pxyq) =
−τ([p, x]yq), which allows us to rewrite each of the differences f(x, y)− f(I, xy) in an easier
form for f = fp,q.
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The left side of the equality from (2) becomes (for f = fp,q):

f(I, ab∗)− f(a, b∗) + f(I, ba∗)− f(b, a∗) = τ(pab∗q)− τ(apb∗q) + τ(pba∗q)− τ(bpa∗q)

= τ([p, a]b∗q) + τ([p, b]a∗q). (3)

and the right side of the equality from (2) becomes for (f = fp,q):

lim
k→∞

t3k(f(c
′′
k, c

′′∗
k )− f(I, c′′kc

′′∗
k )) + tk(f(c

′′
k, a

∗)− f(I, c′′ka
∗) + f(a, c′′∗k )− f(I, ac′′∗k )) + f(ck, I)− f(I, ck)

= lim
k→∞

− t3kτ([p, c
′′
k]c

′′∗
k q)− tk(τ([p, c

′′
k]a

∗q) + τ([p, a]c′′∗k q)) + τ(ck[p, q]). (4)

To further simplify (4), recall that c′′k, c
′′∗
k , a, a∗ ∈ [Cn,Dn]

⊥, and Proposition 4.1 yields:

τ(φ2(c
′′
k, c

′′
k)[p, q]) = τ([p, c′′k]c

′′∗
k q)

τ(φ2(c
′′
k, a

∗)[p, q]) = τ([p, c′′k]a
∗q)

τ(φ2(a, c
′′∗
k )[p, q]) = τ([p, a]c′′∗k q)

for all p ∈ Cn, q ∈ Dn. If we set c̃k = ck−t3kφ2(c
′′
k, c

′′
k)−tkφ2(c

′′
k, a

∗)−tkφ2(a, c
′′∗
k ), (4) becomes:

lim
k→∞

t3k(f(c
′′
k, c

′′∗
k )− f(I, c′′kc

′′∗
k )) + tk(f(c

′′
k, a

∗)− f(I, c′′ka
∗) + f(a, c′′∗k )− f(I, ac′′∗k )) + f(ck, I)− f(I, ck)

= lim
k→∞

− t3kτ([p, c
′′
k]c

′′∗
k q)− tk(τ([p, c

′′
k]a

∗q) + τ([p, a]c′′∗k q)) + τ(ck[p, q])

= lim
k→∞

− t3kτ(φ2(c
′′
k, c

′′
k)[p, q])− tk(τ(φ2(c

′′
k, a

∗)[p, q]) + τ(φ2(a, c
′′∗
k )[p, q]) + τ(ck[p, q])

= lim
k→∞

τ((ck − t3kφ2(c
′′
k, c

′′
k)− tkφ2(c

′′
k, a

∗)− tkφ2(a, c
′′∗
k ))[p, q])

= lim
k→∞

τ(c̃k[p, q]).

Combining (3) and (4) via the equality from (2), we obtain:

lim
k→∞

τ(c̃k[p, q]) = τ([p, a]b∗q) + τ([p, b]a∗q)

for all p ∈ Cn, q ∈ Dn

We can uniquely write c̃k = c̃k
′ + c̃k

′′ with c̃k
′ ∈ [Cn,Dn] and c̃k

′′ ∈ [Cn,Dn]
⊥. The limit

above becomes:
lim
k→∞

τ(c̃k
′[p, q]) = τ([p, a]a∗q).

Since limk→∞ τ(c̃k
′[p, q]) exists for any p ∈ Cn, q ∈ Dn, it follows that τ(c̃k

′z) converges
for all z ∈ [Cn,Dn]. Hence c̃k

′ converges weakly to some c. Since we are working in a finite
dimensional Hilbert space, we also have that c̃k

′ → c in norm. Thus there exists c ∈ [Cn,Dn]
such that for all p ∈ Cn and q ∈ Dn

τ(c[p, q]) = τ([p, a]b∗q) + τ([p, b]a∗q).

