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Abstract. We prove that there exist only finitely many com-
muting squares of finite dimensional ∗-algebras of fixed dimension,
satisfying a ”large second relative commutant” condition. We show
this by studying the local minima of w → dim(A ∩ wBw∗), where
A,B are fixed sub-algebras of some ∗-algebra C and w ∈ C is a
unitary.

When applied to lattices arising from subfactors satisfying a cer-
tain extremality-like condition, our result yields Ocneanu’s finite-
ness theorem for the standard invariants of such finite depth sub-
factors.

1. Introduction

Commuting squares were introduced by S. Popa in [Po1] (see also
[Po2], [JS]). They arise naturally in subfactor theory, as invariants and
construction data for subfactors. A commuting square is a square of
inclusions of finite dimensional ∗-algebras:

C =

P−1 ⊂ P0

∪ ∪
Q−1 ⊂ Q0

, τ


with a faithful trace τ on P0, such that

P−1 	Q−1 ⊥ Q0 	Q−1

i.e. the vector spaces P−1 	 Q−1 and Q0 	 Q−1 are orthogonal with
respect to the inner product defined by τ on P0.

In this paper we consider commuting squares that satisfy a ”large
second relative commutant” (LRC) condition. These are commuting
squares with a λ-Markov trace τ such that, after doing Jones’ basic
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construction ([Jon]):

L =

P−1 ⊂ P0

e
⊂ P1

∪ ∪ ∪
Q−1 ⊂ Q0

e
⊂ Q1

, τ


the relative commutant R1 = P ′

−1 ∩Q1 satisfies

EP0(R
′
1 ∩ P1) = P−1

where EP0 denotes the projection from the vector space P1 onto P0,
with respect to the inner product defined by τ . Since in general P−1 =
EP0(P−1) ⊂ EP0(R

′
1∩P1), we can interpret the equality as a restriction

on R′
1 and thus a largeness condition for R1.

We prove that there exist only finitely many such LRC commuting
squares with dim(P0) fixed (Theorem 2.4).

The proof is based on derivation techniques similar to those we in-
troduced in [Ni]. We also need some properties of the local minima
of maps w → dim(A ∩ wBw∗), where A, B are fixed sub-algebras of
some ∗-algebra C. More precisely, we show that if dim(A ∩ B) ≤
dim(A ∩ wnBw∗

n) for some unitaries wn → I in C, then any direc-
tion of convergence of wn (in the sense of Definition 2.8) belongs to
A + B + (A ∩B)′ ∩ C (Proposition 3.3).

The finiteness result of this paper, as well as the LRC condition, are
motivated by the case of commuting squares arising in the standard
invariant of a subfactor.

Let us recall the definition of the standard invariant. Let N ⊂ M
be an inclusion of II1 factors of finite index with trace τ , and let N ⊂
M

e1⊂ M1

e2⊂ M2 ⊂ ... be the tower of factors obtained by iterating
Jones’ basic construction (see [Jon]), where e1, e2, ... denote the Jones
projections. The standard invariant GN,M is then defined as the trace
preserving isomorphism class of the following sequence of commuting
squares of inclusions of finite dimensional ∗-algebras:N ′ ∩M ⊂ N ′ ∩M1 ⊂ N ′ ∩M2 ⊂ N ′ ∩M3 ⊂ ...

∪ ∪ ∪
M ′ ∩M1 ⊂ M ′ ∩M2 ⊂ M ′ ∩M3 ⊂ ...

, τ


together with the Jones projections ei ∈ N ′ ∩Mi and the trace τ .

If the subfactor is of finite depth n, by [Po1] the commuting square

Cn =

N ′ ∩Mn−1 ⊂ N ′ ∩Mn

∪ ∪
M ′ ∩Mn−1 ⊂ M ′ ∩Mn

, τ


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uniquely determines the subfactor. In particular, the isomorphism class
of a depth 2 subfactor is uniquely determined by C1. Moreover, if
N ⊂ M is of depth n then N ⊂ Mn has depth 2. This allows to work
only with depth 2 subfactors for the purpose of finiteness results.

By a seminal result of S. Popa ([Po2],[Po4]), the standard invari-
ant of a subfactor can be thought of as an abstract group-like object,
described by a set of axioms. One of these axioms is based on the
following equality:

(N ′ ∩M1)
′ ∩ (M ′ ∩M3) = M ′

1 ∩M3

Thus, for the commuting square C = C1 of a depth 2 subfactor the
relative commutant P ′

−1 ∩Q1 is large, of dimension equal to dim(P−1).
This is our inspiration for looking for some ”large relative commutant”
condition.

When applied to such commuting squares C, the LRC condition is
equivalent to the following extremality condition:

E(N ′∩M1)′∩(N ′∩M2)(e2) ∈ CI

Thus our theorem yields a finiteness result for the standard invari-
ant of such (depth 2) subfactors. This extremality condition is not
automatically true for any depth 2 subfactor, as we will show in the
last section. We show however that it is true if N ′ ∩M is a (type Ik)
factor. In particular it is true when N ′ ∩ M = C, i.e. for those sub-
factors arising from Hopf algebras ([Szy]). It is also true for a larger
class of depth 2 subfactors, those admiting an orthonormal basis for
N ′ ∩M ⊂ N ′ ∩M1 which is invariant under taking adjoints.

