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ON THE FINITENESS OF THE NUMBER OF N-DIMENSIONAL
HOPF C*-ALGEBRAS

REMUS NICOARA

ABSTRACT. We give a new and elementary proof of the finiteness of the number of
N-dimensional Hopf C*-algebras.

L. INTRODUCTION
In this paper we give an elementary proof of the following theorem:

Theorem 1.1 (D. Stefan). Let A be a finite dimensional C* -algebra. Then there are only
finitely many Hopf C* -algebra structures on A.

The original proof, as well as the proofs of the more general Ocneanu’s Theorem
(A. Wasserman, E. Blanchard in [2, 1], P Etingof, D. Nikshych, V. Ostrik in [3]), use a
cohomological framework and arguments. We give an explicit proof, in the language
of the standard invariant of a subfactor. Also, our arguments can be refined to give an
estimate of the number of Hopf structures on the finite dimensional C* -algebra A.

Let N € M be an inclusion of type II; factors with finite Jones index, [M : N] < 0.
Let No M < M) c M, < --- be its associated tower of factors obtained by iterating the
Jones basie constructions [4].

The standard invariant %y p of the subfactor N < M is then defined as the trace pre-
serving isomorphism class of the following sequence of commuting squares of finite di-
mensional C*-algebras, together with the trace and the Jones projections e, € N'n M,

NnM < NnM, < NnaM, c NnM; <
U u u U
MM < M'nM; ¢ MnM, < MaM c -

The principal parts of the Bratelli diagrams describing the rows of inclusions above
are called the principal graphs of the inclusion N < M. The subfactor N ¢ M is said to
have depth nif the principal graphs are finite of length n, i.e. N'n M,,_, < N' 0 M, c
N’ n M, is a basic construction (with the projection e,) and sois M'NM,,_; c M' N M,, <
M' 0 M4y (with projection e,.;1). For such finite depth inclusions of subfactors (and
more generally for amenable inclusions), the standard invariant is a complete invari-
ant (see [10]).

2000 Mathematics Subject Classification. 46105, 461.37.
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158 REMUS NICOARA

If the depth is n, the nth commuting square
NnMu-1 < NnM,
U U
MM, 1 < M nM,

is called a standard commuting square, and uniquely determines the standard invari-

ant and thus the inclusion N < M.
By a result of [14], the Hopf C*-structures on an n-dimensional C*-algebra A corre-

spond to standard commuting squares of the form:

P_1 < Po
U U
C < Qo

with P_; = A Because Cc Py Pyisa basic construction, it follows Py = My (C). Such
a commuting square is called irreducible, and its depth is always 2. Thus, to prove
D. Stefar’s theorem it is enough to show that there are only finitely many isomorphism
classes of standard irreducible commuting squares of fixed upper-left corner A (or just
of fixed dimension). Here isomorphism means unitary conjugation of the commuting
square.

To prove the theorem, we show that any standard irreducible commuting square is
isolated (modulo isomorphisms) among all standard commuting squares. The proof
goes by contradiction: assume that

P, < P
U U
cC < Q

is a converging sequence of standard commuting squares. It is immediate to see that
one can assume Pfl =Py, QS =U;QU; for some unitaries U; € Py, converging to the
identity. Write the standardness condition for all #’s, then take the “derivative" of this
relations along some direction of convergence of U,’s, to reach a contradiction.

The main technical difficulty is finding intrinsic conditions that characterize the
standardness of the commuting square, which we do by using S. Popa’s abstract char-
acterization of the standard invariant of a subfactor [12].

2. CHARACTERIZATIONS OF DEPTH 2 COMMUTING SQUARES

In this section we find necessary and sufficient conditions for a commuting square
to be a standard depth 2 commuting square. We also discuss other properties of stan-
dard commuting squares.

