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Abstract

We construct new pairs of orthogonal maximal abelian ∗-subalgebras
of M6(C), by classifying all self-adjoint complex Hadamard matrices of
order 6. In particular, we exhibit a non-affine one-parameter family of non-
equivalent Hadamard matrices of order 6. In the last part of the paper
we present other previously unknown examples of complex Hadamard
matrices of higher orders.

1 Introduction

Let (Mn(C), T r) denote the algebra of n × n complex matrices with the
usual trace. For X ∈ Mn(C), denote by X∗ the conjugate transpose of X. A
subalgebra A of Mn(C) is called a MASA if it is maximal abelian and closed
under the ∗ operation. It is easy to see that A is a MASA if and only if it
is unitarily conjugate to the algebra Dn of n × n diagonal matrices, i.e. A =
UDnU∗ for some U ∈ Mn(C) unitary matrix.

We say that two MASA’s A1,A2 are orthogonal if A1 ∩ A2 = C and the
vector subspaces A1 	 C and A2 	 C are orthogonal, with respect to the inner
product < x, y >= Tr(y∗x), x, y ∈ Mn(C). This is equivalent to saying that
the square of inclusions:

C =

A1 ⊂ Mn(C)
∪ ∪
C ⊂ A2

, T r


is a commuting square in the sense of [Po1],[Po2] (see also [GHJ]).

We may assume, up to unitary conjugacy of commuting squares, that A1 =
Dn and A2 = UDnU∗, for some unitary U ∈ Mn(C). In this notation, the
orthogonality of A1,A2 amounts to U having all entries of the same absolute
value 1√

n
, hence H =

√
nU is a complex Hadamard matrix. Thus, being given

a commuting square C of this form is equivalent to having a complex n × n
Hadamard matrix.
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Recall that two complex Hadamard matrices are equivalent if there exist
unitary diagonal matrices D1, D2 and permutation matrices P1, P2 such that

H2 = P1D1H1D2P2

It is easy to see that equivalence of Hadamard matrices corresponds to iso-
morphism of commuting squares, via the identification described above. Our
interest in Hadamard matrices, mainly in obtaining one-parameter families of
non-equivalent Hadamard matrices, comes from the possibility of constructing
subfactors from the corresponding commuting squares (see for instance [Jo2]).
However, it is hard to decide if such subfactors are non-isomorphic, or to com-
pute their principal graphs.

Besides their connections to von Neumann algebras ([H],[HJ],[Jo2],[MW],[Ni],
[Pe], [Po2]), complex Hadamard matrices have numerous other applications such
as the theory of error correcting codes ([CH]), spectral sets and Fuglede’s con-
jecture ([T]). They play a very important role in quantum information theory,
in the construction of teleportation and dense coding schemes ([We]).

While all Hadamard matrices of orders up to 5 are classified ([H]), it seems
very hard to describe Hadamard matrices of higher orders, such a classification
not being known even for n = 6. For n composite, some constructions of para-
metric families of Hadamard matrices whose entries are linear functions (also
called affine families, see [TZ]) are presented in [Di],[MRS]. There is however
no general procedure of constructing such families with non-affine entries, or
for n prime. A catalogue of most known complex Hadamard matrices of small
order (up to order 16) can be found in [TZ].

In this paper we classify, up to equivalence, all Hadamard matrices H of
order 6 that are self-adjoint, i.e. H = H∗, where H∗ denotes the conjugate
transpose of H. We thus obtain a new one-parameter non-affine family:

H(θ) =


1 1 1 1 1 1
1 −1 x̄ −y −x̄ y
1 x −1 t −t −x
1 −ȳ t̄ −1 ȳ −t̄
1 −x −t̄ y 1 z̄
1 ȳ −x̄ −t z 1


where θ ∈ [−π,−arcos(−1+

√
3

2 )] ∪ [arcos(−1+
√

3
2 ), π] and the variables x, y, z, t

are given by:

y = exp(iθ), z =
1 + 2y − y2

y(−1 + 2y + y2)

x =
1 + 2y + y2 −

√
2
√

1 + 2y + 2y3 + y4

1 + 2y − y2

t =
1 + 2y + y2 −

√
2
√

1 + 2y + 2y3 + y4

−1 + 2y + y2

Our family is non-affine, in particular it is not obtained by modifying linearly
the entries of a tensor product of 2 × 2 and 3 × 3 Hadamard matrices. Such
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constructions result in subfactors having intermediate subfactors, thus of non-
trivial first relative commutant. We analysed computationally our family H(θ)
and we conjecture that it yields subfactors of principal graph A∞.

In [Ni] the second author introduced a condition for commuting squares,
called the span condition, which is sufficient to imply isolation of a commut-
ing square in the class of commuting squares (up to isomorphisms). In par-
ticular, applying this to commuting squares arising from Hadamard matrices,
we obtained a sufficient condition for isolation of a Hadamard matrix among
all Hadamard matrices (up to equivalence). In [TZ] the notion of defect of a
Hadamard matrix was introduced. Saying that the defect of a matrix is zero is
equivalent to the span condition.

It is not settled whether the span condition is also necessary for isolation.
In [TZ] a possible counter-example is provided: is is shown that no affine family
stems from the Bjorck-Froberg ’cyclic 6 roots’ matrix C

(0)
6 ([Bj],[H]), while its

defect is non-zero. Therefore, it is asked whether this matrix is isolated among
all Hadamard matrices. We answer negatively to this question, by showing that
the family H(θ) contains a matrix equivalent to C

(0)
6 . Thus, the question of

whether isolation is equivalent to the span condition remains open.
In the last part of the paper we present other new examples of complex

Hadamard matrices of dimensions 9, 10, 11. These examples were found using
computers, by doing a numerical search for Hadamard matrices satisfying cer-
tain symmetry conditions.

We would like to thank Teodor Banica, Ingemar Bengtsson, Dietmar Bisch,
Wes Camp, Romeo Maciuca, Wojciech Tadej and Karol Zyczkowski for fruitful
discussions and correspondence. Kyle Beauchamp was supported in part by
NSF under Grant No. DMS 0353640 (REU Grant), and Remus Nicoara was
supported in part by NSF under Grant No. DMS 0500933.