We mention that this finiteness theorem for standard invariants of
finite depth subfactors is well known to specialists, as a theorem of A.
Ocneanu, even without the extra assumption E(N ′∩M1)′∩(N ′∩M2)(e2) ∈
CI. See also [EtNiOs]. The proof we obtain here, as a consequence
of our main theorem, is elementary in nature and does not use the
languages of paragroups or tensor categories.

Aknowledgments. The author would like to thank Dietmar Bisch
and Sorin Popa for many useful conversations in the past regarding the
topic of this paper.
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2. Preliminaries

In this section we recall the definition of a commuting square and
we introduce several notations and normalizations. All the algebras
considered will be matrix algebras, i.e. *-closed unital subalgebras of
Mn(C) for some n ≥ 1. Such an algebra is always of the form⊕iMni

(C),
with ni positive integers.

For a unitary inclusion of matrix algebras B ⊂ A we will use the
notations:

B′ ∩ A = {all b ∈ B such that ba = ab for all a ∈ A}

NA(B) = {u ∈ A unitary such that uBu∗ ⊂ B}

If τ is a fixed trace on A, we denote by EB = EA
B the τ -invariant

conditional expectation of A onto B.
If B1, B2 are subspaces of A, we denote by EB1(B2) the projection of

B2 onto B1, with respect to the trace τ . While this may be considered
an abuse of notation, it is consistent with the conditional expectation
notation.

If V, W are vector subspaces of the matrix algebra A we denote:

V + W = {v + w : v ∈ V, w ∈ W}

V ·W = span{vw : v ∈ V, w ∈ W}

[V, W ] = span{vw − wv : v ∈ V, w ∈ W}

We recall the definition of a commuting square (see [Po1],[Po2]):

Definition 2.1. A commuting square of matrix algebras is a square of
unital inclusions:

C =

P−1 ⊂ P0

∪ ∪
Q−1 ⊂ Q0

, τ


where P0, P−1, Q0, Q−1 are matrix algebras and τ is a trace on P0,
τ(1) = 1, satisfying the condition:

EP−1EQ0 = EQ0EP−1 = EQ−1

We say that the commuting square C is non-degenerate if P0 =
P−1Q0. We will assume all our commuting squares to be non-
degenerate.

We now introduce the large second relative commutant (LRC) con-
dition that we will consider.
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Definition 2.2. Let C be a commuting square with a λ - Markov trace
τ . With the previous notations, let L denote the lattice obtained by
doing Jones’ basic construction (see [JS]) from C:

L =

P−1 ⊂ P0

e
⊂ P1

∪ ∪ ∪
Q−1 ⊂ Q0

e
⊂ Q1

, τ


where the extension of the trace τ to P1 is still denoted by τ and e is the
Jones projection of the basic construction. Let R1 = P ′

−1 ∩ Q1 denote
the second relative commutant associated to the commuting square C.
We say that C satisfies the LRC condition if the following two dual
equalities hold:

(1) EQ1(P
′
−1 ∩ P1) = R1

(2) EP0(R
′
1 ∩ P1) = P−1

Remark 2.3. For any C we have: R1 = EQ1(P
′
−1 ∩Q1) ⊂ EQ1(P

′
−1 ∩

P1). Thus condition (1) can be interpreted as a largeness condition on
R1, hence the name LRC (large relative commutant).

Similarly, P−1 = EP0(P−1) ⊂ EP0(R
′
1 ∩ P1), as [P−1, R1] = 0. Thus,

condition (2) also requires that R1 be large, since it is a restriction on
the size of its commutant.

Asking for a ”largeness” condition on the relative commutant is in-
spired by the case of the standard invariant of a subfactor, as it will be
discussed in Section 5. We will see that in this context (1) and (2) are
equivalent and dual to each other.

Our main result, proved in Section 4, states:

Theorem 2.4. There exist only finitely many isomorphism classes of
commuting squares C, with dim(P0) fixed, satisfying the LRC condi-
tion.

We will prove the theorem by contradiction: assuming that there
exist infinitely many such commuting squares we find a convergent
subsequence, to which we apply derivation techniques similar to those
that we introduced in [Ni].

To make the notion of convergence of commuting squares precise, let
us first recall the following definition and result from [Chr]:

Definition 2.5. Let A be a matrix algebra with normalized trace τ .
Denote S(A) = the set of all *-subalgebras of A containing the identity.
For B1, B2 ∈ S(A) and δ > 0 we say that B1 is δ-contained in B2 if
for every element x ∈ B1 of ‖x‖ = 1 there exists y ∈ B2 such that
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‖x− y‖2 < δ. Here ‖ · ‖2 denotes the norm given by the trace τ on A,
i.e. ‖x‖2 = τ(x∗x)1/2.

If B1 is δ-contained in B2 and B2 is δ-contained in B1 we write
‖B1 −B2‖2,A < δ.

Theorem 2.6. With the previous notations, there exists a continuous
increasing function f : [0,∞) → [0,∞), f(0) = 0, such that if δ is
small and ‖B1 − B2‖2,A < δ, then B2 = Ad(U)(B1) for some unitary
element U ∈ A, ‖U − I‖2 < f(δ) .

