
QUANTUM GROUPS AND HADAMARD MATRICES

TEODOR BANICA AND REMUS NICOARA

Abstract. To any complex Hadamard matrix we associate a quantum permu-
tation group. The correspondence is not one-to-one, but the quantum group
encapsulates a number of subtle properties of the matrix. We investigate various
aspects of the construction: compatibility to product operations, characterization
of matrices which give usual groups, explicit computations for small matrices.

Introduction

A complex Hadamard matrix is a matrix h ∈ Mn(C), having the following prop-
erty: entries are on the unit circle, and rows are mutually orthogonal. Equivalently,
n−1/2h is a unitary matrix with all entries having the same absolute value.

The basic example is the Fourier n × n matrix, given by Fij = wij , where w =

e2πi/n. There are many other examples, but there is no other known family of
complex Hadamard matrices that exist for every n.

These matrices are related to several questions:

(1) The story begins with work of Sylvester, who studied real Hadamard matrices
[S]. These have ±1 entries, and can be represented as black and white
pavements of a n × n square. Such a matrix must have order n = 2 or
n = 4k, and the main problem here is whether there are such matrices for
any k. At the time of writing, the verification goes up to k = 166.

(2) One can try to replace the ±1 entries by numbers of the form ±1,±i, or by
n-th roots of unity (the Fourier matrix appears), or by roots of unity of ar-
bitrary order. These are natural generalizations of real Hadamard matrices,
first investigated by Butson in the sixties [Bu].

(3) The matrices with arbitrary complex entries appeared in the eighties. Popa
discovered that such a matrix gives rise to the operator algebra condition
∆ ⊥ h∆h∗, where ∆ ⊂ Mn(C) is the algebra of diagonal matrices [Po]. Then
work of Jones led to the conclusion that associated to h are the following
objects: a statistical mechanical model, a knot invariant, a subfactor, and
a planar algebra. The computation of algebraic invariants for these objects
appears to be remarkably subtle and difficult. See [J].

(4) In the meantime, motivated by a problem of Enflo, Björck discovered that
circulant Hadamard matrices correspond to cyclic n-roots, and started to
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construct many examples [Bj]. In a key paper, Haagerup proved that for
n = 5 the Fourier matrix is the only complex Hadamard matrix, up to per-
mutations and multiplication by diagonal unitaries [H]. Self-adjoint complex
Hadamard matrices of order 6 have been recently classified [BN].

(5) Another important result is that of Petrescu, who discovered a one-parameter
family at n = 7, providing a counterexample to a conjecture of Popa regard-
ing the finiteness of the number of complex Hadamard matrices of prime
dimension [Pe]. The notion of deformation is further investigated in [N].

(6) Several applications of complex Hadamard matrices were discovered in the
late nineties. These appear in a remarkable number of areas of mathemat-
ics and physics, and the various existence and classification problems are
fast evolving. See [TZ] for a catalogue of most known complex Hadamard
matrices and a summary of their applications.

The purpose of this paper is to present a definition for what might be called
symmetry of a Hadamard matrix. This is done by associating to h a certain Hopf
algebra A. This algebra is of a very special type: it is a quotient of Wang’s quantum
permutation algebra [Wa2]. In other words, we have the heuristic formula A = C(G),
where G is a quantum group which permutes the set {1, . . . , n}.

As an example, the Fourier matrix gives G = Zn. In the general case G doesn’t
really exist as a concrete object, but some partial understanding of the quantum
permutation phenomenon is available, via methods from finite, compact and discrete
groups, subfactors, planar algebras, low-dimensional topology, statistical mechanical
models, classical and free probability, geometry, random matrices etc. See [BB],
[BBC], [BC1], [BC2] and the references there. The hope is that the series of papers on
the subject will grow quickly, and evolve towards the Hadamard matrix problematics.
A precise comment in this sense is made in the last section.

Finally, let us mention that the fact that Hadamard matrices produce quantum
groups is known since [Ba1], [Wa2]. The relation between coinvolutive compact
quantum groups, abstract statistical mechanical models and associated commuting
squares, subfactors and standard λ-lattices is worked out in [Ba2]. Another result is
the one in [Ba3], where a Tannaka-Galois type correspondence between spin planar
algebras and quantum permutation groups is obtained. In both cases the situations
discussed are more general than those involving Hadamard matrices, where some
simplifications are expected to appear. However, the whole subject is quite technical,
and it is beyond our purposes to discuss the global picture. This paper should be
regarded as an introduction to the subject.

The paper is organized as follows. 1 is a quick introduction to quantum permuta-
tion groups. 2 contains a few basic facts regarding complex Hadamard matrices, the
construction of the correspondence, and the computation for the Fourier matrix. In
3-6 we investigate several aspects of the correspondence: compatibility between ten-
sor products of quantum groups and of Hadamard matrices, the relation with magic
squares, characterization of matrices which give usual groups, explicit computations
for small matrices, and some comments about subfactors and deformation.
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1. Quantum permutation groups

This section is an introduction to A(Sn), the algebra of free coordinates on the
symmetric group Sn. This algebra was discovered by Wang in [Wa2].

The idea of noncommuting coordinates goes back to Heisenberg, the specific idea
of using algebras of free coordinates on algebraic groups should be attributed to
Brown, and a detailed study of these algebras, from a K-theoretic point of view, is
due to McClanahan. Brown’s algebras are in fact too big, for instance they have
no antipode, and the continuation of the story makes use of Woronowicz’s work
on the axiomatization of compact quantum groups. The first free quantum groups,
corresponding to Un and On, appeared in Wang’s thesis. The specific question about
free analogues of Sn was asked by Connes. See [Br], [M], [Wa1], [Wa2].