2 Self-adjoint Hadamard matrices of order 6

In this section we classify, up to equivalence, all complex self-adjoint Hadamard
matrices of order 6. We prove the following theorem, stating that there exists
a non-affine one-parameter family of such matrices.

Theorem 2.1. Let H ∈ M6(C) be a self-adjoint Hadamard matrix. Then H

is equivalent to H(θ), for some θ ∈ [−π,−arcos(−1+
√

3
2 )] ∪ [arcos(−1+

√
3

2 ), π],
where:

H(θ) =


1 1 1 1 1 1
1 −1 x̄ −y −x̄ y
1 x −1 t −t −x
1 −ȳ t̄ −1 ȳ −t̄
1 −x −t̄ y 1 z̄
1 ȳ −x̄ −t z 1


and the parameters x, y, z, t are given by:
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y = exp(iθ), z =
1 + 2y − y2

y(−1 + 2y + y2)

x =
1 + 2y + y2 −

√
2
√

1 + 2y + 2y3 + y4

1 + 2y − y2

t =
1 + 2y + y2 −

√
2
√

1 + 2y + 2y3 + y4

−1 + 2y + y2

Remark 2.2. In [TZ] it is asked whether the Bjorck-Froberg ’cyclic 6 roots’
matrix:

C
(0)
6 =


1 1 1 1 1 1
1 −1 −d −d2 d2 d
1 −d̄ 1 d2 −d3 d2

1 −d̄2 d̄2 −1 d2 −d2

1 d̄2 −d̄3 d̄2 1 −d
1 d̄ d̄2 −d̄2 −d̄ −1

 , d =
1−

√
3

2
+ i(

√
3

2
)

1
2

is isolated among complex Hadamard matrices. It is known that no affine
Hadamard family stems from C

(0)
6 ([TZ]). However, this matrix does not satisfy

the span condition we introduced in [Ni], or equivalently its defect is non-zero, in
the sense of [TZ]. If C

(0)
6 were isolated, it would follow that the span condition,

which is sufficient to ensure isolation, is not necessary for isolation. However,
Theorem 2.1 shows that there exists a continuum of non-equivalent Hadamard
matrices containing C

(0)
6 , since H(θ0) is equivalent to C

(0)
6 for θ0 = 2Arg(d).

Indeed:
PH(θ0)P−1 = C

(0)
6

where P is the permutation matrix:

P =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 1 0 0 0


In particular, the question of wether isolation is equivalent to the span condition
remains open.

Recall that a complex Hadamard matrix H = (hk,l) ∈ Mn(C) is said to be
dephased or in normal form if h1,k = hk,1 = 1 for all k = 1, .., n. The next
lemma shows that, in order to classify all self-adjoint Hadamard matrices, one
only needs to look at dephased self-adjoint Hadamard matrices.

Lemma 2.3. Let H ∈ Mn(C) be a self-adjoint Hadamard matrix. Then H is
equivalent to a dephased self-adjoint Hadamard matrix.
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Proof. Since H = (hk,l)1≤k,l≤n is hermitian, hk,k are real and thus they belong
to {−1, 1}. We may assume, by eventually multiplying H by −1, that h1,1 = 1.
Consider the matrix H ′ = (hk,lh̄k,1h̄1,l)1≤k,l≤n. H ′ is clearly equivalent to H
and h′k,1 = h′1,l = 1 for all 1 ≤ k, l ≤ n. Morover, H ′ is hermitian since
h̄′k,l = h̄k,lhk,1h1,l = hl,kh̄1,kh̄l,1 = h′l,k.

We now recall two easy lemmas involving algebraic manipulations of complex
numbers.

Lemma 2.4. If x, y, z ∈ C such that |x| = |y| = |z| = 1 and x+ y + z = 0, then
x = zε and y = zε2, where ε ∈ { 1

2 + i
√

3
2 , 1

2 −
i
√

3
2 }.

Proof. By conjugating x + y + z = 0 we obtain 1
x + 1

y + 1
z = 0. Solving and

eliminating x yields 1
y+z = 1

y + 1
z . Equivalently, (y

z )2 + y
z + 1 = 0, which shows

that y = zε, with ε as above. Since 1 + ε + ε2 = 0, x = −y − z = −z(1 + ε) =
zε2.

Lemma 2.5. If x, y, z, t ∈ C such that |x| = |y| = |z| = |t| = 1 and x+y+z+t =
0, then x ∈ {−y,−z,−t}.

Proof. We have: (x+y)(x+z)(x+t) = x2(x+y+z+t)+xyz+xyt+xzt+yzt =
xyz + xyt + xzt + yzt = xyzt(x̄ + ȳ + z̄ + t̄) = 0.

The following lemma is also used in [H], towards the classification of complex
Hadamard matrices of order 5 .

Lemma 2.6. Let u, v, s, t be complex numbers on the unit circle. Then:

(u + v)(s̄ + t̄)(ūs + v̄t) ∈ R

Proof. (u+v)(s̄+ t̄)(ūs+ v̄t) = (us̄+vt̄+ut̄+vs̄)(ūs+ v̄t) = 2+(uv̄s̄t+ ūvst̄)+
(ūv + uv̄) + (s̄t + st̄) is real, since z + z̄ is real for every z ∈ C.

We now proceed with the proof of Theorem 2.1. Since H is hermitian, its
diagonal elements belong to {−1, 1}. Morover, since for every permutation
matrix P the matrix H is equivalent to PHP−1, and PHP−1 is still hermitian,
it is enough to consider the following six possibilities for the diagonal of H:

Diag(H) ∈ {(1, 1, 1, 1, 1, 1), (1,−1, 1, 1, 1, 1), (1,−1,−1, 1, 1, 1), (1,−1,−1,−1, 1, 1)
(1,−1,−1,−1,−1, 1), (1,−1,−1,−1,−1,−1)}.