If Theorem 2.4 is false then there exist infinitely many non-
isomorphic LRC commuting squares

Cn =

P n
−1 ⊂ P0

∪ ∪
Qn
−1 ⊂ Qn

0

, τ


By using Theorem 2.6 together with the compactness of the unit ball
of P1 it follows that the inclusions Qn

−1 ⊂ P n
−1 ⊂ P0 are unitarily

conjugate for infinitely many n. Thus, after conjugating each Cn by a
unitary and eventually passing to a subsequence, we may assume that:

Cn =

P−1 ⊂ P0

∪ ∪
Q−1 ⊂ Qn

0

, τ


By a similar compactness argument, after passing to a subsequence

we may assume that Qn
0 = unQ1u

∗
n, with un → I unitaries in P0. We

have u∗nQ−1un ⊂ Q1 and Lemma 3.2 shows that un = q′nqn for n large,
with qn → I unitaries in Q0 and q′n → I unitaries in Q′

−1 ∩ P0. Since
unQ1u

∗
n = q′nqnQ1q

∗
n(q′n)∗ = q′nQ1(q

′
n)∗, by substituting un → q′n we

may assume that un ∈ Q′
−1 ∩ P0.

In the following proposition we show that the notion of LRC com-
muting square behaves well to limits. This is somewhat surprising,
since it is not true in general that P ′

−1 ∩ Qn
1 = Rn

1 (n ≥ 1) implies
P ′
−1 ∩ Q1 = R1. However, P ′

−1 ∩ Q1 = R1 will follow from conditions
(1), (2), which have nice continuity properties.

Proposition 2.7. With the previous notations, if Cn are LRC com-
muting squares for all n ≥ 1 then so is C.

Proof. If B ⊂ A are matrix algebras and un → I are unitaries in A then
the conditional expectation satisfies the following continuity property:

lim
n→∞

EunBu∗n(a) = EB(a), for all a ∈ A

This is easy to see since EunBu∗n(a) = unEB(u∗naun)u∗n.
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We may assume the Jones projection e to be the same for all the com-
muting squares Cn, i.e. the projection e ∈ B(L2(P0, τ)) implementing
the conditional expectation EP0

P−1
. By the continuity of the conditional

expectation, taking the limit of the relations EP−1EQn
0

= EQn
0
EP−1 =

EQ−1 implies that C is a commuting square.
Let P1 =< P0, e >, Q1 =< Q0, e >= spanQ0eQ0 and Qn

1 =<
Qn

0 , e >= spanQn
0eQ

n
0 ⊂ P1. Let x1, ..., xN be a basis of Q0. Then

unxku
∗
neunxlu

∗
n (1 ≤ k, l ≤ N) span Qn

1 , xkexl (1 ≤ k, l ≤ N) span Q1

and ||unxku
∗
neunxlu

∗
n − xkexl||2 → 0 as n → ∞. The finiteness of the

spanning set implies that ||Qn
1 − Q1||2,P1 → 0, so there exist unitaries

wn → I in P1 such that Qn
1 = wnQ1w

∗
n.

Let Rn
1 = P ′

−1∩Qn
1 . By eventually passing to a subsequence, we may

assume that all Rn
1 are unitary conjugate inside P1. By the compactness

of the unit ball of P1, after passing again to a subsequence we may
assume that these unitaries converge. It follows that Rn

1 = vnR1v
∗
n

with vn → I unitaries in P1, where R1 is some subalgebra of P1. Since
Rn

1 ⊂ Qn
1 we have R1 ⊂ Q1. However, it is not obvious that P ′

−1∩Q1 =
R1 and in fact this will only follow because of the LRC conditions.

We know that EQn
1
(P ′

−1 ∩ P1) = Rn
1 for all n ≥ 1. Thus

v∗nEwnQ1w∗
n
(x)vn ∈ R1 for all x ∈ P ′

−1 ∩ P1. From the continuity of the
conditional expectation we obtain EQ1(P

′
−1 ∩ P1) ⊂ R1. On the other

hand, Rn
1 = P ′

−1∩Qn
1 ⊂ P ′

−1∩P1 implies [R1, P−1] = 0 so R1 ⊂ P ′
−1∩P1.

Using this and the previous inclusion it follows EQ1(P
′
−1 ∩ P1) = R1.

Notice that R1 ⊂ P ′
−1 ∩Q1 = EQ1(P

′
−1 ∩Q1) ⊂ EQ1(P

′
−1 ∩ P1) = R1

also shows that R1 = P ′
−1 ∩Q1.

Since EP0((R
n
1 )′ ∩ P1) = P−1 and (Rn

1 )′ ∩ P1 = (vnR1v
∗
n)′ ∩ P1 =

(vnR1v
∗
n)′ ∩ (vnP1v

∗
n) = vn(R′

1 ∩ P1)v
∗
n, by taking the limit we obtain

EP0(R
′
1∩P1) ⊂ P−1. On the other hand, [R1, P−1] = 0 so P−1 ⊂ R′

1∩P1,
which together with the previous inclusion yields EP0(R

′
1 ∩ P1) = P−1.

This also implies that P−1 = R′
1 ∩ P0.