We can see from this brief presentation that the algebra A(Sn) we are interested in
comes somehow straight from Heisenberg, after a certain period of time. In fact, as
we will see now, the background required in order to define A(Sn) basically reduces
to the definition of C∗-algebras, and to some early work on the subject:

Let A be a C∗-algebra. That is, we have a complex algebra with a norm and an
involution, such that Cauchy sequences converge, and ||aa∗|| = ||a||2.

The basic example is B(H), the algebra of bounded operators on a Hilbert space
H. In fact, any C∗-algebra appears as subalgebra of some B(H).

The key example is C(X), the algebra of continuous functions on a compact space
X. This algebra is commutative, and any commutative C ∗-algebra is of this form.

The above two statements are results of Gelfand-Naimark-Segal and Gelfand.
The proofs make use of standard results in commutative algebra, complex analysis,
functional analysis, and measure theory. The relation between the two statements
is quite subtle, and comes from the spectral theorem for self-adjoint operators. The
whole material can be found in any book on operator algebras.

Wang’s idea makes a fundamental use of the notion of projection:

Definition 1.1. Let A be a C∗-algebra.

(1) A projection is an element p ∈ A satisfying p2 = p = p∗.
(2) Two projections p, q ∈ A are called orthogonal when pq = 0.
(3) A partition of unity is a set of orthogonal projections, which sum up to 1.

A projection in B(H) is an orthogonal projection P (K), where K ⊂ H is a closed
subspace. Orthogonality of projections corresponds to orthogonality of subspaces,
and partitions of unity correspond to decompositions of H.

A projection in C(X) is a characteristic function χ(Y ), where Y ⊂ X is an
open and closed subset. Orthogonality of projections corresponds to disjointness of
subsets, and partitions of unity correspond to partitions of X.
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Definition 1.2. A magic unitary is a square matrix u ∈ Mn(A), all whose rows

and columns are partitions of unity in A.

The terminology comes from a vague similarity with magic squares, to be investi-
gated later on. For the moment we are rather interested in the continuing the above
classical/quantum analogy, for projections and partitions of unity:

A magic unitary over B(H) is of the form P (Kij), with K magic decomposition
of H, in the sense that all rows and columns of K are decompositions of H. The
basic examples here are of the form Kij = C ξij, where ξ is a magic basis of H, in
the sense that all rows and columns of ξ are bases of H.

A magic unitary over C(X) is of the form χ(Yij), with Y magic partition of X, in
the sense that all rows and columns of Y are partitions of X. The key example here
comes from a finite group G acting on a finite set X: the characteristic functions
χij = {σ ∈ G | σ(j) = i} form a magic unitary over C(G).

In the particular case of the symmetric group Sn acting on {1, . . . , n}, we have
the following presentation result, which follows from the Gelfand theorem:

Theorem 1.1. C(Sn) is the universal commutative C∗-algebra generated by n2 ele-

ments χij, with relations making (χij) a magic unitary matrix. Moreover, the maps

∆(χij) =
∑

χik ⊗ χkj

ε(χij) = δij

S(χij) = χji

are the comultiplication, counit and antipode of C(Sn).

In other words, when regarding Sn as an algebraic group, the relations satisfied
by the n2 coordinates are those expressing magic unitarity. Indeed, the characterstic
functions χij are nothing but the n2 coordinates on the group Sn ⊂ On, where the
embedding is the one given by permutation matrices.

See the preliminary section in [BBC] for a proof of the above result, and the
introduction of [BC2] for more comments on the subject.

We are interested in the algebra of free coordinates on Sn. This is obtained by
removing commutativity in the above presentation result:

Definition 1.3. A(Sn) is the universal C∗-algebra generated by n2 elements xij,

with relations making (xij) a magic unitary matrix. The maps

∆(xij) =
∑

xik ⊗ xkj

ε(xij) = δij

S(xij) = xji

are called the comultiplication, counit and antipode of A(Sn).

This algebra, discovered by in [Wa2], fits into the quantum group formalism devel-
oped by Woronowicz in [Wo1], [Wo2]. In fact, the quantum group Gn defined by the
formula A(Sn) = C(Gn) is a free analogue of the symmetric group Sn. This quan-
tum group doesn’t exist of course: the idea is just that various properties of A(Sn)
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can be expressed in terms of it. As an example, the canonical map A(Sn) → C(Sn)
should be thought of as coming from an embedding Sn ⊂ Gn.

Proposition 1.1. For n = 1, 2, 3 we have A(Sn) = C(Sn).

This follows from the fact that for n ≤ 3, the entries of a n × n magic unitary
matrix have to commute. For instance at n = 2 the matrix must be of the form

u =

(

p 1 − p
1 − p p

)

where p is a projection, and entries of this matrix obviously commute.
The result is no longer true for n = 4, where more complicated examples of magic

unitary matrices are available, for instance via diagonal concatenation:

u =









p 1 − p 0 0
1 − p p 0 0

0 0 q 1 − q
0 0 1 − q q









In fact, A(Sn) with n ≥ 4 is not commutative, and infinite dimensional.
Consider now an arbitrary magic unitary matrix u ∈ Mn(A). We say that u is a

corepresentation of A if its coefficients generate A, and if the formulae

∆(uij) =
∑

uik ⊗ ukj

ε(uij) = δij

S(uij) = uji

define morphisms of C∗-algebras. These morphisms have by definition values in the
algebras A ⊗ A, C and Aop, and they are uniquely determined if they exist. In case
they exist, these morphisms make A into a Hopf algebra in the sense of [Wo1].

This notion provides an axiomatization for quotients of A(Sn):

Definition 1.4. A quantum permutation algebra is a C ∗-algebra A, given with a

magic unitary corepresentation u ∈ Mn(A).