We start by showing that the diagonal of H can not be (1, 1, 1, 1, 1, 1). This is
the most difficult of the six cases we need to analyse. Indeed, in all the other
cases the existence of a 1 and a −1 on one of the rows of H will allow us to
apply Lemma 2.5, thus reducing the number of variables.
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Lemma 2.7. (a). Let H be a complex 6× 6 Hadamard matrix of the form:

H =


1 1 1 1 1 1
1 1 x ȳ . .
1 x̄ 1 z . .
1 y z̄ 1 . .
1 . . . . .
1 . . . . .


Then two of x, y, z must be equal.
(b). Let H ∈ M6(C) be a self-adjoint, dephased, complex Hadamard matrix.
Then the diagonal of H can not be (1, 1, 1, 1, 1, 1).

Proof. (a). Assume, by contradiction, x 6= y 6= z 6= x. Denote the last two
elements on the second and third rows of H by u = h2,5, v = h2,6, respectively
s = h3,5, t = h3,6. Using the orthogonality of the first three rows of H we obtain:

2 + x + ȳ = −(u + v)

2 + x + z̄ = −(s̄ + t̄)

1 + 2x̄ + yz = −(ūs + v̄t)

Lemma 2.6 implies:

(2 + x + ȳ)(2 + x + z̄)(1 + 2x̄ + yz) ∈ R (1)

The same argument applied to rows 1,2,4 respectively rows 1,3,4, shows:

(2 + y + z̄)(2 + y + x̄)(1 + 2ȳ + zx) ∈ R (2)

and
(2 + z + x̄)(2 + z + ȳ)(1 + 2z̄ + xy) ∈ R (3)

Expanding the product in (1) and using xx̄ = yȳ = zz̄ = 1, we obtain:

(x2+ȳz̄+4+xȳ+xz̄+4x+2ȳ+2z̄)(1+2x̄+yz) = x2yz+x2+(2x̄ȳz̄+4xyz)+xȳ+
xz̄+(4x̄ȳ+xy)+(4x̄z̄+xz)+(ȳz̄+4yz)+(8x̄+6x)+(4ȳ+2y)+(4z̄+2z)+13 ∈ R.

Since (2x̄ȳz̄ +2xyz)+(x̄ȳ +xy)+(x̄z̄ +xz)+4(ȳz̄ +yz)+6(x̄+x)+(2ȳ +2y)+
(2z̄ + 2z) + 13 ∈ R, by substracting it from the previous expression it follows:

x2yz + x2 + 2xyz + xȳ + xz̄ + 3x̄ȳ + 3x̄z̄ − 3ȳz̄ + 2x̄ + 2ȳ + 2z̄ ∈ R

Thus:

x2yz + x2 + x(x̄ + ȳ + z̄)− 6ȳz̄ + (2xyz + 3x̄ȳ + 3x̄z̄ + 3ȳz̄ + 2x̄ + 2ȳ + 2z̄) ∈ R

Let
S = 2xyz + 3x̄ȳ + 3x̄z̄ + 3ȳz̄ + 2x̄ + 2ȳ + 2z̄
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Using that (6yz + 6ȳz̄) is real yields:

x2yz + x2 + x(x̄ + ȳ + z̄) + 6yz + S ∈ R

Similarly, by expanding (2) and reducing real terms we obtain:

y2zx + y2 + y(x̄ + ȳ + z̄) + 6zx + S ∈ R

The number S is the same, since (2) is just a circular permutation (x, y, z) →
(y, z, x) of (1), and the formula for S is invariant to permutations of x, y, z.
Substracting the two previous expressions and cancelling S, we obtain:

xyz(x− y) + x2 − y2 + (x− y)(x̄ + ȳ + z̄)− 6(x− y)z ∈ R

Thus:
(x− y)(xyz + x + y + x̄ + ȳ + z̄ − 6z) ∈ R

Hence:
(x− y)(xyz + x + y + z +

1
x

+
1
y

+
1
z
− 7z) ∈ R

Using that a complex number is real iff it equals its conjugate, we obtain:

(x−y)(xyz+x+y+z+
1
x

+
1
y

+
1
z
−7z) = (

1
x
− 1

y
)(

1
xyz

+
1
x

+
1
y

+
1
z

+x+y+z− 7
z
)

Multiplying the previous equality by − xy
x−y yields:

−xy(xyz + x + y + z +
1
x

+
1
y

+
1
z
− 7z) =

1
xyz

+
1
x

+
1
y

+
1
z

+ x + y + z − 7
z

Thus:

7
z

= xy(xyz + x + y + z +
1
x

+
1
y

+
1
z
)− 7xyz +

1
xyz

+
1
x

+
1
y

+
1
z

+ x + y + z

Let
T = −7xyz +

1
xyz

+
1
x

+
1
y

+
1
z

+ x + y + z

R = xyz + x + y + z +
1
x

+
1
y

+
1
z

We showed:
7
z

= xyR + T

By repeating the same argument for the relations (2),(3), and using y 6= z, we
obtain:

7
x

= yzR + T
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where R, T are the same as in the previous equation, since their formulas are
symmetric in x, y, z. Substract the last two equations:

7
z
− 7

x
= (x− z)yR

Multiplying by xz
x−z , we obtain:

7 = xyzR

This implies |R| = 7. However, by the triangle inequality we have:

|R| = |xyz + x + y + z +
1
x

+
1
y

+
1
z
| ≤ 1 + 1 + 1 + 1 + 1 + 1 + 1 = 7

Since x, y, z were assumed distinct, we can’t have equality and thus we have
reached a contradiction.

(b). Reasoning by contradiction, assume that H satisfies the hypothesis. De-
noting H as in part (a) we know that two of x, y, z are equal. We analyse the
three possible cases: x = y, y = z, x = z.