By atheorem of S. Popa [11,12] the standard invariant of a subfactor can be regarded
as an abstract group-like object, characterized by the Jones-Markov axioms and the
commutation conditions given in [12]. In the following theorem we refine these axioms
for the case when the subfactor has depth 2, so it is determined by a standard depth 2
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Theorem 2.1. Let

Py < P
C=| v u,Tt
Q1 < Q

be a commuting square of finite dimensional von Neumann algebras. Then € is a stan-
dard commyting square of depth two if and only if the following are satisfied:

_The‘re exists A >0, 17" € {4cos®(r/ n) | n = 31U [4,00) and projections e; € P e € Q
satisfying the Jones relations e exe; = ey, erei ey = Aey, such that if Py = {_eli’ rzw P ’
ey = gp_l, Py = (Py, e3) and Q, = {Qq, es) < Py we have: N ’ v

'('1) exxe; = Ep_,(x)e forallx € P_y, Pyey = Qpey, dimQ-1e; = dimQ_y;

(i) [P2,Qol =0, {e)}' NQ; =P, NQj,j =~1,0,1. -

Proof. LeF Py c Py 1?1 < .Pg c --- be the Jones tower obtained by reiterating the basic
con;tructlon, with projections e; € P;_y, and define Q; = (Q;_1, e;) inside P;. We have
Erohs ]ow thi/t[ thke system (P;,Q;, ;) is a standard A-sequence of commuting squares
T'he Jones-Markov axioms of [12] are clearly satisfied, so we onl .
commutation conditions. ’ erlymeed to check the
Letj>1. Sinf:e [P_3,Q11=0,[P_p,e;]=0foralli=2and Qj=(Q1,e,...,e;) we have
[P_2,Q;] = 0 which proves the first set of commutation conditions. !
. To check the se.cond se.zt, let R ={e;/ nQfor k=0. Then Ryc Rl c Ry c Ry < -+
ls,a Jones ‘to.wer with projections ey, es,.... We have to show that {ey,..., ;42} ﬂ Q; =
P;nQ;, Vi, j=-1. Infact it is enough to show {e;,..., ;21 NQ; c P! i) Si t
other inclusi I i hypoth i e the
’ o 1usmn always holds true. According to the hypothesis, this is true for i = —1
] =-—1,U, 1. ’
Ifi=-1,j>2then R; = {¢ ;= i
Pil . j fad' nQj = (Ry,€,...,ej-2) commutes with P_; so R; c
Ifi=0,j=2then

!
fer,..,en2 NQj = fe}'nQjnies, ..., et =P | N Qjniey,..., e

Y

= Pi N Qj,
since Pi = (I’_l,ez,...,ei+2). J
?'bser\fatlon 2.2 If@ is a spin model the conditions in the theorem above hold always
-lue, wﬂh’the exc.ep‘tlon of the commutation condition {e;} N Qp = P’ 1 N Q1. Thus, this
is the main restriction characterizing standardness of the commuting sqﬁare Il’,l the

followmg lemmas we find further properties of the standard commuting squares, that
in some sense encode this commutation condition. ’

Lemma2.3. Let

Py < Py
€=U u,T
Q1 < Qo

be a standard commuting square of depth 2, with Jones projections e, € Py, e; € Q
Forany x;,y, € Qo fori=1,2,...,k, if Z’? Xxie1y; k% ) 0
=1 Xi€yi € Py, then I x;py; € P_y for all

P2 ) I
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Proof. Since € is a standard depth 2 commuting square, there exists a tower of II; fac-
tors NcMc M, <M, <--- suchthat ¢, = ey, e = ey and
NnM < NAM
C= U (U
MnM < MnbM

Let x;, y; € Qp satisfying }:le x;eyy; € P-1 and let p € P_1. Because P.; = N' n M, we
have pe M} = (M,e)) so p = Zj’:l ajeibj, a;, b € M. Using that a;, b; commute with
Xi, Vi € Qp = M' n M, we have

n k 1 I k
Y oxipyi=). Y xiajerbjyi=y. uj(z xiely,-,)bj € M,
i=1 i=1j=1 j=1  ti=l
and since Zle Xi pyi € Py commutes with N it follows
k N
inpyiENlﬂMl =P 4. ]

i=1

In the rest of this section we will restrict to irreducible commuting squares, and
obtain alternative characterizations of the depth 2 condition, that are more suitable
for computations. Let

Py < MO
C=| U U T
cC c Qo
be an irreducible commuting square with Jones projections e; € P_y, & € Qp, such that
C c P_y «M,(€) is a basic construction with projection e, and C < Qy « M, (C) is a ba-
sic construction with projection ;. Denote [ = I,, the identity matrix in M, (C) and let
A~ = n. We have Ep_,(e2) = Al, Eg,(e1) = Al so the Jones projections ey, e; are minimal
projections in Py of trace 1/n.