�

Definition 2.8. We say that the sequence of unitaries un → I, un 6= I,
has direction of convergence h if

h = limn→∞
un − I

i‖un − I‖

Let vn → I, vn 6= I (n ≥ 1) be a sequence of unitaries in P0. Write
vn = exp(ikn), with kn ∈ P0 hermitian non-zero elements, kn → 0.
Consider any subsequence (hn)n≥1 of (kn)n≥1 such that hn

‖hn‖ converges

to some norm one hermitian element h of P0. Such sequences (hn)n≥1
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exist by a standard compactness argument and any such h will be re-
ferred to as a direction of convergence for (vn)n≥1. This terminology
is compatible with the previous definition, as h is the direction of con-
vergence of the subsequence un = exp(ihn) of (vn)n≥1. Indeed:

h = lim
n→∞

un − I

i‖hn‖
= lim

n→∞

un − I

i‖un − I‖
We end this section by recalling a result from [Ni], which gives nor-

malizations on the direction of convergence of a sequence of commuting
squares. These will be essential for the proof of Theorem 2.4.

Proposition 2.9. Let P0 be a matrix algebra with trace τ and let

Cn =

P−1 ⊂ P0

∪ ∪
Q−1 ⊂ unQ0u

∗
n

, τ


be a sequence of non-isomorphic commuting squares, where un → I
are unitaries in Q′

−1 ∩ P0. After eventually replacing un by one of its
subsequences, we have:

There exist unitaries qn ∈ Q′
−1 ∩ Q0, q

′
n ∈ Q

′
0 ∩ P−1, pn ∈ Q′

−1 ∩
P−1, p

′
n ∈ P

′
−1 ∩ P0 such that:

ũn = pnpn
′unq

′
nqn → I

lim
n→∞

ũn − I

i‖ũn − I‖
= h̃ ∈ Q′

−1 ∩ P0

EP ′
−1∩P0

(h̃) = EQ′
0∩P0

(h̃) = EQ′
−1∩P−1

(h̃) = EQ′
−1∩Q0

(h̃) = 0

Remark 2.10. Note that the change un → ũn = pnpn
′unq

′
nqn preserves

the isomorphism class of the commuting square Cn.

3. Local minima of matrix algebras intersections

In this section we deal with the main technical ingredient of the
paper. Let C be a matrix algebra and A, B two ∗-closed subalgebras
of C. Consider the algebras A ∩ wnBw∗

n, where wn are unitaries in
C approaching the identity. We find restrictions on the directions of
convergence of wn such that A ∩ B can be unitarily embedded in A ∩
wnBw∗

n for all n large. In other words, we study when A ∩ B is what
one might call a local minimum along the curve A∩wBw∗, with w → I
unitaries in the direction h.

In the next results we will often use the following relation that holds
true for every a, b, c in a matrix algebra (C, τ):

(3) τ([a, b]c) = τ(a[b, c]) = τ([c, a]b)
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as it can easily be checked: τ([a, b]c) = τ(abc−bac) = τ(abc)−τ(bac) =
τ(abc)− τ(acb) = τ(a[b, c]) = τ(cab)− τ(acb)

Since a lot of the derivatives of the relations we will consider are
commutator relations, the following lemma will be very useful.

Lemma 3.1. Let (C, τ) be a matrix algebra with a trace τ . Let A ⊂ B
be ∗-closed sub-algebras of C. For c ∈ C we have:

[c, A] ⊂ B if and only if c ∈ B + A′ ∩ C

Proof. The right to left implication is clearly true, as

[B + A′ ∩ C, A] ⊂ [B, A] + [A′ ∩ C, A] = [B, A] ⊂ [B, B] ⊂ B

Assume that c is such that [c, A] ⊂ B. Let c0 = EB(c) ∈ B. Since
[c0, A] ⊂ [B, B] ⊂ B, we have [c − c0, A] ⊂ B. On the other hand,
[c− c0, A] is perpendicular to B. Indeed, for a ∈ A and b ∈ B equation
(3) implies:

τ([c− c0, a]b∗) = τ((c− c0)[a, b∗]) = 0

as [a, b∗] ∈ B and c− c0 is orthogonal to B.
It follows that [c−c0, A] = 0 so c−c0 ∈ A′∩C. Thus c ∈ B +A′∩C,

which ends the proof.
�

A consequence of Lemma 3.1 is the following:

Lemma 3.2. Let (C, τ) be a matrix algebra with a trace τ . Let A ⊂ B
be ∗-closed sub-algebras of C. Let cn → I be unitaries in C such that
cnAc∗n ⊂ B for all n. Then there exist unitaries bn → I in B and
a′n → I in A′ ∩ C such that cn = bnan for all n large.

Proof. Let X = U(B)×U(A′∩C). Since X is compact in ‖ ‖2, for every
n there exist elements bn ∈ B, a′n ∈ A′ ∩ C that realize the minimum:

‖b∗ncna
′∗
n − I‖2 = inf

(b,a′)∈X
‖b∗cna

′∗ − I‖2

Let un = b∗ncn(a′n)∗. Clearly un → I, since for b = a′ = I we have:
‖un−I‖2 ≤ ‖cn−I‖2. If un = I for all n large we are done. Assume, by
eventually passing to a subsequence, that un 6= I for all n. By passing
again to a subsequence, we may assume that h = limn→∞

un−I
i‖un−I‖ exists.