We have the following purely combinatorial approach to these algebras:
Recall first that the unitary representations of a discrete group L are in correspon-

dence with representations of the group algebra C ∗(L). The same is known to hold
for discrete quantum groups, so we have a correspondence between representations

Ln → U(H)
A(Sn) → B(H)

where Ln is the discrete quantum group whose group algebra is A(Sn). We can
therefore consider the quantum permutation algebra A = C ∗ (Im(Ln)).

All this is quite heuristic, but the construction of A is definitely possible:

Definition 1.5. Associated to a representation π : A(Sn) → B(H) is the smallest

quantum permutation algebra Aπ realizing a factorization of π.
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In this definition we assume of course that the morphism making π factorize is
the canonical one, given by xij → uij. The construction of Aπ is standard, for
instance by taking the quotient of A(Sn) by an appropriate Hopf algebra ideal. The
uniqueness up to isomorphism is also clear. See [Ba1].

We have the following examples:

(1) For the counit representation π : A(Sn) → C we get Aπ = C.
(2) For a faithful representation π : A(Sn) ⊂ B(H) we get Aπ = A(Sn).
(3) If A is a quantum permutation algebra, A ⊂ B(H), and π : A(Sn) → A is a

surjective representation of A(Sn), then Aπ = A.

These examples are all trivial. Note however that the third one has the following
interesting consequence:

Proposition 1.2. Any quantum permutation algebra is of the form Aπ.

Proof. Let A be a quantum permutation algebra. We can compose the canonical
quotient map A(Sn) → A with an embedding A ⊂ B(H), say given by the GNS
theorem, and we get a representation π as in the statement. �

2. Hadamard matrices

Let h ∈ Mn(C) be an Hadamard matrix. This means that all entries of h have
modulus 1, and that rows of h are mutually orthogonal. In other words, we have

h =









h1

h2

. . .
hn









where the vectors hi are formed by complex numbers of modulus 1, and are orthog-
onal with respect to the usual scalar product of C

n, given by:

< x, y >= x1ȳ1 + . . . + xnȳn

It follows from definitions that the columns of h are orthogonal as well.
We have the following characterization of such matrices:

Proposition 2.1. For a matrix h ∈ Mn(C), the following are equivalent:

(1) h is an Hadamard matrix.

(2) n−1/2h is a unitary matrix, all whose entries have same modulus.

We should mention that in the operator algebra literature, it is rather n−1/2h
that is called Hadamard. The other warning is that in the combinatorics literature,
the Hadamard matrices are just the real ones, meaning those having ±1 entries. We
hope that the hybrid terminology used in this paper won’t cause any trouble.

We use capital letters to denote explicit Hadamard matrices. The first example,
which is in fact the only basic example, is the Fourier matrix:

Definition 2.1. The Fourier matrix of order n is given by Fij = wij, where w =

e2πi/n.
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We have a natural equivalence relation for Hadamard matrices, given by h ∼ k if
one can pass from h to k by permutations of rows and columns, and by multiplica-
tions of rows and columns by complex numbers of modulus 1. See [TZ].

For n = 1, 2, 3, 5 any Hadamard matrix is equivalent to the Fourier one, see [H].
At n = 4 we have the following example, depending on q on the unit circle:

Mq =









1 1 1 1
1 q −1 −q
1 −1 1 −1
1 −q −1 q









These are, up to equivalence, all 4 × 4 Hadamard matrices. As an example, the
Fourier matrix corresponds to the value q = ±i. See Haagerup [H].

At n = 6 we have several examples, as for instance:

H =

















i 1 1 1 1 1
1 i 1 −1 −1 1
1 1 i 1 −1 −1
1 −1 1 i 1 −1
1 −1 −1 1 i 1
1 1 −1 −1 1 i

















This matrix appears in the paper of Haagerup [H]. Another example appears in

the paper of Tao [T]. This is given by the following formula, with w = e2πi/3:

T =

















1 1 1 1 1 1
1 1 w w w2 w2

1 w 1 w2 w2 w
1 w w2 1 w w2

1 w2 w2 w 1 w
1 w2 w w2 w 1

















Observe that the Fourier, Haagerup and Tao matrices are based on certain roots
of unity. We have here the following notion:

Definition 2.2. The Butson class Hl(n) consists of Hadamard matrices h ∈ Mn(C)
having the property hl

ij = 1 for any i, j.

In this definition l is a positive integer. It is convenient to use as well the notation
H∞(n), for the class of all n × n Hadamard matrices. Here are a few examples:

(1) The Fourier matrix is in Hn(n).
(2) The Haagerup matrix is in H4(6).
(3) The Tao matrix is in H3(6).
(4) The real Hadamard matrices are in H2(n).
(5) The matrix M(q) is in Hl(4), where l is the order of q2.

We call n size, and l level. In lack of some better idea, the complexity of an
Hadamard matrix will be measured by its size and level, the size coming first.
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At infinite level the self-adjoint matrices of order 6 are classified in [BN]. The
complete list of Hadamard matrices at n = 6 is not known.

We end this discussion with the following well-known fact:

Proposition 2.2. Each Hadamard matrix is equivalent to a Hadamard matrix which

is dephased, meaning that the first row and column and the diagonal consist of 1’s.

Consider now an arbitrary Hadamard matrix h ∈ Mn(C). The rows of h, denoted
as usual h1, . . . , hn, can be regarded as elements of the algebra C

n.
Since each hi is formed by complex numbers of modulus 1, this element is invert-

ible. We can therefore consider the following matrix of elements of C
n:

ξij =
hj

hi

The scalar products on rows of ξ are computed as follows:

< ξij, ξik > = < hj/hi, hk/hi >
= n < hj , hk >
= n · δjk

In other words, each row of ξ is an orthogonal basis of C
n. A similar computation

works for columns, so ξ is a magic basis of C
n. Thus we can apply the procedure

from previous section, and we get a magic unitary matrix, a representation, and a
quantum permutation algebra:

Definition 2.3. Let h ∈ Mn(C) be an Hadamard matrix.