Since C ¢ Qy < Py is a basic construction with projection e;, for every p € P_; there
exists g € Qp such that per = qe) (gis the “pull down" of p € Py). Applying Ep_, we have
per = 1(q)e;, where we used the commuting square condition

2.1) Ep_,(q) = Ep_, (Eq,(q)) = Ec(q) =1(g)1.

It follows ey pe; = 7(q)e; = pey, so p and ¢, commute. With a similar argument for

&, we have
el € Z(P.y), e €Z(Qo).

We can realize the subalgebra P of M,(C) as P_; = &; M,,(C), where }; lf =n
To simplify computations, we will abuse this notation and just write P_; = @, M, (C).

Consider (p 1<k i<y matrix units for M,(C), so p,’c'lplfj = 6§5;p£j. Foreachl<k,I<r

let g;, € Qp be the unique element satisfying
(2.2) p£l€2€1 = C];C.[el.
Multiplying by e» to the right and using e;e; ¢ = (1/ 1)), we also have

ey My Y Y
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And after projecting (2.2) on Qo

(2.4) dy; = nEg, (p},e2e1).
rFrom (2.3) it easil}{ follows that (4} k,1,r is an orthogonal basis of Qp. We will cail‘
(4.1 the dual basis of ( Pk, r with respect to the commuting square ¢,

[n the next theorem we give an intrinsi izati
ntrinsic characterization of the irreduci X
commuting squares. plestandard

Theorem 2.4. Ler
Py < M,
C={ u U T
C <
be lan' lrr?duczble con"tmz‘ning Square. Then € is a standard commuting square if and
0£ ly lf exist ‘]ones prOJ?ctlons e €P 1,e€Qy, such thatC c Py <My (C) is a basic con-
Z n;)c/tzon with pr0]ec{zonre2 and C < Qy <M, (C) is a basic construction with projection
1, Py nQy=C, and z,]l”(pkl)k,z,r 1S a system of matrix units in P_y, (q,’c'l)k Lr its dual basis
_ K 3 . thsd 3
inQy,and V=34, T ® P EQ®P, thenVisa unitary operator satisfying
(2.5) V(P.ie DV €EP1®P .

Proof. We first prove the left to right implicati g
‘ plication. Assume € is a standard co i
square. Since Q_1 = C it follows that ¢ has depth 2. e

Let (p,zf)k,z,,‘ be a system of matrix units for P_; and (g ) k,r its dual basis. Since

r — - - . et .
tpyp) = 5;4' 1) s0 (Vn/Tp; )k, is an orthonormal basis of € Pj,andCcp., c
Py is a basic construction with projection e;, we have ¥, G pf e (ps) = 1 =
Zi,j,_g(n/s)pfjezp;i:IQ N2 ij ij

i,j,s

T — r __’:l_ S s n " i
Pri=DPi 3. Spi,-elpj,-~;;p,’cjezp},,
SO
2.6 =y L
2.:6) Pei= 2.~ pijer)
j
From (2.2) and (2.6) it follows
A . |
qu‘el(qr_) - r.ee ryE r r__L g
e 14 z‘];l?k, 2e1e2(py;) n;pijZsz— nzpltcl’
which implies
Zq,’éjel(q;})*ep‘l, Yk,
- .
Thus, using Lemma 2.3 we have

2.7) qu’éjp(q;})*ep_l, VpeP
7

which shows that (2.5) is satisfied.
If we apply Eg, to the equality

- - r .
Zqz'«;el(fﬂ;)* = gl
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we obtain o r .
. . * = n—=T ,
qu,(‘h]) 2 TPkl
J
SO )

oy sl T
Yt =0kt
J

which shows that V is unitary. ‘ N .
Let’s now prove the right to left implication. We need to check if conditions (i) and