Case I: x = y. From (1) we obtain:

(2 + x + x̄)(2 + x + z̄)(1 + 2x̄ + xz) ∈ R (4)

If x = y = −1, using the orthogonality of columns 1,2 we obtain h6,2 = −h5,2.
Orthogonality of rows 5,6 yields

2h6,5 + h6,3h̄5,3 + h6,4h̄5,4 = 0

By Lemma 2.5, we must have

h6,5 = −h6,3h̄5,3 = −h6,4h̄5,4

In particular: h5,4h̄5,3 = h6,4h̄6,3. Using this together with the orthogonality of
columns 3, 4 yields:

1 + z + h5,4h̄5,3 = 0

which together with Lemma 2.4 implies z ∈ {ε, ε2}, ε = exp(2πi/3). It is
immediate to check that this contradicts equation (3).
This shows that x 6= −1. Thus, 2+x+ x̄ 6= 0 and after dividing by it in equation
(4) we obtain:

(2 + x + z̄)(1 + 2x̄ + xz) = 4 + 4x̄ + 2x + 2xz + 2x̄z̄ + x2z + z̄ ∈ R

Thus: 2x̄ + x2z + z̄ ∈ R, i.e. 2
x + x2z + 1

z = 2x + 1
x2z + z. After multiplying by

x2z and simplifying:
(x2 − 1)(xz − 1)2 = 0

We have x 6= 1, since if x = y = 1 the orthogonality of columns 1,2 implies
4 + h5,2 + h6,2 = 0, which is impossible. Thus xz = 1, so x = y = z̄. It is easy
to check that in this case relation (3) holds true.
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We substract the sum of the elements of column 4 (which is 0) from the sum of
the elements of column 3 (which is also 0):

−h̄5,4 − h̄6,4 + h5,3 + h6,3 = 0

Last equation together with Lemma 2.5 yields one of three possibilities:
I.(i). h6,4 = −h5,4 and h6,3 = −h5,3. In this case, the orthogonality of

columns 1 and 3 implies x = −1, which we showed it is not possible.
I.(ii). h6,4 = h̄5,3 and h5,4 = h̄6,3. From the orthogonality of columns 3,4

we obtain:

− (1 + x)2

2
= h5,3h6,3

The last equality implies x ∈ {i,−i}. However, the sum of the elements of the
third column of H is 0:

2 + 2x + h5,3 + h6,3 = 0

which contradics the triangle inequality: 2
√

2 = |2 + 2x| = |h5,3 + h6,3| ≤ 2.
I.(iii). h6,4 = h̄6,3 and h5,4 = h̄5,3. Substracting the inner product of

columns 4,2 from the inner product of columns 2,3 we obtain:

h5,2h̄5,3 − h̄5,2h̄5,3 + h6,2h̄6,3 − h̄6,2h̄6,3 = 0

Applying Lemma 2.5, we have three possibilities:
I.(iii).1. h5,2h̄5,3 = h̄5,2h5,3 and h6,2h̄6,3 = h̄6,2h6,3. Thus h5,2h̄5,3 and

h6,2h̄6,3 are real. Combining this with the orthogonality of columns 2,3 we
obtain x real, thus x = ±1, a contradiction.

I.(iii).2. h5,2h̄5,3 = −h6,2h̄6,3. Using this relation together with the orthog-
onality relation between columns 2,3, we obtain x = −1, contradiction.

I.(iii).3. h5,2h̄5,3 = h̄6,2h6,3. This equality together with the orthogonality
of columns 2,3 implies x̄ ∈ R, thus x = ±1, contradiction.
This ends the analysis of the case when x = y.

Case II: y = z. This case can be treated similarly to Case I.
Case III: x = z. As in the first case, one of the following holds: x = 1,

x = −1, or x = ȳ = z. However, since the sum of the elements on the third
row of H is 0 we can’t have x = 1. Also, if x = −1 then equation (2) implies
y = ±1, which contradicts the orthogonality of rows 2,4. Thus we must have

x = ȳ = z

Writing that the sum of the entries of column 2 (which is 0) equals the sum of
the conjugates of the entries of column 4 (also equal to 0), we obtain:

h5,4 + h6,4 = h̄5,2 + h̄6,2

Lemma 2.5 divides now the problem in three cases.
Case III.(i). h6,4 = −h5,4 and h6,2 = −h5,2. In this case the orthogonality

of rows 1,2 forces x = −1, which we showed it is not possible.
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Case III.(ii). h5,4 = h̄6,2 and h6,4 = h̄5,2. This case can be treated similarly
to Case I.(ii), but by looking at columns 2,4 instead of columns 3,4.

Case III.(iii).h5,4 = h̄5,2 and h6,4 = h̄6,2. Again, this case can be treated
similarly to Case I.(iii), by substracting the inner product of columns 4,3 from
the inner product of the columns 2,3.

Lemma 2.8. Let H ∈ M6(C) be a self-adjoint, dephased, complex Hadamard
matrix. Then the diagonal of H can not be (1,−1, 1, 1, 1, 1).

Proof. Since the first two columns of H are orthogonal, the sum of the elements
on the second column of H is 0. Two of these elements being −1, 1, the sum
of the other four equals 0. By applying Lemma 2.4, we may assume, after
eventually permuting some rows and the corresponding columns of H, that the
second column of H is (1,−1, a, b,−a,−b). Thus:

H =


1 1 1 1 1 1
1 −1 ā b̄ −ā −b̄
1 a 1 x̄ ȳ z̄
1 b x 1 ᾱ β̄
1 −a y α 1 γ̄
1 −b z β γ 1


Using the ortoghonality of columns 3,5 of H, we obtain:

2y + xα + zγ̄ = 0

Lemma 2.5 implies y = −αx, so z = −xαγ. Similarly, considering the or-
toghonality of columns 4,6 of H, we obtain β = −αγ. After making these
substitutions, the orthogonality of columns 3,4 yields

1 + āb = 0

while from the orthogonality of columns 4,5 it follows

1− āb = 0

Last two relations are clearly contradictory.

Lemma 2.9. Let H ∈ M6(C) be a self-adjoint, dephased, complex Hadamard
matrix. Then the diagonal of H can not be (1,−1,−1, 1, 1, 1).