Clearly ‖h‖ = 1.
Let <τ denote the real part of the trace τ . For every u unitary we

have: ‖u− I‖2
2 = 2− 2<τ(u). It follows:

<τ(un) ≥ <τ(b∗cna
′∗), for all (b, a′) ∈ X
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Let λ be a real number, let b0 ∈ B be a hermitian element, and let
b = (exp(iλb0)b

∗
n)∗, a′ = a′n. The previous inequality implies:

<τ(un) ≥ <τ(exp(iλb0)un) =⇒ <τ((exp(iλb0)− I)un) ≤ 0

After dividing by λ > 0 and taking limit as λ approaches 0, we
obtain <τ(ib0un) ≤ 0. Similarly, after dividing by λ < 0 we have
<τ(ib0un) ≥ 0. It follows:

<τ(ib0un) = 0

Since for hermitians b0 we have <τ(ib0) = 0, we can rewrite the
previous equality as: <τ(ib0(un−I)) = 0 and after dividing by ‖un−I‖
and taking the limit we obtain <τ(b0h) = 0. Since τ(b0h) = τ(hb0) =
τ((b0h)∗), it follows that τ(b0h) is a real number and thus τ(b0h) = 0.
Consequently:

EB(h) = 0

Similar arguments show that EA′∩C(h) = 0. Also, note that unAu∗n ⊂ B
for all n ≥ 1.

For every a ∈ A we have: (un − I)au∗n + a(un − I) = unau∗n − a ∈ B
for all n ≥ 1. After dividing by i‖un − I‖ and taking the limit, we
obtain:

[h, a] ∈ B for all a ∈ A

and Lemma 3.1 implies

h ∈ B + (A′ ∩ C)

Since the vector space B + (A′ ∩ C) can be written as the sum of two
orthogonal subspaces (B	 (A′ ∩B))⊕ (A′ ∩C) and h is orthogonal on
both these subspaces, we obtain h = 0 which is a contradiction. Thus,
un = I for all n large, or equivalently cn = bnan.

�

We now present the main result of this section, dealing with local
minima of intersections of algebras.

Proposition 3.3. Let (C, τ) be a matrix algebra with a trace τ . Let
A, B be ∗-closed sub-algebras of C. Let wn → I be a sequence of uni-
taries in C such that wn 6= I and h = limn→∞

wn−I
i||wn−I|| exists. Assume

that A ∩B unitarily embeds into A ∩ wnBw∗
n for all n ≥ 1. Then

h ∈ A + B + (A ∩B)′ ∩ C

Proof. Let vn → I be unitaries in C such that:

vn(A ∩B)v∗n ⊂ A ∩ wnBw∗
n

for all n ≥ 1.After eventually passing to a subsequence we may assume
that vn → v ∈ C. By taking the limit it follows that v(A∩B)v∗ ⊂ A∩B
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and because both sides have the same dimension we must have equality.
Then ṽn = vnv

∗ → I and ṽn(A ∩ B)ṽ∗n = vn(A ∩ B)v∗n ⊂ A ∩ wnBw∗
n.

This shows that we can assume, by substituting vn → ṽn, that vn → I.
Assume that infinitely many of vn are different from I. By even-

tually passing to a subsequence, we may assume that the limit: h̃ =
limn→∞

vn−I
i||vn−I|| exists. Notice that by modifying vn → vnsns

′
n with

unitaries sn ∈ A ∩ B, s′n ∈ (A ∩ B)′ ∩ C, sn, s
′
n → I, we do not change

the algebra vn(A∩B)v∗n. Thus, an argument similar to Proposition 2.9

shows that we may assume h̃ orthogonal to A ∩B and (A ∩B)′ ∩ C.
For n ≥ 1 let rn = sup(‖wn − I‖, ‖vn − I‖). Clearly rn 6= 0. By

eventually passing to a subsequence, we may assume that the following
limits exist:

hw = lim
n→∞

wn − I

irn

, hv = lim
n→∞

vn − I

irn

Notice that from the definition of rn it follows that at least one of hw, hv

must be non-zero.
Since ‖wn−I‖

rn
· wn−I

i‖wn−I‖ = wn−I
irn

, we have hw = ch for some positive

scalar c (which may be 0). In particular hw is hermitian. A similar

argument shows that hv = dh̃ for some d ≥ 0, thus hv is hermitian and
orthogonal to A ∩B, (A ∩B)′ ∩ C.

Let s ∈ A ∩B. We have: (vn − I)sv∗n + s(vn − I)∗ = vnsv
∗
n − s ∈ A.

Consequently:
vn − I

irn

sv∗n − s(
vn − I

irn

)∗ ∈ A

After taking the limit of this relation as n →∞ and using hv = h∗v we
obtain:

[hv, s] ∈ A for all s ∈ A ∩B

and Lemma 3.1 implies

(4) hv ∈ A + (A ∩B)′ ∩ C

For s ∈ A ∩B we also have: vnsv
∗
n ∈ wnBw∗

n. Equivalently:

(5) w∗
nvns(w

∗
nvn)∗ ∈ B for all n ≥ 1

Observe that
w∗

nvn − I

irn

= −(
wn − I

irn

)∗vn +
vn − I

irn

→ hv − hw

Thus, after dividing by irn and taking the limit, equation (5) yields

[hv − hw, s] ∈ B for all s ∈ A ∩B

and after applying again Lemma 3.1 we obtain:

(6) hv − hw ∈ B + (A ∩B)′ ∩ C
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Combining (4) and (6) yields:

hw ∈ A + B + (A ∩B)′ ∩ C

Since hw = ch, we only need to argue that c 6= 0 to finish the proof.
If c = 0 then hw = 0 and equation (6) becomes

hv ∈ B + (A ∩B)′ ∩ C

Thus hv = b + s′ with b ∈ B and s′ ∈ (A ∩B)′ ∩ C. We have:

0 = E(A∩B)′∩C(hv) = E(A∩B)′∩C(b) + s′

which implies s′ = −E(A∩B)′∩C(b) ∈ (A ∩B)′ ∩B so hv = b + s′ ∈ B.
Similarly, equation (4) implies hv ∈ A. Thus hv ∈ A ∩ B, which

implies hv = 0 since hv is orthogonal to A∩B. We thus obtained that
both hv, hw are 0, which is impossible.