(1) ξ(h) is the magic basis given by ξij = hj/hi.

(2) P (h) is the magic unitary given by Pij = P (ξij).
(3) πh is the representation given by πh(uij) = Pij.

(4) A(h) is the quantum permutation algebra associated to π.

In other words, associated to h are the rank one projections P (hj/hi), which form
a magic unitary over Mn(C). We consider the corresponding representation

π : A(Sn) → Mn(C)

we say that this comes from a representation Ln → U(n) of the dual of the n-th
quantum permutation group, and we consider the algebra A = C ∗(Im(Ln)).

It is routine to check that equivalent Hadamard matrices h1, h2 give the same al-
gebra, A(h1) = A(h2). This is because the standard equivalence operations, namely
permutation of rows and columns, and multiplication or rows and columns by scalars
of modulus 1, give conjugate magic unitaries, hence conjugate representations of
A(Sn). As for the converse, this is expected not to hold, see the conclusion.

As a first example, consider the Fourier matrix:

Theorem 2.1. For the Fourier matrix F of order n we have A(F ) = C(Zn).

Proof. We have the following computation, where ρ = (w,w2, . . . , wn):

Fij = wij ⇒ Fi = ρi
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⇒ ξij = ρj−i

⇒ Pij = P (ρj−i)

Consider the cycle c(i) = i − 1. We regard Zn = {0, 1, . . . , n − 1} as a subgroup
of Sn, via the embedding k → ck. Consider the following diagram:

A(Sn) → Mn(C)

↓ ↑

C(Sn) −→ C(Zn)

We define the connecting maps in the following way:

(1) The map A(Sn) → Mn(C) is the representation π.
(2) The map A(Sn) → C(Sn) is the canonical one, given by xij → χij.
(3) The map C(Sn) → C(Zn) is the transpose of Zn ⊂ Sn.
(4) The map C(Zn) → Mn(C) is given by δk → P (ρk).

We compute the image of χij by the third map:

Im(χij) = Im(χ{σ | σ(j) = i})

= χ{k | ck(j) = i}
= χ{k | j − k = i}
= δj−i

Thus at level of generators, we have the following diagram:

xij → P (ρj−i)

↓ ↑

χij −→ δj−i

This diagram commutes, so the above diagram of algebras commutes as well.
Thus we have a factorization of π through the quantum permutation algebra C(Zn).
Moreover, this algebra is the minimal one making π factorize, for instance because
it is isomorphic to the image of π. This gives the result. �

3. Tensor products

Given two Hadamard matrices h ∈ Mn(C) and k ∈ Mm(C), we can consider their
tensor product. This is an element as follows:

h ⊗ k ∈ Mn(C) ⊗ Mm(C)

In order to view h ⊗ k as a usual matrix, we have to identify the algebra on the
right with the matrix algebra Mnm(C). This isomorphism is not canonical, so we
proceed as follows: given h, k, we define h ⊗ k ∈ Mnm(C) by the formula

(h ⊗ k)ia,jb = hijkab
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where double indices ia, jb ∈ {1, . . . , nm} come from indices i, j ∈ {1, . . . , n} and
a, b ∈ {1, . . . m}, via some fixed decomposition of the index set. Most convenient
here is to use the lexicographic decomposition: {1, 2, . . . , nm} = {11, 12, . . . , nm}.

It is well-known that the above two definitions of h ⊗ k coincide.

Proposition 3.1. h ⊗ k is an Hadamard matrix.

Proof. We can use for instance Proposition 2.1: since h, k are Hadamard matrices,
n−1/2h,m−1/2k are unitaries. Now the tensor product of two unitaries being a
unitary, we get that (nm)−1/2h ⊗ k is unitary, so h ⊗ k is Hadamard. �

It is known from [BB] that various operations at level of combinatorial objects
lead to similar operations at level of quantum permutation algebras. In this section
we prove such a result for tensor products of Hadamard matrices:

Theorem 3.1. We have A(h ⊗ k) = A(h) ⊗ A(k).

Proof. It is convenient here to use tensor product notations, at the same time with
bases and indices. We use the lexicographic identification of Hilbert spaces

C
n ⊗ C

m = C
nm

ei ⊗ ea = eia

along with the corresponding identification of operator algebras:

Mn(C) ⊗ Mm(C) = Mnm(C)
eij ⊗ eab = eia,jb

We denote by ξ, P, π the objects associated in Definition 2.3 to h, k, h ⊗ k, with
the choice of indices telling which is which. We have the following computation:

(1) The ia-th row of h ⊗ k is given by (h ⊗ k)ia = hi ⊗ ka.
(2) The corresponding magic basis is given by ξia,jb = ξij ⊗ ξab.
(3) The corresponding magic unitary is given by Pia,jb = Pij ⊗ Pab.

Consider now the factorizations associated to h, k:

A(Sn) → A(h) → Mn(C)

A(Sm) → A(k) → Mn(C)

These are given by the following formulae:

xij → uij → Pij

xab → uab → Pab

We can form the tensor product of these maps, then we add to the picture the
factorization associated to h ⊗ k, along with two vertical arrows:

A(Sn) ⊗ A(Sm) → A(h) ⊗ A(k) → Mn(C) ⊗ Mm(C)
↑ ↓

A(Snm) → A(h ⊗ k) → Mnm(C)

Here the arrow on the right is the identification mentioned in the beginning of
the proof. As for the arrow on the left, this is constructed as follows. Recall first
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that A(Snm) is the universal algebra generated by the entries of a nm × nm magic
unitary matrix xia,jb. The matrix xij ⊗ xab being a magic unitary as well, we get a
morphism of algebras mapping xia,jb → xij ⊗ xab, that we put at left.