Proof. As in the previous lemma, we may assume:

H =


1 1 1 1 1 1
1 −1 ā b̄ −ā −b̄
1 a −1 x̄ ȳ z̄
1 b x 1 ᾱ β̄
1 −a y α 1 γ̄
1 −b z β γ 1





11

The orthogonality of columns 4, 6, together with Lemma 2.5, implies

β = −αγ, z = αγx

Since the inner product of columns 3,5 is zero, we have:

zγ̄ = αx = −y

The orthogonality of columns 3,4 implies:

2x = 1 + āb

and thus āb = x = 1, while the orthogonality of columns 3,6 yields:

2xαγ = 1− āb = 0

which is a contradiction.

Lemma 2.10. Let H ∈ M6(C) be a self-adjoint, dephased, complex Hadamard
matrix. If the diagonal of H is (1,−1,−1,−1, 1, 1), then H is equivalent to
H(θ), for some θ ∈ [−π,−arcos(−1+

√
3

2 )] ∪ [arcos(−1+
√

3
2 ), π], where:

H(θ) =



1 1 1 1 1 1
1 −1 1

x −y − 1
x y

1 x −1 t −t −x
1 − 1

y
1
t −1 1

y − 1
t

1 −x − 1
t y 1 1

z
1 1

y − 1
x −t z 1


and the parameters x, y, z, t are given by:

y = exp(iθ), z =
1 + 2y − y2

y(−1 + 2y + y2)

x =
1 + 2y + y2 −

√
2
√

1 + 2y + 2y3 + y4

1 + 2y − y2

t =
1 + 2y + y2 −

√
2
√

1 + 2y + 2y3 + y4

−1 + 2y + y2

Proof. By applying lemma 2.5 to the elements on the second column of H,
which sum up to 0, it follows that the second column of H has to be of one of
the forms: 

1
−1
a
−a
b
−b

 ,


1
−1
a
b
−a
−b

 , or


1
−1
a
b
−b
−a
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We may discard the third option, since it is equivalent with the second option
by permuting rows 5,6 and columns 5,6 of H. Indeed, this operation does not
change the diagonal of H. By applying Lemma 2.5 to the third column of H,
which contains ā since H is hermitian, we obtain the following possibilites for
columns 2,3 of H:

1 1
−1 ā
a −1
−a −ā
b c
−b −c

 ,


1 1
−1 ā
a −1
−a c
b −ā
−b −c

 ,


1 1
−1 ā
a −1
−a c
b −c
−b −ā

 ,


1 1
−1 ā
a −1
b −ā
−a c
−b −c

 ,


1 1
−1 ā
a −1
b c
−a −ā
−b −c

 ,


1 1
−1 ā
a −1
b c
−a −c
−b −ā


We may remove the third arrangement, since it is equivalent to the second by
permuting rows 5,6 and columns 5,6 of H, and replacing b by −b. We now
analyse the five cases left.

Case I.

H =


1 1 1 1 1 1
1 −1 ā −ā b̄ −b̄
1 a −1 −a c̄ −c̄
1 −a −ā −1 ᾱ β̄
1 b c α 1 γ̄
1 −b −c β γ 1


Using that the inner product of the last two columns of H is 0 we obtain:

−1 + ᾱβ + 2γ = 0

From lemma 2.5 we have:
γ = 1, α = β

Since the sum of the elements of column 5 of H is 0, using γ = 1 yields:

3 + b + c + α = 0

which implies b = c = α = −1. This contradicts the fact that the sum of the
elements of column 6 is 0: 2− b− c + β + γ = 0.

Case II.

H =


1 1 1 1 1 1
1 −1 ā −ā b̄ −b̄
1 a −1 c̄ −a −c̄
1 −a c −1 ᾱ β̄
1 b −ā α 1 γ̄
1 −b −c β γ 1


Using the orthogonality of columns 3,4 yields:

−2c− āᾱ− cβ̄ = 0
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Lemma 2.5 implies
β = −1, α = −āc̄

Similarly, the orthogonality of columns 5, 6 gives:

γ = −ac

Using the formulas for α, γ and the orthogonality of columns 3, 5 we obtain:

1 + āb = 0

while the orthogonality of columns 3, 6 yields:

1− ab̄ = 0

which is a contradition.

Case III.

H =


1 1 1 1 1 1
1 −1 ā b̄ −ā −b̄
1 a −1 −a c̄ −c̄
1 b −ā −1 ᾱ β̄
1 −a c α 1 γ̄
1 −b −c β γ 1


The orthogonality of columns 2,4 of H yields:

2b + aᾱ + bβ̄ = 0

Lemma 2.5 implies aᾱ = bβ̄ = −b. Thus:

α = −ab̄, β = −1

In particular:
αβ = ab̄

However, using orthogonality of columns 1,4 and Lemma 2.5 we have:

α + β + b̄− a = 0, thus: {α, β} = {a,−b̄}

which implies:
αβ = −ab̄

This contradicts αβ = ab̄.

Case IV.

H =


1 1 1 1 1 1
1 −1 ā b̄ −ā −b̄
1 a −1 c̄ −a −c̄
1 b c −1 ᾱ β̄
1 −a −ā α 1 γ̄
1 −b −c β γ 1
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Orthogonality of columns 4,6 yields:

−1− β + αγ + β = 0, thus α = γ̄

Using this together with the orthogonality of columns 1,5 we obtain:

2− a− ā = −2γ̄

In particular, γ has to be real, and since |a + ā| ≤ 2 we must have γ = −1.
Thus, a + ā = 0 so

a ∈ {−i, i}
The sum of the elements of columns 4 and columns 6 is 0. Writing this we
obtain:

β̄ + β = 0

which shows that β ∈ {−i, i}. Using now orthogonality of columns 2,3 of H we
obtain:

b = ac

and writing that the sum of the elements of column 4 is 0 we have:

ac + c− β − 1 = 0

By Lemma 2.5, we have two possibilities:

ac = 1, β = c or c = 1, β = ac

Thus, for each choice of a ∈ {−i, i} we have two possible values of c, β, which
uniquely determine the other variables. It is easy to see that all four Butson
type matrices we obtain satisfy the hypothesis:

H1 =


1 1 1 1 1 1
1 −1 −i 1 i −1
1 i −1 i −i −i
1 1 −i −1 −1 i
1 −i i −1 1 −1
1 −1 i −i −1 1



H2 =


1 1 1 1 1 1
1 −1 i 1 −i −1
1 −i −1 −i i i
1 1 i −1 −1 −i
1 i −i −1 1 −1
1 −1 −i i −1 1



H3 =


1 1 1 1 1 1
1 −1 −i −i i i
1 i −1 1 −i −1
1 i 1 −1 −1 −i
1 −i i −1 1 −1
1 −i −1 i −1 1
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H4 =


1 1 1 1 1 1
1 −1 i i −i −i
1 −i −1 1 i −1
1 −i 1 −1 −1 i
1 i −i −1 1 −1
1 i −1 −i −1 1


However, we will see that these matrices are in fact equivalent with a certain
matrix from the one-parameter family we find in the next case. Thus, it is not
necessary to include them in the classification.
Case V.