In other words, we showed that a (together with b, c) satisfies the third order trace
relations. By Proposition 4.3, it follows that a satisfies the third order relations. This gives
us the main result of this section:

Theorem 5.1. Let (Hk)k≥1 be a sequence of n×n complex Hadamard matrices approaching√
nFn, and such that Hk ̸=

√
nFn for all k. Let Uk = 1√

k
HkF

∗
n . If a is a direction of

convergence of {Uk}, then a satisfies the third order relations.
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6 On the structure of H(n) for n = 30

In this section we show that, for n = 30, not every norm one hermitian a in the envelop-
ing tangent space T̃FnH(n) is a direction of convergence of a sequential family of complex
Hadamard matrices approaching

√
nFn. From here we deduce that the dimension of any dif-

ferentiable family of complex Hadamard matrices containing
√
nFn (with n = 30) is strictly

less than the dimension of the tangent space T̃√
nFn

H(n) (i.e., the defect of Fn). This is quite

surprising, considering that for every n the space T̃√
nFn

H(n) admits a basis of directions of
convergence for one-parameter analytic families of complex Hadamard matrices (see [14]).

In other words, for n = 30 there exist d(F30) = 135 independent one-parameter families
of Hadamard deformations of

√
30F30 that cannot be ”joined” into a 135-dimensional family

of Hadamard deformations of
√
30F30.

We note that 30 is the smallest integer with three distinct prime divisors. Based on
numerical evidence for n < 100 from [3], it seems likely that the same might be true more
generally for any n with three distinct prime divisors. Note that for n = 6, which only
has two distinct prime divisors, the dephased defect of F6 is equal to 4 and there exists a
4-dimensional smooth family of Hadamard matrices through

√
6F6 (see [20]).

The next Theorem is the main result of this section: we construct an element a ∈ A30

(i.e., a satisfies the first order relations, hence also the second order relations) which does
not satisfy the third order relations.

Theorem 6.1. Let n = 30. Using the notations from Lemma 4.1, let

a = q3p10 + q10p3 + q15p2 − (q−3p−10 + q−10p−3 + q−15p−2).

Then a ∈ An, a ̸= 0, and a does not satisfy the third order relations. Thus a
∥a∥ ∈ T̃FnH(n) is

a norm one element which is not a direction of convergence of a sequential family of complex
Hadamard matrices approaching

√
nFn.

Proof. From Lemma 4.1 it follows that piqj = qjpi whenever ij = 0 mod n. In particular,
(qjpi)

∗ = p∗i q
∗
j = p−iq−j = q−jp−i. Moreover, from Lemma 4.2 we have qjpi ∈ [Cn,Dn]

⊥

whenever ij = 0 mod n. Since

3 · 10 = 10 · 3 = 15 · 2 = (−3) · (−10) = (−10) · (−3) = (−15) · (−2) = 0 mod 30

it follows that a = −a∗, and a ∈ [Cn,Dn]
⊥.

Since a ∈ An, a satisfies the first order relations, hence it also satisfies the second order
relations. That is to say, there exists b ∈ Mn(C) such that

b+ b∗ = a2 and τ(b[p, q]) = τ([p, a]a∗q) for all p ∈ Cn, q ∈ Dn.

Assume, by contradiction, that a satisfies the third order relations. Thus there exists
c ∈ Mn(C) such that, for all p ∈ Cn and d ∈ Dn,

τ(c[p, q]) = τ([p, a]b∗q) + τ([p, b]a∗q)
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or equivalently (using a∗ = −a):

τ(c[p, q]) = τ([p, a]b∗q) + τ([b, p]aq)

Let i, j ∈ Zn with ij = 0 mod n. Since [pi, qj] = 0, the previous equation becomes

τ([pi, a]b
∗qj) + τ([b, pi]aqj) = 0.

However, we will show that for i = 15 and j = 2 we have τ([pi, a]b
∗qj)+ τ([pi, b]a

∗qj) ̸= 0,
thus obtaining a contradiction.

In order to make this computation easier to follow, we write a as

a =
∑
xx′=0

αx,x′qxpx′

where

αx,x′ =


1 if (x, x′) ∈ {(3, 10), (10, 3), (15, 2)}
−1 if (x, x′) ∈ {(−3,−10), (−10,−3), (−15,−2)}
0 otherwise

We use the second order relations, which a satisfies together with b, to rewrite τ([pi, a]b
∗qj)

and τ([pi, b]a
∗qj) in terms of a only. We compute these two terms separately. In the following

computations we use xx′ = 0 mod 30 and ij = 15 · 2 = 0 mod 30, hence qxpx′ = px′qx and
qipj = pjqi.