At level of generators, we have the following diagram:

xij ⊗ xab → uij ⊗ uab → Pij ⊗ Pab

↑ ↓
xia,jb → uia,jb → Pia,jb

This diagram commutes, so the above diagram of algebras commutes as well. Thus
the factorization associated to h⊗k factorizes through the algebra A(h)⊗A(k). Now
since A(h ⊗ k) is the minimal algebra producing such a factorization, this gives a
morphism A(h) ⊗ A(k) → A(h ⊗ k), mapping uij ⊗ uab → uia,jb.

This morphism is surjective, because the elements uia,jb generate the algebra
A(h⊗k). Now since A(h⊗k) makes a factorization of the representation associated
to h⊗k, this algebra produces as well factorizations of the representations associated
to h, k. Thus our morphism is injective, and this gives the result. �

As a first application, we can start classification work for small Hadamard ma-
trices. Recall from previous section that each matrix has a size n and a level l,
according to the formula h ∈ Hl(n) with l minimal, and that we decided to list
matrices in terms of n, l, with n coming first. The situation is as follows:

(1) For n = 1, 2, 3 there is only one matrix, namely the Fourier one. As shown
by Theorem 2.1, this matrix produces the algebra C(Zn).

(2) For n = 4 the smallest possible level is l = 2. We have here the matrices
Mq, with parameter q = ±1.

(3) The next possible level is l = 4. We have here the matrices Mq with q = ±i,
both equivalent to the Fourier matrix, which gives C(Z4).

Thus at nl ≤ 44, we have just two matrices left. But these can be investigated by
using Theorem 3.1:

Corollary 3.1. For q = ±1, the Hadamard matrix

Mq =









1 1 1 1
1 q −1 −q
1 −1 1 −1
1 −q −1 q









produces the algebra C(Z2 × Z2).

Proof. The 2 × 2 Fourier matrix is given by Fij = (−1)ij , so we have:

F =

(

−1 1
1 1

)

Consider the tensor square of F , given by (F ⊗ F )ia,jb = FiaFjb. As for F , this
is a ±1 matrix. Now since the −1 entry of F appears on the 11 position, the −1
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entries of F ⊗ F appear on positions (ia, jb) satisfying ij = 11 or ab = 11, with the
position (11, 11) excluded. There are six such positions:

(11, 12), (11, 21), (12, 11), (12, 12), (21, 11), (21, 21)

Now by using the lexicographic identification {1, 2, 3, 4} = {11, 12, 21, 22}, these
six positions are 12,13,21,22,31,33. This gives the following formula:

F ⊗ F =









1 −1 −1 1
−1 −1 1 1
−1 1 −1 1
1 1 1 1









By permuting rows and columns of this matrix we can get both matrices in the
statement. The result follows from Theorem 2.1 and Theorem 3.1, by using the
canonical identification C(Z2) ⊗ C(Z2) = C(Z2 × Z2). �

4. Magic squares

In this section and in next one we investigate the case when A is commutative.
In this situation, we must have A = C(G), for a certain subgroup G ⊂ Sn.

We already know that A is commutative for the Fourier matrix, where we have
G = Zn, and for the matrix Mq with q = ±1, where we have G = Z2 × Z2. In fact,
these two examples are the only ones that have been investigated so far. This makes
our general problem quite unclear, because we have no counterexample.

Let us go back however to proof of Theorem 2.1. A careful examination shows
that the proof relies on the fact that P is a circulant matrix. The idea will be to
generalize this proof, with “circulant” replaced by “magic”.

Let us first recall the following well-known definition:

Definition 4.1. A magic square is a square matrix σ, having as entries the numbers

1, . . . , n, such that each row and each column of σ is a permutation of 1, . . . , n.

We assume that all magic squares are normalized, in the sense that the first row

is (1, . . . , n), and the diagonal is (1, . . . , 1).

In this definition, we use the fact that it is always possible to normalize a magic
square: a permutation of the columns makes the first row (1, . . . , n), then a permu-
tation of the rows makes the diagonal (1, . . . , 1).

As a first example, we have the n × n circulant matrix σ(i, j) = j − i, with
j − i ∈ {1, . . . , n} taken modulo n. Here is another example:

σ =









1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1









The magic squares produce magic unitaries, in the following way:

Proposition 4.1. If E = (E1, . . . , En) is a partition of unity with rank one projec-

tions and σ = σ(i, j) is a magic square, then (Eσ)ij = Eσ(i,j) is a magic unitary.
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In other words, Eσ is obtained by putting E superscripts to elements of σ. For
instance the above 4 × 4 matrix gives:

Eσ =









E1 E2 E3 E4

E2 E1 E4 E3

E3 E4 E1 E2

E4 E3 E2 E1









In the above statement, the condition that σ is normalized is not necessary; nor
the fact that the projections Ei are of rank one. We make these assumptions for
some technical reasons, to become clear later on.

We denote by σ1, . . . , σn the rows of a magic square σ, and we regard them as
permutations of {1, . . . , n}. For instance, for the above 4 × 4 matrix we get:

σ1 =
(

1 2 3 4
)

σ2 =
(

2 1 4 3
)

σ3 =
(

3 4 1 2
)

σ4 =
(

4 3 2 1
)

With these notations, we have the following result about commutativity, which
deals with a slightly more general situation than that of Hadamard matrices:

Theorem 4.1. For a representation π : A(Sn) → Mn(C) having the property that

Pij = π(xij) are rank one projections, the following are equivalent:

(1) Aπ is commutative.