(ii) from Theorem 2.1 are satisfied. (i) is clearly satisfied under the given hypothesis. Let
P_; c Py < Py be the basic construction with Jones projection es, and Q; = {Qo. e3) < Py.
All we need to show is that P’ ; N Q1 = {e;} NQL. ' - .
Let p € P_;. (2.5) implies that for every fixed k, [, 1, X.; q]'cjp(q;j) € Py. Smceh
[es, P_1] =0 it follows ' N ' -
ZQLJP(CI;]) ey = e?)Z,q]lc]p(q;]) .
J i

If we fix 1 < @, b < r and multiply the previous equality by g, to th(? left and ¢, to the
right then sum up after k, I, using the fact that V is unitary, we obtain

p(Laise al.) = (%q;’;’zesq};a)p-

- ; e or £ O that commute with P_j, so the
Thus (Z j q;. €3 q}a) abr 1€ orthogonal elem’ents o QI ; / A
dimension ofP’~1 NQ isatleastn = dim({e; NQu). Since PL nQ1 < (¥ nQyitto "
P nQ=1{e }' 1 Q) which ends the proof.
We end this section with a reformulation of a technical lemma from [14], describing
the canonical conjugations in a standard irreducible commuting square:

Lemma 2.5. Ler

P, « B
U U
C <

be a standard commuling square with Jones projections ey, e and define an anti—lingar
multiplicative isomorphism ®y : Po — Po by (In(pl exp) = plexps for pi, P2 € Poy. Sim-
ilarly, define®,: Py — Py, Oolgrerqe) =41 14, forall v, g2 € Qo. Then

@, (P_y) = Py NPy, @1 (Qo) = Qo, @,(Qg) = Qy N Po, P2(P-1) = P-1
Proof. Let N M < M, ¢ M, be an irreducible tower of 1I; factors such tha; Py=
N AM, Py = NnM,Qo = M A M and e = en, € = eum- Let. M; act on L (.Ml',r)
by left multiplication. We can realize My as the basic construction of M < M; inside

B(IZ(My, 1)) ,
NecMcaM; ¢ Ms < B(L(M, 1))

and define J , o
1AMy, ) — LMy, 7, J(R) = X

the modular involution, where X is the element x & M as regardgd in the vector space

[2(My, 7). It is easy to check that J* = id, J is anti-linear isomorphism,

. N I 2 . o A T e A Y o
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Denote by J; the restriction of J to the invariant subspace I2(N'n My, 1). Note that
J1 can be defined just in terms of the basic construction C < P_y c Py, by realizing Py
as B(I?(P-1,1)) and J; the corresponding modular involution (identifying x in P_; with
% =x& e I2(P_,, 1), where ¢ is the vector corresponding to the 1-dimensional projection -
e1). We denote by L(x), R(x) the operators of left/right multiplication by elements x on
I2(P_y,1).

Let then @4 (x) = Jix/1 = R(x*) for x € P_;, and extend it to Py = spanP_je, P,
by ®1(xexy) = x*e,”, which will have the mentioned properties, as xe; = L(x)e; =
Rx)ex =1 x* J1e.

Because of the symmetry of the standard invariant, the second part follows in a sim-
ilar manner. 1

Corollary 2.6. Under the hypothesis from Lemma 2.5 the following is a standard com-
muting square
Pl_l NPy <o Py
U U
C < Qo.

Observation 2.7. We can write an explicit formula for ®1]Qy, in terms of the dual bases
of P_1,Qo: pr 201 = g 01 = P1(p e20) = Pi(g;,@) = pjexer = Pig;)er, so

(2.8) <D1(q,'c‘l) = ql"k,

3. A TECHNICAL LEMMA

In this section we give a technical lemma that makes clear the concept of “direction
of convergence".

Lemma3.1. Let Py =My(C) and let Uy, t = 1,2,3,... be unitaries in Py, converging to I
as t — oo. Assume that
PAI C PO
C=f U U T
C < UQU

are non-isomorphic commuting squares with Jones projections el’ €Py, ezt € Q. Then
there exists a subsequence 0 < t; < fp < f3 < --- of N and unitaries 17,1, (712, [7[3,... € Py
such that
P—-l < P()
=] U U
C c ﬁka()F][k

are commuting squares with Jones projections Ef, éé such that 5{ = e is constant, <,
isomorphic to &, for all k and

U -1 -
m j*“:’:*—“:hEQ_IHP ,
S [T

EP, .ﬁPn(E) = EOLF‘IPn(”;) = EO’ NP (E) = EO/ .ﬂOn(h/) =0.
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Proof. Without changing the isomorphism class of the commuting square we may as-
sume e} = e, are constant, since e} are projections orthogonal on P_j so e; = Ad(py)(ey)
for some unitaries p; € P_; and we may conjugate the commuting square by p;.