H =


1 1 1 1 1 1
1 −1 ā b̄ −ā −b̄
1 a −1 c̄ −c̄ −a
1 b c −1 ᾱ β̄
1 −a −c α 1 γ̄
1 −b −ā β γ 1


We show that in this case there exists a one-parameter family of solutions. To
obtain the answer in the form given in the statement of the lemma, let us change
variables: a = x, b = −ȳ, c = t̄, γ = z. Thus:

H =


1 1 1 1 1 1
1 −1 x̄ −y −x̄ y
1 x −1 t −t −x
1 −ȳ t̄ −1 ᾱ β̄
1 −x −t̄ α 1 z̄
1 ȳ −x̄ β z 1


Since columns 4,5 are orthogonal, we have yz + βz̄ = 0, thus:

β = −xyz

Similarly, the orthogonality of columns 4,6 yields:

α = x̄z̄t

Using the formula for β in the orthogonality of columns 3,6 we obtain:

1 + x̄ȳ − xyzt̄− t̄z = 0

Equivalently: 1 + x̄ȳ = (xy + 1)zt̄ . Using 1 + x̄ȳ = 1 + 1
x

1
y = 1+xy

xy , we obtain:

(xy + 1)(
1
xy

− zt̄) = 0

We will assume that xy 6= ±1. We treat the case xy = ±1 at the end of the
proof. Simplifying by (xy + 1) it follows 1

xy − zt̄ = 0, thus:

z = x̄ȳt
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Using the orthogonality of columns 1,5 we obtain:

2− x− t̄ + α + z̄ = 0

and substituting α, z we have: 2 − x − t̄ + x̄(xyt̄)t + xyt̄ = 0. Equivalently,
2− x + y = (1− xy)t̄. Since xy 6= 1 we obtain:

t̄ =
2− x + y

1− xy

which implies:

t =
2− 1

x + 1
y

1− 1
xy

=
2xy + x− y

xy − 1

Since tt̄ = |t|2 = 1, it follows:

2xy + x− y

xy − 1
· 2− x + y

1− xy
= 1

Equivalently:

(y2 − 2y − 1)x2 + 2(y2 + 2y + 1)x− (y2 + 2y − 1) = 0

Since y2− 2y− 1 = 0 does not have solutions of absolute value 1, we must have
y2 − 2y − 1 6= 0. Solving the above equation for x we obtain:

x1 =
−(y2 + 2y + 1)−

√
2
√

y4 + 2y3 + 2y + 1
y2 − 2y − 1

x2 =
−(y2 + 2y + 1) +

√
2
√

y4 + 2y3 + 2y + 1
y2 − 2y − 1

where the square root denotes the principal value of the complex power function
z → z

1
2 . We need to check if these solutions have absolute value 1 when |y| = 1.

Consider first the case |x1| = 1. Denote δ = 2(y4 + 2y3 + 2y + 1). Since |y| = 1,
we have:

δ̄ = 2(
1
y4

+ 2
1
y3

+ 2
1
y

+ 1) =
1
y4

δ

Thus:

1 = x1x̄1 =
−(y2 + 2y + 1)−

√
δ

y2 − 2y − 1
·
−(ȳ2 + 2ȳ + 1)−

√
1
y4 δ

ȳ2 − 2ȳ − 1

Depending on y, there are two possibilities:√
1
y4

δ = − 1
y2

√
δ or

√
1
y4

δ =
1
y2

√
δ

In the first case, we obtain:

−(y2 + 2y + 1)−
√

δ

y2 − 2y − 1
·
−(ȳ2 + 2ȳ + 1) + 1

y2

√
δ

ȳ2 − 2ȳ − 1
= 1
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which, after substituting ȳ = 1
y , becomes:

−(y2 + 2y + 1)−
√

δ

y2 − 2y − 1
· −(y2 + 2y + 1) +

√
δ

1− 2y − y2
= 1

Thus:

(−(y2 + 2y + 1)−
√

δ)(−(y2 + 2y + 1) +
√

δ) = (y2 − 2y − 1)(1− 2y − y2)

Equivalently:

(y2 + 2y + 1)2 − δ = (y2 − 2y − 1)(1− 2y − y2)

It is immediate to check that this identity holds true for every complex number
y.
We now show that the case

√
1
y4 δ = 1

y2

√
δ leads to a contradiction. We may

assume δ 6= 0, since we may consider δ = 0 as part of the first case. By doing a
similar computation, from |x1| = 1 we obtain:

(−(y2 + 2y + 1)−
√

δ)(−(y2 + 2y + 1)−
√

δ) = (y2 − 2y − 1)(1− 2y − y2)

However, since we showed that

(−(y2 + 2y + 1)−
√

δ)(−(y2 + 2y + 1) +
√

δ) = (y2 − 2y − 1)(1− 2y − y2)

for every y, this yields:

(−(y2+2y+1)−
√

δ)(−(y2+2y+1)−
√

δ) = (−(y2+2y+1)−
√

δ)(−(y2+2y+1)+
√

δ)

which implies

−(y2 + 2y + 1)−
√

δ = −(y2 + 2y + 1) +
√

δ, thus δ = 0

Cancelation of (−(y2 + 2y + 1) −
√

δ) was possible, since x1 6= 0. We thus
obtained a contradiction with the assumption δ 6= 0.
We have shown that:

|x1| = 1 if and only if
√

1
y4

δ = − 1
y2

√
δ

We now need to find for what values of y this holds true.
Let y = eiθ, where θ ∈ (−π, π] is the principal value of the argument of y. We
have:

δ = 2(y4+2y3+2y+1) = 2y2((y2+y−2)+2(y+y−1)) = 4e2iθ(cos(2θ)+2cos(θ))

Denote r = cos(2θ) + 2cos(θ). The equality
√

1
y4 δ = − 1

y2

√
δ becomes:

√
re−2iθ = −e−2iθ

√
re2iθ
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Denote φ = Arg(y2) ∈ (−π, π]. The previous equality becomes:

eiφ
√

re−iφ = −
√

reiφ

If r > 0, we have
√

reiφ =
√

reiφ/2 and
√

re−iφ =
√

re−iφ/2, thus the equality
we want can not hold. If r < 0, after simplifying by

√
−r the equality becomes:

ei(φ+π)
√

e−i(φ+π) =
√

ei(φ+π)

which clearly holds true.
We thus need to find the values of θ such that

r = cos(2θ) + 2cos(θ) ≤ 0

By denoting p = cos(θ), the inequality becomes

2p2 + 2p− 1 ≤ 0

which holds true for p ∈ [−1−
√

3
2 , −1+

√
3

2 ]. Since p ∈ [−1, 1], we obtain cos(θ) ∈
[−1, −1+

√
3

2 ], hence

θ ∈ [−π,−arcos(
−1 +

√
3

2
)] ∪ [arcos(

−1 +
√

3
2

), π]

We have thus obtained a one-parameter family of matrices, which can be easily
checked to be Hadamard:

H(θ) =



1 1 1 1 1 1
1 −1 1

x −y − 1
x y

1 x −1 t −t −x
1 − 1

y
1
t −1 1

y − 1
t

1 −x − 1
t y 1 1

z
1 1

y − 1
x −t z 1


where:

y = exp(iθ), z =
1 + 2y − y2

y(−1 + 2y + y2)

x =
1 + 2y + y2 −

√
2
√

1 + 2y + 2y3 + y4

1 + 2y − y2

t =
1 + 2y + y2 −

√
2
√

1 + 2y + 2y3 + y4

−1 + 2y + y2

A similar analysis for |x2| = 1 leads to another one-parameter family of solu-
tions, for the same interval of values of θ:

H ′(θ) =



1 1 1 1 1 1
1 −1 1

x −y − 1
x y

1 x −1 t −t −x
1 − 1

y
1
t −1 1

y − 1
t

1 −x − 1
t y 1 1

z
1 1

y − 1
x −t z 1
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where:

y = exp(iθ), z =
1 + 2y − y2

y(−1 + 2y + y2)

x =
1 + 2y + y2 +

√
2
√

1 + 2y + 2y3 + y4

1 + 2y − y2

t =
1 + 2y + y2 +

√
2
√

1 + 2y + 2y3 + y4

−1 + 2y + y2

However, it is easy to check that H ′(θ) is equivalent to H(θ):

P1D1H(θ)D2P2 = H ′(θ)

where D1 is the unitary diagonal matrix:

1 0 0 0 0 0
0 −1 0 0 0 0
0 0 − −1−2 y+y2

1+2 y+y2−
√

2
√

1+2 y+2 y3+y4
0 0 0

0 0 0 −y 0 0
0 0 0 0 −1−2 y+y2

1+2 y+y2−
√

2
√

1+2 y+2 y3+y4
0

0 0 0 0 0 y


and D2 is the unitary diagonal matrix:

−1 0 0 0 0 0
0 1 0 0 0 0

0 0 1+2 y+y2−
√

2
√

1+2 y+2 y3+y4

−1−2 y+y2 0 0 0
0 0 0 ȳ 0 0

0 0 0 0 −1−2 y−y2+
√

2
√

1+2 y+2 y3+y4

−1−2 y+y2 0
0 0 0 0 0 −ȳ


and P1, P2 are permutation matrices:

P1 =


0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0

 , P2 =


0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 1 0 0 0
0 1 0 0 0 0


We should also mention here that the four matrices H1,H2,H3,H4 found in
case 4, which are easy to check to be equivalent, are in fact equivalent to the
matrix H(π/2) which is part of the one-parameter family. Indeed, we have:

H(π/2) = P1DH3P2
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where:

D =


1 0 0 0 0 0
0 i 0 0 0 0
0 0 −1 0 0 0
0 0 0 1 0 0
0 0 0 0 −i 0
0 0 0 0 0 −1



P1 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0

 , P2 =


0 0 0 0 0 1
0 0 0 1 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0


To end the proof, we still need to show that xy = ±1 leads to no solutions. We
first consider the case xy = −1, thus y = −x̄ and β = −xyz = z. Since the sum
of rows 4,5 is 0, we have:

2− 1 + ᾱ + α + 1 + z + z = 0

thus:
1 + Re(α) = −z

which implies that z is real, and since |z| = 1 and |Re(α)| ≤ 1 we must have
z = 1, Re(α) = 0. However, since the sum of the elements of row 5 is 0:

3 = x̄ + t− ᾱ

and the triangle inequality implies α = −1, contradicting Re(α) = 0.
Consider now the case xy = 1, so y = x̄ and β = −xyz = −z. Summing up
columns 5,6 we obtain:

4 = x + t− ᾱ− z

and the triangle inequality shows x = t = 1, α = z = −1. However this implies
that the sum of elements of column 5 is 1 − 1 − 1 − 1 + 1 − 1 = −2 6= 0,
contradiction.

Lemma 2.11. Let H ∈ M6(C) be a self-adjoint, dephased, complex Hadamard
matrix. Then the diagonal of H can not be (1,−1,−1,−1,−1, 1).