(2) Aπ = C(G), for a certain subgroup G ⊂ Sn.

(3) P = Eσ, for a certain partition of unity E and magic matrix σ.

Moreover, in this situation G is the group generated by the rows of σ.

Proof. Assume that A = Aπ is commutative. The algebra Im(π) being a quotient
of A, it is commutative as well. Thus the projections Pij mutually commute.

On the other hand, two rank one projections commute if and only if their images
are equal, or orthogonal. Together with the magic unitarity of P , this shows that
each row of P is a permutation of the first row.

So, consider the first row of P , regarded as a partition of unity:

E = (E1, . . . , En)

By the above remark, the i-th row of P must be of the following form:

Eσi
= (Eσi(1), . . . , Eσi(n))

Here σi ∈ Sn is a certain permutation. Now the formula σ(i, j) = σi(j) defines a
matrix σ, which is magic. With the above E and this matrix σ, we have P = Eσ.

In other words, we have (1) ⇒ (3). Also, the last assertion implies (2), which in
turn implies (1). So, it remains to prove that (3) implies the last assertion.
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Consider the following diagram, where X = {σ1, . . . , σn} is the subset of Sn

formed by rows of σ:
A(Sn) → Mn(C)

↓ ↑

C(Sn) −→ C(X)

We define the connecting maps in the following way:

(1) The map A(Sn) → Mn(C) is the representation π.
(2) The map A(Sn) → C(Sn) is the canonical one, given by xij → χij.
(3) The map C(Sn) → C(X) is the transpose of X ⊂ Sn.
(4) The map C(X) → Mn(C) is given by δσk

→ Ek.

We compute the image of χij by the third map:

Im(χij) = Im(χ{σ | σ(j) = i})
= χ{σk | σk(j) = i}
= δσσ(i,j)

Thus at level of generators, we have the following diagram:

xij → Eσ(i,j)

↓ ↑

χij −→ δσσ(i,j)

This diagram commutes, so the above diagram of algebras commutes as well. Now
since C(Sn) is a Hopf algebra, the Hopf algebra Aπ we are looking for must be a
quotient of it. In other words, we must have A = C(G), where G is a subgroup of
Sn. On the other hand, from minimality of Aπ we get that this algebra must be the
minimal one containing C(X). Thus G is the group generated by X. �

As an illustration, we get new proofs for Theorem 2.1 and Corollary 3.1:

(1) For the Fourier matrix we have P = Eσ, where σ is the magic square given
by σ(i, j) = j − i, and E is the first row of P . We have σi = ci, where c is
the cycle c(i) = i − 1, so we get the group {1, c, . . . , cn−1} = Zn.

(2) For the matrix Mq with q = ±1 we have P = Eσ, where σ is the 4×4 matrix
in the beginning of this section, and E is the first row of P . We get the
group formed by rows of σ, namely {σ1, σ2, σ3, σ4} ' Z2 × Z2.

In the general case, the construction σ → π → Aπ is not understood. Some
comments in this sense are presented in the end of next section.

5. The commutative case

We have now all ingredients for answering the question raised in the beginning of
previous section. The result is as follows:
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Theorem 5.1. For an Hadamard matrix h, the following are equivalent:

(1) A is commutative.

(2) h is a tensor product of Fourier matrices.

Proof. The statement is of course up to equivalence of Hadamard matrices. We use
this fact several times in the proof, without special mention: that is, we agree to
allow suitable permutations of rows and columns of h, as well as multiplication of
rows and columns by scalars of modulus one.

(2) ⇒ (1): this follows from Theorem 2.1 and Theorem 3.1.
(1) ⇒ (2): assume that A is commutative. Theorem 4.1 tells us that we have

P = Eσ, for a certain magic square σ. Here E is a certain partition of unity, but
since σ is normalized, E must be the first row of P .

We have Pij = P (hj/hi), so the condition P = Eσ becomes:

P

(

hj

hi

)

= P

(

hσ(i,j)

h1

)

By using Proposition 2.2. we can assume h1 = 1. This gives:

P

(

hj

hi

)

= P
(

hσ(i,j)

)

Now two rank one projections being equal if and only if the corresponding vectors
are proportional, we must have complex scalars λij such that:

hj

hi
= λij hσ(i,j)

Now remember that the row vectors hi have entries of modulus one, so they are
elements of the group T

n, where T is the unit circle. We denote by Hi ∈ T
n/T their

images modulo constant vectors in T
n. The above condition becomes:

Hj

Hi
= Hσ(i,j)

This relation shows that X = {H1, . . . ,Hn} is stable by quotients. Since X
contains as well the neutral element H1, it must be a subgroup of T

n/T.
Now since X is an abelian group, it must be a product of cyclic groups, and we

can proceed as follows:
(1) Assume first that we have X ' Zn. We can permute rows of h, as to have

Hi = Hi−1 for any i, for a certain element H ∈ T
n/T. This gives hi = λiρ

i−1 for
any i, for a certain element ρ ∈ T

n, and certain scalars λi. Now since the vectors hi

are orthogonal, their multiples ρi−1 must be orthogonal as well.
Consider now the vector ρ. Its image in T

n/T has order n, so by multiplying h
by a suitable scalar, we may assume that we have ρn = 1. In other words, we have
ρ = (wi), where each wi is a n-th root of unity.

Now from the relation ρi−1 ⊥ ρj−1 for 1 ≤ i < j ≤ n we get that the sum of k-th
powers of the numbers wi vanishes, for 1 ≤ k < n. This shows that the product of
degree one polynomials X − wi is the polynomial Xn − 1, so the set of numbers wi
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is the set of n-th roots of unity. Thus by permuting rows of h we can assume that
we have wi = wi, with w = e2πi/n.