We still have to deal with the case when infinitely many vn are equal
to I. This yields:

A ∩B ⊂ A ∩ wnBw∗
n

Thus for every s ∈ A ∩B we have

(wn − I)sw∗
n + s(wn − I)∗ = w∗

nswn − s ∈ B

Dividing by i‖wn − I‖ and taking the limit yields [h, s] ∈ B for all
s ∈ A∩B. Thus in this case we easily obtain h ∈ B +(A∩B)′∩C. �

Remark 3.4. Similar arguments as in Lemma 3.2 can be used to show
that wn = ansnbn, with an ∈ A, bn ∈ B, sn ∈ (A ∩ B)′ ∩ C. However,
to deduce the conclusion of the proposition one still needs a proof in the
same lines, to control the speed of convergence of an, bn, sn.

We end this section with a lemma that will be useful towards proving
the main result.

Lemma 3.5. Let (C, τ) be a matrix algebra with a trace τ . Let A, B be
∗-closed sub-algebras of C and D = A∩B. Assume that the commuting
square condition holds: EAEB = EBEA = ED. Then we have the
following equality of vector spaces:

D′ ∩ (A + B) = D′ ∩ A + D′ ∩B

Proof. We just have to show that ”⊂” holds. Let a ∈ A, b ∈ B be such
that a + b ∈ D′ ∩C. Since D ⊂ A ⊂ C, we have EA(D′ ∩C) = D′ ∩A.
On the other hand EA(a + b) = a + EA(b) = a + ED(b). It follows that
a+ED(b) ∈ D′∩A. If we rewrite a+b = a1+b1, with a1 = a+ED(b) ∈ A
and b1 = b − ED(b) ∈ B, we have a1 ∈ D′ ∩ C which also implies
b1 ∈ D′ ∩ C. This ends the proof.

�



COMMUTING SQUARES WITH LARGE RELATIVE COMMUTANT 13

4. The Main Result

We are now ready to prove Theorem 2.4, stating that there exist
only finitely many isomorphism classes of commuting squares C, with
dim(P0) fixed, satisfying the LRC condition. Since we fix dim(P0), it
is clear that we may in fact assume that both the algebra P0 and the
λ-Markov trace τ are fixed, without changing the finiteness result.

We assume, by contradiction, that the theorem is false. The discus-
sion from Section 2 shows then that there exist non-isomorphic com-
muting squares

Cn =

P−1 ⊂ P0

∪ ∪
Q−1 ⊂ unQ0u

∗
n

, τ

 , C =

P−1 ⊂ P0

∪ ∪
Q−1 ⊂ Q0

, τ


all satisfying the LRC condition, where un → I are unitaries in
Q′
−1 ∩ P0, un 6= I. We may also assume, by eventually passing to

a subsequence, that the unitaries un converge in direction h0, i.e.

h0 = lim
n→∞

un − I

i‖un − I‖
Proposition 2.9 shows that we may take h0 orthogonal to Q′

−1 ∩
Q0, Q

′
−1 ∩ P−1, P

′
−1 ∩ P0, Q

′
0 ∩ P0.

Moreover, we may assume that the lattices Ln, L obtained by doing
the basic construction from Cn, C are of the form:

Ln =

P−1 ⊂ P0

e
⊂ P1

∪ ∪ ∪
Q−1 ⊂ unQ0u

∗
n

e
⊂ wnQ1w

∗
n

, τ



L =

P−1 ⊂ P0

e
⊂ P1

∪ ∪ ∪
Q−1 ⊂ Q0

e
⊂ Q1

, τ


where e is the Jones projection of the basic construction P−1 ⊂ P0 ⊂ P1,
un → I are unitaries in P0 and wn → I are unitaries in P1. Also,
Rn

1 = P ′
−1 ∩ wnQ1w

∗
n is unitarily conjugate to R1 = P−1 ∩Q1 for all n.

Since P0∩wnQ1w
∗
n = unQ0u

∗
n, it is clear that wn 6= I for n large. By

eventually passing to a subsequence, we may assume the existence of
the limit

h1 = lim
n→∞

wn − I

i‖wn − I‖
Notice that the algebra wnQ1w

∗
n does not change if we modify wn

by multiplying it to the right with unitaries of Q1 or Q′
1 ∩ P0. Thus,
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similar arguments to Proposition 2.9 and Lemma 3.2 show that we may
assume h1 orthogonal to Q1, Q

′
1 ∩ P1.