We first rewrite τ([pi, a]b
∗qj):

τ([pi, a]b
∗qj) = τ(b∗qjpia− b∗qjapi)

=
∑
xx′=0

αx,x′τ(b∗(qjpiqxpx′ − qjqxpx′pi))

=
∑
xx′=0

αx,x′(εjx
′ − ε(j+x)(i+x′))τ(b∗pi+x′qj+x)

=
∑
xx′=0

αx,x′εjx
′
(1− εix)τ(b∗pi+x′qj+x).

Whenever (j + x)(i + x′) = 0 mod n, from Lemma 4.3 we have that ix = jx′ = 0 mod
n, so we may remove the corresponding terms from our sum. The formula for τ([pi, a]b

∗qj)
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becomes

τ([pi, a]b
∗qj) =

∑
xx′=0

(j+x)(i+x′ )̸=0

αx,x′εjx
′
(1− εix)

1− ε(j+x)(i+x′)
τ(b∗[pi+x′ , qj+x])

=
∑
xx′=0

(j+x)(i+x′ )̸=0

αx,x′εjx
′
(εix − 1)

1− ε(j+x)(i+x′)
τ(b[p−(i+x′), q−(j+x)])

=
∑
xx′=0

(j+x)(i+x′ )̸=0

αx,x′εjx
′
(εix − 1)

1− ε(j+x)(i+x′)
τ([a, p−(i+x′)]aq−(j+x))

=
∑
xx′=0

(j+x)(i+x′ )̸=0

αx,x′εjx
′
(εix − 1)

1− ε(j+x)(i+x′)
τ(qj+xapi+x′a− qj+xaapi+x′)

=
∑
xx′=0

(j+x)(i+x′ )̸=0

αx,x′εjx
′
(εix − 1)

1− ε(j+x)(i+x′)
τ(aqj+xapi+x′ − a2pi+x′qj+x))

=
∑
xx′=0

(j+x)(i+x′ )̸=0
yy′=0

αx,x′αy,y′ε
jx′
(εix − 1)

1− ε(j+x)(i+x′)
τ(aqj+xqypy′pi+x′ − aqypy′pi+x′qj+x)

=
∑
xx′=0

(j+x)(i+x′ )̸=0
yy′=0

αx,x′αy,y′ε
jx′
(εix − 1)

1− ε(j+x)(i+x′)

(
τ(aqj+xqypy′pi+x′)− εy(i+x′)τ(apy′pi+x′qyqj+x)

)

=
∑
xx′=0

(j+x)(i+x′ )̸=0
yy′=0

αx,x′αy,y′ε
jx′
(εix − 1)

1− ε(j+x)(i+x′)

(
τ(aqj+x+ypi+x′+y′)− εy(i+x′)τ(api+x′+y′qj+x+y)

)

=
∑
xx′=0

(j+x)(i+x′ )̸=0
yy′=0

αx,x′αy,y′ε
jx′
(εix − 1)

1− ε(j+x)(i+x′)

(
τ(api+x′+y′qj+x+y)− εy(i+x′)τ(api+x′+y′qj+x+y)

)

=
∑
xx′=0

(j+x)(i+x′ )̸=0
yy′=0

αx,x′αy,y′ε
jx′
(εix − 1)(1− εy(i+x′))

1− ε(j+x)(i+x′)
τ(api+x′+y′qj+x+y).

In the chain of equalities above we used that τ(aqj+x+ypi+x′+y′) = τ(api+x′+y′qj+x+y). Let
us explain why this is true. Consider first the case (i + x′ + y′)(j + x + y) ̸= 0 mod n.
Then pi+x′+y′qj+x+y, qj+x+ypi+x′+y′ ∈ [Cn,Dn], as shown in Lemma 4.2. Since a ∈ [Cn,Dn]

⊥,
it follows that τ(api+x′+y′qj+x+y) = 0 = τ(aqj+x+ypi+x′+y′). Now consider the case (i + x′ +
y′)(j + x + y) = 0 mod n. In this case, pi+x′+y′ and qj+x+y commute, so again we have
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τ(api+x′+y′qj+x+y) = 0 = τ(aqj+x+ypi+x′+y′).
This argument also shows that in the sum above the only possibly nonzero terms are the

terms with (i+ x′ + y′)(j + x+ y) = 0 mod n. In this case we have

τ(api+x′+y′qj+x+y) =
∑
zz′=0

αz,z′τ(qzpz′pi+x′+y′qj+x+y)

=
∑
zz′=0

αz,z′τ(pi+x′+y′+z′)τ(qj+x+y+z)

= α−(j+x+y),−(i+x′+y′).