Now the relation hi = λiρ
i−1 tells us that h is obtained from the Fourier matrix

by multiplying rows by scalars. Thus h is equivalent to the Fourier matrix.
(2) Assume now that we have X ' Y ×Z, for certain groups Y,Z. By replacing n

by nm and single indices by double indices, we can assume that we have Hia = KiLa,
where Y = {K1, . . . ,Kn} and Z = {L1, . . . , Lm} are subgroups of T

nm/T.
We take now arbitrary lifts k1, . . . , kn and l1, . . . , lm for the elements of Y,Z. The

formula Hia = KiLa becomes hia = λiakila, for certain scalars λia. Now these vectors
being orthogonal, by keeping a fixed we get that the vectors ki are orthogonal, so k
is an Hadamard matrix. Also, with i fixed we get that l is an Hadamard matrix.

On the other hand, we can get rid of the scalars λij by multiplying rows of h by
their inverses. Thus we have hia = kila, where k, l are Hadamard matrices.

With notations from previous section, this gives h = k ⊗ l.
(3) We can conclude now by induction. Assume that the statement is proved for

n < N , and let h be a Hadamard matrix of order N . In the case X ' ZN we can
apply (1) and we are done. If not, we have X ' Y ×Z as in (2), so we get h = k⊗ l.
Now Theorem 3.1 gives A(h) = A(k) ⊗ A(l), so both A(k), A(l) are commutative.
Thus we can apply the induction assumption, and we are done. �

The permutation groups coming from arbitrary magic squares can be non-abelian.
Consider for instance the following matrix:

σ =













1 2 3 4 5
3 1 2 5 4
4 5 1 3 2
2 4 5 1 3
5 3 4 2 1













The rows of this matrix generate the group S5, which cannot be obtained by using
5 × 5 Hadamard matrices, because of [H]. In general, we don’t know what are the
groups which can appear from the magic square construction.

The other question is about what happens to Theorem 4.1 when the rank one
assumption is removed. Once again, we don’t know the answer.

6. Small matrices

We recall from [H] that for n = 1, 2, 3, 5 the only Hadamard matrix is the Fourier
one, and that at n = 4 we have only the matrices Mq, with |q| = 1:

Mq =









1 1 1 1
1 q −1 −q
1 −1 1 −1
1 −q −1 q









By results in previous sections, for parameters q satisfying q4 = 1, this matrix Mq

produces a commutative algebra:
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(1) For q = ±1 we get C(G), with G = Z2 × Z2.
(2) For q = ±i we get C(G), with G = Z4.

Now remember that for a finite abelian group G, the algebra of complex functions
C(G) is canonically isomorphic to the group algebra C ∗(G). The isomorphism is
given by the discrete Fourier transform in the case G = Zn, and by a product of
such transforms, or just by Pontrjagin duality, in the general case.

We can therefore reformulate the above result in the following way:

(1) For q = ±1 we get C∗(G), with G = Z2 × Z2.
(2) For q = ±i we get C∗(G), with G = Z4.

In order to be generalized, this result has to reformulated one more time. We
have the following equivalent statement, in terms of crossed products:

(1) For q = ±1 we get C∗(G), with G = Z2 o Z2.
(2) For q = ±i we get C∗(G), with G = Z1 o Z4.

Recall now that for a discrete group G, meaning a possibly infinite group, without
topology on it, the group algebra C∗(G) is a C∗-algebra, obtained from the usual
group algebra C[G] by using a standard completion procedure.

With these preliminaries and notations, we have the following result:

Theorem 6.1. Let n be the order of q2, and for n < ∞ write n = 2sm, with m odd.

The matrix Mq produces the algebra C∗(G), where G is as follows:

(1) For s = 0 we have G = Z2n o Z2.

(2) For s = 1 we have G = Zn/2 o Z4.

(3) For s ≥ 2 we have G = Zn o Z4.

(4) For n = ∞ we have G = Z o Z2.

Proof. Consider the second and the third row of Mq:

ρ =
(

1 q −1 −q
)

ε =
(

1 −1 1 −1
)

We regard these vectors as elements of the algebra C
4. The product of these

vectors being the last row of Mq, we have the following formula:

Mq =









1
ρ
ε
ερ









By taking quotients of these vectors we get the corresponding magic basis:

ξ =









1 ρ ε ερ
ρ−1 1 ερ−1 ε
ε ερ 1 ρ

ερ−1 ε ρ−1 1
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Each entry of this matrix is of the form ρk or ερk, with k ∈ Z. So, consider the
vectors ρk

+ = ρk and ρk
− = ερk. These are given by the following global formula:

ρk
± =

(

1 ±qk (−1)k ±(−q)k
)

Now the orthogonal projection onto a vector (xi) being the matrix (x̄ixj), we have
the following formula for the corresponding projection:

P (ρk
±) =









1 ±q−k (−1)k ±(−q)−k

±qk 1 ±(−q)k (−1)k

(−1)k ±(−q)−k 1 ±q−k

±(−q)k (−1)k ±qk 1









The idea is to express this matrix as a suitable linear combination of elements of
U(4). We write n = 2sm as in the statement, and we proceed as follows:

Case s = 0. Here n is odd, and we have q2n = 1, so qn = ±1. We can replace if
necessary q by −q, as to have qn = 1.