Applying Proposition 3.3 for A = P ′
−1 ∩ P1, B = Q1, R1 = A ∩ B

yields:
h1 ∈ P ′

−1 ∩ P1 + Q1 + R′
1 ∩ P1

For n ≥ 1 let rn = sup(‖wn − I‖, ‖un − I‖). Clearly rn 6= 0. By
eventually passing to a subsequence, we may assume that the following
limits exist:

hw = lim
n→∞

wn − I

irn

, hu = lim
n→∞

un − I

irn

Notice that from the definition of rn it follows that at least one of hw, hu

must be non-zero. Also, arguments similar to those from Proposition
3.3 show that hu = ch0, hw = dh1 for some positive (but possibly equal
to zero!) scalars c, d. It follows that hu, hv also satisfy:

(7) hu ∈ Q′
−1 ∩ P0

(8) hw ∈ P ′
−1 ∩ P1 + Q1 + R′

1 ∩ P1

(9) hu ⊥ Q′
−1 ∩Q0, Q

′
−1 ∩ P−1, P

′
−1 ∩ P0, Q

′
0 ∩ P0

(10) hw ⊥ Q1, Q
′
1 ∩ P1

We have :

(11) lim
n→∞

w∗
nun − I

irn

= hu − hw

Since unQ0u
∗
n ⊂ wnQ1w

∗
n, it follows that (w∗

nun)Q0(w
∗
nun)∗ ⊂ Q1 for

all n. Thus

(w∗
nun − I)q0(w

∗
nun)∗ + q0(w

∗
nun − I)∗ ∈ Q1 for all q0 ∈ Q0

After dividing by irn, using (11) and taking the limit we obtain:

[hu − hw, q0] ∈ Q1 for all q0 ∈ Q0

Using Lemma 3.1 yields:

(12) hu − hw ∈ Q1 + Q′
0 ∩ P1

Thus, we may write hw = hu+h, where h is a hermitian in Q1+Q′
0∩P1.

After projecting on P0 and using the LRC condition EP0(R
′
1 ∩P1) =

P−1, equation (8) yields:

EP0(hw) ∈ P ′
−1 ∩ P0 + Q0 + P−1

On the other hand, EP0(hw) = hu + EP0(h) and EP0(h) ∈ EP0(Q1) +
EP0(Q

′
0 ∩ P1) ⊂ Q0 + Q′

0 ∩ P0, which implies:

hu ∈ P ′
−1 ∩ P0 + Q0 + P−1 + Q′

0 ∩ P0
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We also know that hu ∈ Q′
−1 ∩ P0. Using the previous relation and

Lemma 3.5 for A = Q0, B = P−1, D = Q−1, we obtain:

hu ∈ P ′
−1 ∩ P0 + Q′

−1 ∩Q0 + Q′
−1 ∩ P−1 + Q′

0 ∩ P0

This together with equation (9) implies hu = 0. Thus

hw = h ∈ Q1 + Q′
0 ∩ P1

We can write:

hw ∈ Q1 + Q′
0 ∩ P1 = Q1 	 (Q′

0 ∩Q1)⊕Q′
0 ∩ P1

and the two vector spaces are orthogonal: Q1 	 (Q′
0 ∩Q1) ⊥ Q′

0 ∩ P1.
On the other hand, we know that hw ⊥ Q1. We obtain

(13) hw ∈ Q′
0 ∩ P1

We now use the existence of the Jones projection e ∈ wnQ1w
∗
n. Since

(wn − I)∗ewn + e(wn − I) = w∗
newn − e ∈ Q1 for all n, after dividing

by irn and taking the limit as n →∞ we obtain:

[hw, e] ∈ Q1

However, EQ1([hw, e] = [EQ1(hw), e] = 0, which shows that [hw, e] =
0. Thus hw ∈ e′ ∩ P1. Together with equation (13) this yields:

hw ∈ Q′
0 ∩ e′ ∩ P1 =< Q0, e >′ ∩P1 = Q′

1 ∩ P1

which together with (10) implies hw = 0.
We thus obtained that both hv, hw are 0, which is a contradiction.

5. Examples

Let N ⊂ M be a subfactor of depth 2, i.e. N ′∩M ⊂ N ′∩M1 ⊂ N ′∩
M2 is a basic construction. By a result of [Po1], [Oc], the commuting
square

C =

N ′ ∩M1 ⊂ N ′ ∩M2

∪ ∪
M ′ ∩M1 ⊂ M ′ ∩M2

, τ


uniquely determines the isomorphism class of N ⊂ M . C is called
a standard commuting square. If we let P0 = N ′ ∩ M2, P−1 = N ′ ∩
M1, Q0 = M ′ ∩M2, Q−1 = M ′ ∩M1 we have P1 =< P0, e3 >= N ′ ∩M3

and Q1 =< Q0, e3 >= M ′ ∩M3.
We have: P ′

−1 ∩ Q1 = (N ′ ∩ M1)
′ ∩ (N ′ ∩ M3) = M ′

1 ∩ M3. The
last equality is easy to check, since (N ′ ∩ M1)

′ ∩ (N ′ ∩ M3) ⊂ e′1 ∩
(M ′ ∩ M3) =< M, e1 >′ ∩M3 = M1 ∩ M3 and clearly M ′

1 ∩ M3 ⊂
(N ′ ∩M1)

′ ∩ (N ′ ∩M3). Thus:

R1 = P ′
−1 ∩Q1 = M ′

1 ∩M3
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which is anti-isomorphic (and therefore isomorphic) to N ′ ∩M1. This
justifies asking for a largeness condition on R1.