The projections e/ can also be assumed constant for all #’s, since the commuting
square condition implies e € Z(P_;) which has finitely many projections; so by passing

to a subsequence we may assume e = ej.
We will first show that we may modify U; without changing the isomorphism class

of €, such that they commute with e;, €. Since
e € Z(U; QuUy) = U; Z(Qp)U; = Ures Uf € Z(Qy)

and Z(Qg) has finitely many projections, we may assume by passing to a subsequence
that U;e;U; is constant and since it converges to e; we must have Ure, U} = e, so
(U}, e2] = 0. We show we can change U; to q,U; = U, (g; € Qo unitaries converging to I)°
such that [e}, q; U] = 0 . Note that g, U, will still commute with e, as [Qg, e2] = 0.

To do this, let ¢; = nEg,(e1 U;) be the unique element of Qq satisfying 1 g, = e1 U}
If we project g; e1 ¢; = Urer U on Qp we get

q: qr = TLEQO((]ZBI U;) = nUlEUfQoUr(el)U: =nt(e))l, =1,
which shows that g; are unitaries. We have
aqi=al, >eql,=e=>Ulgles=e=e =qUe = qUn,e] =0.

(U~ DU = ) g=1,2,3,.. are norm 1 vectors, so by the compactness of the unit ball
in the finite dimensional Banach space Py there exists a convergent subsequence of U;
(which for convenience we will still denote as Uy, Us, Us,...) such that lim; .. ((Ut —
D/GNU;=11D) = h. h follows hermitian since

® . U:”‘I . U;F(I—Ut)
h =-hm,-,——:~ I e
ST 11 e 11U — 11

Let U; = exp(ih;), h, hermitians converging to 0. Since
lexp(ihy) — 1l
t—o0 ilthel

we have

We will refer to h as the direction of convergence of (Uy);. According to the above
we may assume that [h, e;] = [h, ;] = 0. By changing U, to det(U;)U;, we may assume

that det(U;) = 1 for all £, so T(h;) = 0 and thus 7(h) = 0.
We will show how to change (U;); so that h satisfies the conditions in the lemma.

First we prove that we can modify (U;) such that
3.1) he P+ P +Q+Q)

and £ still commutes with the Jones projections ey, e;.
. With the notations introduced in the previous section, let

M o (e (2 e TNl nFY e v~ (DD 11
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2l is closed under multiplication because @ g i
‘ : : 1(p) € P.)). 2 is compact, being closed
ind mclgded in me unit ball of Py. Also, for @ € % we have la, el = [a, e] :gO since
(.p)R(p Yer = ppTe = e. Similarly, let 28 be the set of unitaries of the form q®2(q)
with g € tl(Qy). Let a;, b; be such that
Mb:Uras 1), = inf bU;a -
sty 014 2
i We. show that if we change U; to b, U, a,, which still commute with ey, ey, the new
1rect1_on of convergence (that we will still denote by h) satisfies (3.1). Note that b:Ua,
are unitaries converging to I, since [|b,U,a; — I, < |U, — [
ot o s con tUra; —1Illz < |U;~ Il5. If we denote Re 1 the real
Wbo:Uar—1j, =2 —2Ret(b:U,ay)
and using the definiti i i
and s g nition of a,, b, it follows Ret(bUia— b;Usa;) < 0, which we can
Rer((b- bf) Uta + b[U[(a —a)) <0.
Let now p € P_; be hermitian of trace 0 and p’ = imi
L1 p = —0y(p). Similarly let g e Qy b
hermitian of trace 0 and q' = —D3(q). For A real close to zero 7ebe