Consider the canonical subgroup Z2×Z2 ⊂ U(4), consisting of the identity matrix
1, and of the following three matrices:

α =









0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0









β =









0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0









γ =









0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0









Consider also the following matrix, which is in U(4) as well:

σ =









0 0 q 0
0 0 0 q−1

q 0 0 0
0 q−1 0 0









We have the following formulae, valid for k odd:

σk =









0 0 qk 0
0 0 0 q−k

qk 0 0 0
0 q−k 0 0









ασk =









0 0 0 q−k

0 0 qk 0
0 q−k 0 0
qk 0 0 0









We also have the following formulae, valid for k even:

σk =









qk 0 0 0
0 q−k 0 0
0 0 qk 0
0 0 0 q−k









ασk =









0 q−k 0 0
qk 0 0 0
0 0 0 q−k

0 0 qk 0









In particular we have σn = β and σ2n = 1.
For k odd the number n + k is even, and we have:

P (ρk
±) = 1 ± ασn+k − σn ∓ ασk

= (1 − σn)(1 ∓ ασk)
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For k even the number n + k is odd, and we have:

P (ρk
±) = 1 ± ασk + σn ∓ ασn+k

= (1 + σn)(1 ± ασk)

This gives the following global formula:

P (ρk
±) = (1 + (−1)kσn)(1 ± (−1)kασk)

It is routine to check that α, σ ∈ U(4) generate the dihedral group G = Z2n o Z2.
Consider now the following element of the abstract group algebra C ∗(G):

P k
± = (1 + (−1)kσn)(1 ± (−1)kασk)

From σ2n = 1 we get that σn is self-adjoint, and of square 1. From α2 = 1 and
(ασ)2 = 1 we get σασ = α, hence σkασk = α for any k. It follows that ασk is also
self-adjoint, and of square 1. This shows that in the above formula, both elements
in brackets are projections. Moreover, these two projections commute. It follows
that each element P k

± is a projection.
Now remember that the magic unitary associated to π has as entries elements of

the form P (ρk
±). By making the replacement P (ρk

±) → P k
± we get a square matrix

over C∗(G), all whose entries are projections. The sums on rows and columns being
1, this is a magic unitary, and we get a factorization of π through C ∗(G).

Case n = ∞. What changes in the above proof is that α, σ ∈ U(4) generate now
the infinite dihedral group G = ZoZ2. The second part of the proof applies as well,
with this modification, and gives the result.

Case s = 1. Here n/2 is odd. We have qn = −1, so qn/2 = ±i, which gives

(−iq)n/2 = ±1. We replace if necessary q by −q, as to have (−iq)n/2 = 1.
Consider the canonical subgroup Z4 ⊂ U(4), consisting of the identity matrix 1,

and of the following three matrices:

δ =









0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0









δ2 =









0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0









δ3 =









0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0









Consider also the following matrix, which is in U(4) as well:

τ =









−q 0 0 0
0 q−1 0 0
0 0 −q 0
0 0 0 q−1









Since n/2 is odd and (−iq)n/2 = 1, we have (iτ)n/2 = 1.
We have the following formulae:

δτk =









0 q−k 0 0
0 0 (−q)k 0
0 0 0 q−k

(−q)k 0 0 0
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δ3τk =









0 0 0 q−k

(−q)k 0 0 0
0 q−k 0 0
0 0 (−q)k 0









This gives the following formula for the above projection:

P (ρk
±) = 1 ± δτk + (−1)kδ2 ± (−1)kδ3τk

= (1 + (−1)kδ2)(1 ± δτk)

Consider now the matrix ν = iτ . We have νn/2 = 1, and it is routine to check
that δ, ν ∈ U(4) generate the group G = Zn/2 o Z4. Consider now the following
element of the abstract group algebra C∗(G), where τ = −iν:

P k
± = (1 + (−1)kδ2)(1 ± δτk)

From δ4 = 1 and from τδτ = −δ we get that each P k
± is a projection.

Now remember that the magic unitary associated to π has as entries elements of
the form P (ρk

±). By making the replacement P (ρk
±) → P k

± we get a square matrix
over C∗(G), all whose entries are projections. The sums on rows and columns being
1, this is a magic unitary, and we get a factorization of π through C ∗(G).

Case s ≥ 2. Here n/2 is even, and we have qn = −1, so qn/2 = ±i.

We use the matrices δ, τ . The above formulae for δτ k and δ3τk hold again, and
lead to the above formula for P (ρk

±). What changes is the n/2-th power of τ :

τn/2 =









±i 0 0 0
0 ∓i 0 0
0 0 ±i 0
0 0 0 ∓i









Observe also that we have τn = −1, so (wτ)n = 1, where w = eπi/n.
This shows that we don’t have a factorization like in the case where n/2 is odd,

so we must use the group generated by δ, wτ ∈ U(4), which is G = Zn o Z4. �

The above result has several interpretations. First, it provides examples of sub-
groups of the 4-th quantum permutation group, also called Pauli quantum group
[BC2]. In other words, the whole thing should be regarded as being part of a gen-
eral McKay correspondence for the Pauli quantum group, not available yet.

Another interpretation is in terms of subfactors: the above result can be regarded
as being a particular case of the ADE classification of index 4 subfactors. Unlike
in the quantum group case, the classification is available here in full generality. See
[EK]. The principal graphs corresponding to the matrices Mq are those of type

A
(1)
4 , D

(1)
n , D∞. This follows for instance by combining Theorem 6.1 with general

results in [Ba2], and with the well-known fact that cyclic groups correspond to type
A graphs, and dihedral groups correspond to type D graphs.

As a last remark, the above result provides the first example of a deformation
situation for quantum permutation groups. This is of course just an example, but
the general fact that it suggests would be use of the unit circle as parameter space,
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for more general deformation situations. We should mention that this idea, while
being fundamental in most theories emerging from Drinfeld’s original work [D], is
quite new in the compact quantum group area, where the deformation parameter
traditionally belongs to the real line. It is our hope that further developments of the
subject will be of use in connection with several problems, regarding both Hadamard
matrices and compact quantum groups.
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