Using this fact, the formula for τ([pi, a]b
∗qj) becomes

τ([pi, a]b
∗qj) =

∑
xx′=0

(j+x)(i+x′ )̸=0
yy′=0

αx,x′αy,y′ε
jx′
(εix − 1)(1− εy(i+x′))

1− ε(j+x)(i+x′)
τ(api+x′+y′qj+x+y)

=
∑
xx′=0

(j+x)(i+x′) ̸=0
yy′=0

αx,x′αy,y′α−(j+x+y),−(i+x′+y′)ε
jx′
(εix − 1)(1− εy(i+x′))

1− ε(j+x)(i+x′)
.
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We now compute τ([b, pi]aqj) in a similar way:

τ([b, pi]aqj) = τ(bpiaqj − baqjpi)

=
∑
xx′=0

αx,x′τ(b(piqxpx′qj − qxpx′qjpi))

=
∑
xx′=0

αx,x′(1− εix)τ(bpi+x′qx+j)

=
∑
xx′=0

(i+x′)(j+x) ̸=0

αx,x′(1− εix)

1− ε(j+x)(i+x′)
τ(b[pi+x′ , qj+x])

=
∑
xx′=0

(i+x′)(j+x)̸=0

αx,x′(1− εix)

1− ε(j+x)(i+x′)
τ([a, pi+x′ ]aqj+x)

=
∑
xx′=0

(i+x′)(j+x) ̸=0
yy′=0

αx,x′αy,y′(1− εix)

1− ε(j+x)(i+x′)
τ(aqj+xqypy′pi+x′ − aqj+xpi+x′qypy′)

=
∑
xx′=0

(i+x′)(j+x)̸=0
yy′=0

αx,x′αy,y′(1− εix)

1− ε(j+x)(i+x′)
(1− ε−y(i+x′))τ(apj+x+yqi+x′+y′)

=
∑
xx′=0

(i+x′)(j+x)̸=0
yy′=0

αx,x′αy,y′α−(j+x+y),−(i+x′+y′)(1− εix)(1− ε−y(i+x′))

1− ε(j+x)(i+x′)
.

For ease of notation, for the values i = 15 and j = 2 that we will work with, denote

ξ(x, x′, y, y′) = αx,x′αy,y′α−(j+x+y),−(i+x′+y′).

Now combine the two terms of the 3rd order trace relation to obtain

τ([pi, a]b
∗qj) + τ([b, pi]aqj) =

∑
xx′=0

(i+x′)(j+x) ̸=0
yy′=0

ξ(x, x′, y, y′)(εix − 1)
(
εjx

′
(1− εy(i+x′))− (1− ε−y(i+x′))

)
1− ε(j+x)(i+x′)

To simplify this expression, we note that, for a term in the sum to be non-zero, we must
have:

(i+ x′ + y′)(j + x+ y) = ix+ jx′ + iy + jy′ + xy′ + yx′ = 0 mod n.
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Using this fact, we can simplify:

εjx
′
(1− εy(i+x′))− (1− ε−y(i+x′)) = εjx

′
(
1− εy(i+x′) − ε−jx′

+ ε−y(i+x′)−jx′
)

= εjx
′
(
1− εyi+yx′ − εyi+yx′+ix+jy′+xy′ + εix+jy′+xy′

)
= εjx

′
((

1− εyi+yx′
)
+ εix+jy′+xy′

(
1− εyi+yx′

))
= εjx

′
(
1− εyi+yx′

)(
1 + εix+jy′+xy′

)
= εjx

′
(
1− εy(i+x)′

)(
1 + ε(i+y′)(j+x)

)
This shows that

τ([pi, a]b
∗qj) + τ([b, pi]aqj) =

∑
xx′=0

(i+x′)(j+x) ̸=0
yy′=0

ξ(x, x′, y, y′)εjx
′
(εix − 1)(1− εy(i+x′))(1 + ε(i+y′)(j+x))

1− ε(j+x)(i+x′)
.