253 exp(i/l(p+ p/)) =y eXp(iAP)(Dl(eXpﬁ/lp)) e
exp(iMg + g b; = exp(irg) D, (exp(irg))b, € B
=Ret((exp(iMg+¢) - DbU,a+ beUay(explA(p + p')) - I)) < 0.
Dividing by A > 0 and taki imi - .
) < ng v and taking the limit as A — 0 we have Ret(i(g+q") b, Ura,+b,Uras(p+
R D(f’(l(ng thf%) S;lme for 1 < 0 it follows Re7(i((q + ¢) b, U, a, + b Uras(p+ p)) =0, so
etallg+ g )y by Ura, ~ D+ (b — Y ’

and using 4N 0rUrar =D+ (b Uray — D (p+ p')) = 0 and after dividing by | b, U, a, - I)
fim LeUear =1 _
. ) t=oo [lbyUra, ~ 1| ~
we obtain Re1(i((g + ¢')(ih) + () (p+p')) =0, so
(8.2) Rer(h(l’*®1(p)+q~®2(q)) =0

forall pe Py, g € Qy hermitian of trace 0.
Eh=po+py+qo+qhe P +P  + , ,
T(%) -0, 50 0 qp 1 1+ Qo+ Qo we may assume 7(pp) = () = T(pé) -

ih

Ep_(h) = Ep_, (po+ py) = Ep_, () + po = Bzp_) (py) + po
and by substituting po with py + Ezp_y(py) and pjy with Po = Ez(p.,)(p}) we may take
po=Ep.,(h), py=Ep (B)=Ezp.,)(h)
:gc(i) ilrllj:ke similar assumptions for g, 9o- In particular all these elements are self-
(1, e2] = [0, €21 = [, 2] = 0= [po+ pj), €3] = 0 = [py + D1 (pp),exl =0

Zn:i using py + @1 (py) € P_y it follows Po+®1(py) = 0. Reasoning similarly for ¢y we get
= ’;?0 - (I)1 (po) + do— D3 (go) which together with relation (3.2) leads to Re 1 (h2) = 0. <



166 REMUS NICOARA

To finish the proof of the lemma consider
p; = exp(=illUs = Il Ep_, (), p,=exp(=ilU—II(Ep (h) = Ezp_p (),
g: = exp(=il U~ Eg,(h), q; = exp(~ilU =1l (EQ(')(h) — Ez(Q) (M),

which are unitaries since £ i8 hermitian. Let U; = g:q,Urptpy- Then

Py < Py
u U
c < UiQU

. . . N —~ =~ / ®
are commuting squares with Jones projections &l =1, &' = p, pi eepip; and

Ue—1
= lim ———
o = s U~ I
=h—Ep (W) - Epr, (h) + Ezp_y (W) — Eqo (h) —~ E@é(h) + Ezqn (W) |
satisfies Ep_, (hp) = E])Ll(hg) = Eg,(hy) = E%(hg) = 0 and hg is non-zero, since his not
in the span of the four algebras according to (3.1). Thus:

- U, ~1I ho
h=lm-—"7=77"
=0 iU~ I Iholl

satisfies the conditions in the lemmma.

4. ON THE FINITENESS OF THE NUMBER OF n-DIMENSIONAL Hoprr C* -ALGEBRAS

In this section we give the proof of D. Stefan’s theorem, stating that for every integer
n > 1 there exist only finitely many n-dimensional Hopf C*-algebras. Also, our proof
can be refined to obtained an estimate on the number of such Hopf structures.

As shown in [14], every Hopf algebra can be encoded in a standard irreducible com-
muting square, so one can restate D. Stefan’s theorem as:

Theorem 4.1. Let n be a positive integer. Then there exist only finitely many isomor-
phism classes of standard irreducible commuting squares

P, < M (©
U U T
cC c

Proof. Tt is enough to show that each such irreducible standard commuting square ¢
is isolated among the standard commuting squares (modulo isomorphisms). Assume
not. This implies the existence of unitaries U; € Pp =M, (€), 1= 1,2,3,... converging to
the identity I,, such that
P < Py
Ci=1 U U ,T
€ < UjQUs

are non-isomorphic standard commuting squares, that can be assumed to satisfy the
N L - T T PN S p,[ — I’* Q’)Ur.
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The()rem 2.4: lmplles t}le existence o tay y € {‘ LZ [/3 . In ®1 —1
f Ut !
V V elem nts » V], ’ ’ QO

4.1) V[(]O@DV;EP_NX)P_}, VpEPhl.