Proof. Reasoning as in the previous lemmas, we may assume:

H =


1 1 1 1 1 1
1 −1 ā b̄ −ā −b̄
1 a −1 x̄ ȳ z̄
1 b x −1 ᾱ β̄
1 −a y α −1 γ̄
1 −b z β γ 1
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Using the orthogonality of columns 3,5 we have:

−2y + xα + zγ̄ = 0

Lemma 2.5 implies
y = αx, z = γαx

Using this and the orthogonality of columns 4,6 we obtain:

αγ = 0

which is not possible since |α| = |γ| = 1.

Lemma 2.12. Let H ∈ M6(C) be a self-adjoint, dephased, complex Hadamard
matrix. Then the diagonal of H can not be (1,−1,−1,−1,−1,−1).

Proof. We may assume

H =


1 1 1 1 1 1
1 −1 ā b̄ −ā −b̄
1 a −1 x̄ ȳ z̄
1 b x −1 ᾱ β̄
1 −a y α −1 γ̄
1 −b z β γ −1


Using the fact that columns 3,5 are orthogonal, as in the previous lemma, we
obtain:

y = αx, z = γαx

Now the orthogonality of columns 4,6 together with lemma 2.5 yields:

β = αγ = x̄z

Using the expression for β and the fact that columns 3, 6 are orthogonal we
obtain:

1− āb− z + xβ + yγ − z = 0

Since xβ = z and yγ = z, it follows

1− āb = 0

Thus b = a. But in this case the inner product of columns 3,4 is

2− 2x + yᾱ + zβ̄ = 2− 2x + 2x = 2 6= 0

which contradicts the fact that they are orthogonal.

This ends the proof of Theorem 2.1.

Remark 2.13. The Butson type matrices H1,H2,H3,H4, which are equivalent
to H(π/2), are also equivalent to the matrix D6 from the catalogue [TZ]. This
shows that besides the affine family through D6, exhibited in [TZ], there also
exists a one-parameter non-affine family containing D6.
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3 More Complex Hadamard Matrices

We present in this section some new examples of complex Hadamard matrices
of small orders. These examples were found using Mathematica, by searching
for the local minimum of a function f(H) encoding the conditions a matrix H
needs to satisfy to be Hadamard, i.e. f(H) = 0 if and only if H is Hadamard.

Trying to find such general solutions leads to numerous numerical results
that are difficult to interpret formally. However, it turns out that asking for
extra symmetries for H, such as H hermitian, often yields some clear algebraic
results.

Inspired by our work on the classification of 6 × 6 Hadamard matrices, we
tried to fix certain diagonal entries of H, making them 1 or −1. Such con-
ditions seem to be very strong, leading to solutions that are easy to interpret
algebraically.

New examples for n=9.

H9 =



1 1 1 1 1 1 1 1 1
1 −1 −1 y y−1 −y−3 y−3 y y−1

1 y y3 −y2 y3 y −1 −y y
1 y y −1 y−1 y−3 −y−3 −1 y−1

1 −y −y2 y3 y3 −1 y y y
1 y y3 y3 y y−1 y−1 y y2

1 y3 y y y2 y−1 y−1 y3 y
1 −y2 −y y y −1 y y3 y3

1 y3 y −y y y −1 −y2 y3


, y = 1−i

√
15

4

It can be easily checked that H9 satisfies the ”span condition” of [Ni], thus
it is isolated among Hadamard matrices. In particular, it is not equivalent to
any of the matrices from the 4-parameter family F

(4)
9 described in [TZ]. Also,

H9 is not equivalent to any of the known circulant solutions, since its entries
belong to Q[ 1−i

√
15

4 ].
The next matrix was obtained by searching for the local minimum with a

fixed diagonal:

BN9 =



1 1 1 1 1 1 1 1 1
1 −1 ε3 ε3 −1 ε9 ε8 ε7 ε
1 ε4 −1 ε7 ε ε3 −1 ε9 ε9

1 ε3 ε7 −1 ε ε8 ε9 ε3 −1
1 ε9 ε −1 −1 ε3 ε7 ε2 ε7

1 ε9 −1 ε ε3 −1 ε ε7 ε6

1 ε ε7 ε9 ε6 ε −1 −1 ε3

1 ε7 ε9 ε4 ε9 −1 ε3 −1 ε
1 −1 ε2 ε9 ε7 ε7 ε3 ε −1


, ε = e2πi/10

The matrix BN9 has defect 2, in the sense of [TZ], thus it might be part of
a family of non-equivalent Hadamard matrices.
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New examples for n=10.

BN10 =



1 1 1 1 1 1 1 1 1 1
1 1 a−2 a−1 a−2 a2 1 a2 1 a
1 a2 1 a−2 a−2 1 a a2 1 a−1

1 1 1 1 a−2 a2 a2 a a−2 a−1

1 a2 a−2 1 1 a 1 a2 a−2 a−1

1 1 a−1 a−2 1 1 a2 a2 a−2 a
1 a2 1 a−2 a−1 a2 1 1 a−2 a
1 a2 a−2 1 a−2 1 a2 1 a−1 a
1 a a−2 a−2 1 a2 a2 1 1 a−1

1 a a−1 a−1 a−1 a a a a−1 1


, a = −1+i

√
15

4

This matrix was found by numerical search of the local minimum, with the
constraint that all diagonal entries be 1. It satisfies the span condition and thus
it is isolated among complex Hadamard matrices.

New examples for n=11.

N11, N
′
11 =



1 1 1 1 1 1 1 1 1 1 1
1 y y a b b −1 x −1 x −1
1 y b b a y x x −1 −1 −1
1 a b y y b −1 −1 x −1 x
1 b a y b y x −1 −1 −1 x
1 b y b y a −1 −1 x x −1
1 −1 x −1 x −1 −x

a −x
b −x

y −x
y −x

b

1 x x −1 −1 −1 −x
b −x

y −x
b −x

y −x
a

1 −1 −1 x −1 x −x
y −x

b −x
b −x

a −x
y

1 x −1 −1 −1 x −x
y −x

y −x
a −x

b −x
b

1 −1 −1 x x −1 −x
b −x

a −x
y −x

b −x
y


where x = 3

4−i
√

7
4 and

a
b
y

 =

−x
x
−x2

 or

a
b
y

 =

 1
−1
x̄

. Both these matrices

are isolated.
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