Note that, for any xx′ = 0 mod n and yy′ = 0 mod n, the product

ξ(x, x′, y, y′) = αx,x′αy,y′α−(2+x+y),−(15+x′+y′)

is non-zero only if

(x, x′), (y, y′), (−(2 + x+ y),−(15 + x′ + y′)) are a permutation of(3, 10), (10, 3), (15, 2).

This reduces the sum to 6 terms:

τ([p15, a]b
∗q2) + τ([p15, b]a

∗q2) =
ε20(1− ε15)(ε0 + 1)(ε10 − 1)

1− ε5

+
ε20(1− ε15)(ε25 + 1)(ε15 − 1)

1− ε5

+
ε4(1− ε15)(ε6 + 1)(ε20 − 1)

1− ε19

+
ε4(1− ε15)(ε5 + 1)(ε21 − 1)

1− ε19

+ 0

+ 0

= −6i

√
35 + 13

√
5−

√
30(65 + 29

√
5).

Since this is nonzero, it follows that the a we constructed does not satisfy the third order
relations. ■
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We conclude with a corollary showing that, for n = 30, the dimension of any differentiable
family of complex Hadamard matrices containing

√
nFn is strictly less than the dimension

of the enveloping tangent space T̃√
nFn

H(n) (i.e., the defect of Fn). This is particularly

surprising since the space T̃√
nFn

H(n) admits a basis of directions of convergence for one-
parameter analytic families of complex Hadamard matrices (see [14]).

In other words, the d(F30) = 135 independent one-parameter families of Hadamard de-
formations of

√
30F30 found in [14] cannot be ”joined” into a 135-dimensional family of

Hadamard deformations of
√
30F30. Recall that H(30) denotes the set of complex Hadamard

matrices of size 30.

Corollary 6.1. Let J ⊂ R be an open interval containing 0. There does not exist a
differentiable map f : J135 → H(30), such that f(0, 0, ....0) =

√
30F30 and such that the

partial derivatives ∂if(0, 0, ..., 0) are linearly independent (over R) for 1 ≤ i ≤ 135.

Proof. Assume, by contradiction, that such a map f exists. Denote g(t) = 1√
30
f(t)F ∗

30 for

all t ∈ J . Then g is differentiable, unitary-valued, and g(0, 0, ..., 0) = I30. Moreover, since
g(t, 0, 0, 0, ...), g(0, t, 0, 0, ..), g(0, 0, t, 0, ...), etc are families of unitaries satisfying the hypoth-
esis of Proposition 5.2. (for any sequence of t’s approaching 0), it follows that their directions
of convergence (which are nonzero scalar multiples of ∂1g(0, 0, ..., 0), ∂2g(0, 0, ..., 0), ∂3g(0, 0, ..., 0),
etc) belong to A30.

Since ∂if(0, 0, ..., 0) are linearly independent (over R), it follows that ∂ig(0, 0, ..., 0) are
linearly independent elements of A30 (over R), for 1 ≤ i ≤ 135. The dimension of the
real vector space A30 is the defect of F30, which is known to be 135. Hence ∂ig(0, 0, ..., 0),
1 ≤ i ≤ 135, form a basis for A30.

Consider the element a = q3p10 + q10p3 + q15p2 − (q−3p−10 + q−10p−3 + q−15p−2) that we
constructed in Theorem 6.1. Since a ∈ A30, there exist real numbers ri, 1 ≤ i ≤ 135, with
a =

∑135
i=1 ri∂ig(0, 0, ..., 0).

The map t → g(r1t, r2t, r3t, ...) is well defined on a neighborhood of 0 included in J , and
its derivative at 0 is

∑135
i=1 ri∂ig(0, 0, ..., 0) = a. Since the unitaries g(r1t, r2t, r3t, ...) satisfy

the hypothesis of Theorem 5.1 for any sequence of t’s approaching 0, and the corresponding
direction of convergence is a nonzero scalar multiple of ∂tg(r1t, r2t, r3t, ...)|t=0 = a, it follows
that the direction of convergence must be a

∥a∥ . By Theorem 5.1 we have that a
∥a∥ satisfies

the third order relations, contradicting Theorem 6.1.
■
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