Wﬂ;/\ilg (:/:lltl'lfdiﬁmi the unitary V, associated to the initial commuting square, by ¥ We
ify the elements x € Py withx® € Py P ] , .

. 0 ® P_;. Also, by abuse i i

sometimes denote the trace t® T on Py® P_; by 1. Y einotafion el

Vi = Yr1-(n/q;f ® pt, has the com nt ¥
mined by relation (2{&21) . ponents g, € Uy QU = Qg uniquely deter-

rot _ Kt

If we denote by
e= %}A§p£,® pr€PieP
then we can rewrite the previous’e’quality
4.2) Vier=eeyey = Vi = nEqrep., (€6301).

(1/n)e is a projection since ¢?
for the inclusion P’ | n Py < Py.
Letting ¢ — oo in the previous equality we obtain

= ne, being in fact the basic construction projection

(4.3) Voer VOJ< = eéeermpe= leeze: }—e,
Let " !
. Vi— W
Hy = lim =0 ep
T/,

We Wl“ ShOW that thlS hIIllt exists aIld fiIld an EXpll(nt fOI IIlula fOI 11 note tllat mn gen
0 g

Using (4.2) we have
V-V = nEgiep., (eeser) ~ nEgyep_, (eerer)
= nU; (Eqyep., (Ureese U YU, — nEgyep., (€e2e1)
= n((U; - D" (Eger., Uree,e U ) U;
+Egyep_, (U~ Deeye U Up + Egyep_, (ele) — e)er U] ) Uy
+ Egyer_, (eere; (U, — N*)U; + Egyep_, (eeze1)(Uy ~ I)).
And since
ezf-— e = UfegU[ —e=U-D"eUi+eU:—1)

SO

r_
lim,w-z———6~2~: les, Al
iU —1I| ’

we get

4, =
(4.4) Hy = n(lEgyep_, (ee2e)), il ~ Egyep_, ([eezey, h]) + Equep., (elex, hley),

which can be rewritten

4.5 =
(4.5) Hy = [y, hl = nEgyep_, ((Voer, h]) + nEg,ep. (ele, hler)
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since nEqep., (eeze1) = Vo and eexe) = Vyer.
We will now do the main trick of the proof, which is taking the “derivative" of relation
(4.1) along the direction Hy. For p € P, we have

Vszt* eP 0P 1= (Vi — V())]?V[* + VQ]?(V[ = V())* eP1®P_
and after dividing by i | U; — I|| and taking the limit as £ — oo
(4.6) H(,pVO* - %pf]g eP 1®P,.

Let H = Hy V. H is hermitian since H = lim; oo (Ve Vg =D/ U, = 1I1), s0 H= VoHj .
(4.6) can be rewritten as

4.7) [H,V()]?VJ]EP_1®P~_1, VpEP_l.
We now use the following lemma:

Lemma4.2. Let X ¢ Y c Z be finite dimensional C* -algebras with tracet, and let He Z
be an element such taht [H,x) € Y for all x € X. Then there exist elements yy €Y qnd
x) € X' N Z such that H= yo+ X;.

Proof. Let yo = Ey (H) and x{ = H— y;. We need to show xp € X'nZ. Because [H,x] € Y

and [yp, x] € Y we must have [x), x] € Y. But, for y in Y, 7(lxg, x1y) = T(XpXy — XXg¥) =

T(x)(xy—yx)) =0as xy-yx €Y. So by taking y = [x), x1* we get [xg, x] = 0 which shows

thatx' e X'nZ. O
If we apply the lemma to X = VoP_1 V), Y = Py ® P_y, Z = Py ® Py, since X'nZ=

Vo (P, ® P_y) Vy we get:

(4.8) H=py+Vopy Vg

with Po= Ep_l®p_1 (H)e P.1®P_,, ]ﬂ(l) € P’_1 ®P..

However, we will show that H is orthogonal onboth P_; ® P_ and Vp (P L@ P-) Vi,
which will lead to a contradiction and end the proof.