We now investigate when does C satisfy the LRC condition.

Proposition 5.1. Let C be the standard commuting square associated
to the depth 2 subfactor N ⊂ M . Then C is a LRC commuting square
if and only if

(14) E(N ′∩M1)′∩(N ′∩M2)(e2) ∈ CI

Proof. Because of the duality in the lattice of relative commutants of a
subfactor, conditions (1) and (2) from the definition of LRC commuting
squares are equivalent for C. Indeed, if J is the conjugation map on
L2(M1, τ) and we embed N, M, M1, M2, M3 in B(L2(M1, τ), we have:
JP−1J = R1, JP0J = Q1, JP1J = P1. This shows that

EP0(R
′
1 ∩ P1) = P−1 if and only if EQ1(P

′
−1 ∩ P0) = R1

Is is thus sufficient to work with EQ1(P
′
−1 ∩ P0) = R1. Equivalently,

this can be written

(15) Q1 	R1 ⊥ P ′
−1 ∩ P1

Assume (15) holds. Let λ−1 = [M : N ]. Since e2 ∈ Q1 and ER1(e2) =
λ·I, we have e2−λI ∈ Q1	R1 and thus we must have e2−λI ⊥ P ′

−1∩P1.
Equivalently: EP ′

−1∩P1
(e2) = λI. Since e2 ∈ P0, we have:

EP ′
−1∩P0

(e2) = EP ′
−1∩P1

(e2) = λI ∈ CI

which shows that the left to right implication holds true.
We now prove that EP ′

−1∩P0
(e2) = λI implies (15). Let x ∈ P ′

−1∩P1.

It is sufficient to show that y = x−ER1(x) ∈ P ′
−1 ∩P1 is orthogonal to

Q1. Since Q1 =< R1, e2 >, it is enough to show that y is orthogonal
on elements of the form re2r

′, with r, r′ ∈ R1. We have τ(yre2r
′) =

τ(r′yre2). Since r′yr ∈ P ′
−1 ∩ P1 and EP ′

−1∩P1
(e2) = EP ′

−1∩P0
(e2) = λI,

we obtain:

τ(yre2r
′) = τ(r′yre2) = λτ(r′yr) = λτ(yrr′) = 0

as y is orthogonal to R1. This ends the proof.
�

By combining the previous result with Theorem 2.4, we obtain the
following finiteness result for the standard invariants of finite depth
subfactors. We mention that this result is well known to special-
ists as a theorem of A. Ocneanu, even without the extra assumption
E(N ′∩M1)′∩(N ′∩M2)(e2) ∈ CI.
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Corollary 5.2. There exist only finitely many isomorphism classes of
standard commuting squares C, of fixed dimension dim P0, arising from
depth 2 subfactors N ⊂ M with E(N ′∩M1)′∩(N ′∩M2)(e2) ∈ CI.

Remark 5.3. In a depth 2 subfactor, the following is a basic construc-

tion: N ′ ∩ M ⊂ N ′ ∩ M1 ⊂ N ′ ∩ M2. For any A ⊂ B
e
⊂ C a basic

construction of finite dimensional ∗-algebras, we can state the previous
condition: EB′∩C(e) ∈ CI. This does NOT always hold true. For in-
stance, it fails for A = Mk ⊕Ml with k 6= l and B = Mn, n = k + l.
We will see however that it holds true if A ⊂ B has an ONB closed
under taking adjoints, and in particular if A = N ′ ∩M is a factor.

Proposition 5.4. With the previous notations, if N ′ ∩M ⊂ N ′ ∩M1

admits an orthonormal basis closed under taking adjoints, then C is
LRC.

Proof. Let {ai}1≤i≤n be such an orthonormal basis. Then ai satisfy∑
aie2a

∗
i =

∑
a∗i e2ai = 1,

∑
aia

∗
i = λ−1. For a′ ∈ (N ′∩M1)

′∩(N ′∩M2)
we have:

τ(e2a
′) = λτ(e2a

′
∑

aia
∗
i ) = λτ((

∑
a∗i e2ai)a

′) = λτ(a′)

This shows that E(N ′∩M1)′∩(N ′∩M2)(e2) ∈ λI, which ends the proof.
�

Corollary 5.5. If N ⊂ M is a depth 2 subfactor with N ′∩M a factor
(of type In), then the associated depth 2 commuting square is LRC.

Proof. B = N ′ ∩M1 must be a tensor product B = A⊗ S, where A is
the factor N ′ ∩ M and S is some ∗-subalgebra of B. Any ONB of S
which is closed under taking adjoints is also an ONB for A ⊂ B, closed
under taking adjoints. �

In particular, the LRC condition holds if the first relative commu-
tant is trivial, i.e. N ′ ∩ M = CI. By a result of [Szy], such com-
muting squares correspond precisely to the finite dimensional Hopf C∗-
algebras. We thus obtain a new proof of the following theorem of D.
Stefan:

Corollary 5.6. For every N ≥ 1 there exist only finitely many N-
dimensional Hopf ∗-algebras.

A somewhat more general class of LRC commuting squares arises
from depth 2 subfactors N = Ik ⊗ N ⊂ Mk(C) ⊗ M , where N ⊂ M
is a Hopf algebra cross product subfactor and Ik denotes the identity
matrix of Mk(C), k ≥ 2 .
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