We have

H=HyVy
= Vo, Vg — nEgyep., ([Voer, 1 Vy) + nEqep., (elez, hler V)
= (VohVy = h) = nEger_, ((Voer, R1Vy) + nEgyep., (eley, hlei Vg).
We first show that
(4.9) Ep jep (H)eC® Z(P-3).
Using Ep_, Eg, = Ec we have
Ep_ep,(H) = Ep_,op, (VohVy — ) — nEgep., (Voer, h1Vg) + nEcer., (elez, hle1 V),
but Ep_ep_, (VohV{ — h) = Ep_jep_, (Voh V) =0, since Ep_, (h)=0and forany pe p;, €

P_; ® P_j we have

® ’ s ny2 & - 8
T(Voh Vg (p® plp) = T(hVg (pe pp) Vo) = (.'_) Y. t(hag; pagTpipipL)
L

ny2 . ) ) 1 .
= (%) Srthag; paiprvlp = x(n X gk pai) =
7 ¥ 7
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were we used that }.; g, p4;; € P-1, which follows from
r s - &3
Z‘z‘pi’cl = Z driedy; € P
I
r .
= Qa5 P =2 i 1y € D2(Poy) = Py,
13

Using (4.3) and 7(h Pr) = 0) we have
Besp, ((Voer, VG = Ecop_, (Voer RV — hVye Vi)

- . . 1

= Feors (Vo Vs = he] = Ecor. (a5~ 3 (2 hp o,
kLr

-5 . n®

= Eeop (VoerhVy) = 3 ﬁr(qllcielhqlr?)[@pigl

kLni
2

n
= —Tlethg)’ q,. = g
k%’i wrlehqr qile py, %r(elh)l®p,'ck—0
since e; € P_j and h is orthogonal on P_;. Finally, we have

2

E(,@P,l(e[eth]elV()): Z ﬁr(pl’ci[ez’h]elql’i*)l(g pl]»;l
ki

and using e1 g, = ej e Pl
E ) * n? .
Peor.(elez, ey Vi) = ), —57(pp;les hlevepjie py,
kLni
2 2

n
= —1([es, hle i ro n- . .
k’zz;;_’i 2 le2, hlevex p;y pr )18 py, kzl;i e t(lex, hlerexpi )@ py,.

-y ne . . 2
= 2 TT([QZ; hle; ezZP,-,-)I@ P = Z TT([@Q, heez)Iez e CoZ(P_ ),
:] ] I

where. Zr = )k Py, are central projections of P_;.
This shows (4.9). We now show that
(4.10) Epr‘l®p_l(V0”‘HV0)<—:C®PA1
Indeed, from the definition of H and using Epr En, = E¢ we have
-1

EPL1®P41 (H) = E[)’A1®P,1 (“V(;]’lV() -+ h) - I’LE@&])»I (VO*{VO@L h]) + nEQT@P,, (Vo*e{e , h](?])

belongs to C® P_, since

Ept jop., (= Vg BVo+ 1) = —Ep op (V5 hVp) =0.

This is true because for any p’ ® Py, € PLy®P_y we have

i

* / i 3 5 ny2 .
(Vo hVo(p' ® pr)) = T(hVo(p' @ pL) Vy) = (7) Yt hap ai TPl
ij )

]

ny2 . - ; 1
(2) Srthalp' a el = 21(nS ot ) =0,
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were we used ¥; q1,.p'dj] € P' | which follows from (2.8) together with

o (Y aper'aii )= L ap@1pay € Pt
1 1 ;

Thus we proved (4.10) and (4.9).

Let po = Ep_jepr., (FNeC®Z(P-1). In particular po = Vopo Vg, s0 H= Volpo+ p{)) Vi €
Vo(PL, ® P-1) Vy: Since we also have EPL1®Pﬁ1(VO*HV0) c Co® P it follows V7 HV €
€ ® P_,, so using the formula for H

h— VJI’lVo € Q()@P_l,
which implies [Vo, 2l € Qo ® P-1. Since q}é ; span Qg and [ql’c‘ P hl € Qg it follows (g, hl e
Qo,Vq € Qp, 80 using argumnents similar to the previous lemima heQ+ Q{), which
contradicts the assumptions Eg, (h) = Eq (1) =0, h#0. O
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