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Abstract. In an attempt to understand the structure of the mod-
uli space of commuting squares, we ask the question: when is a
commuting square C a limit of non-isomorphic commuting squares?
We present necessary second order conditions on such a C.

We give an application to the classification of complex
Hadamard matrices. Such matrices correspond to spin model com-
muting squares. We exemplify on Petrescu’s matrices how our
result can be used to decide if a one-parameter family can be ex-
tended to a multi-parametric family of Hadamard matrices.

1. Introduction

Commuting squares were introduced by S. Popa in [Po1] (see also
[Po2], [JS]). They arise naturally in subfactor theory, as invariants and
construction data for subfactors. A commuting square is a square of
inclusions of finite dimensional von Neumann algebras:

C =





P−1 ⊂ P0

∪ ∪
Q−1 ⊂ Q0

, τ





with a faithful trace τ on P0, such that the vector spaces P−1 ⊖ Q−1

and Q0 ⊖Q−1 are orthogonal with respect to the inner product defined
by τ on P0.

Commuting squares show up in the standard invariant of a subfactor
and are complete invariants for a large class of subfactors, those of finite
depth (see [Po1]).

Conversely, one can construct from a commuting square a finite index
hyperfinite subfactor, by iterating Jones’ basic construction ([Jon]).
Most of the known explicit examples of subfactors were obtained using
this construction. One interest in the existence of (continuous) families
of commuting squares is to obtain families of possibly non-isomorphic
subfactors, constructed from the commuting squares.

In [Ni] we introduced a condition for arbitrary commuting squares C,
called the span condition, as a maximality condition for the dimension
of the commutator [P−1, Q0] = {pq − qp, p ∈ P−1, q ∈ Q0}. We proved
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that every commuting square satisfying the span condition is isolated
among all commuting squares, modulo isomorphisms. The main tech-
nique we used was taking what one might call the first order derivative
of the commuting square relation, along a direction of convergence.

Consequently, if a commuting square C is not isolated then the span
condition must fail. In this paper we find a new restriction that C must
satisfy if it is not isolated. It states that a certain map in two variables
(p, q) ∈ P−1 × Q0 actually depends only on the commutator [p, q] =
pq − qp (Corollary 3.3). This result is obtained by taking the ”second
order derivative” of the commuting square relations. The rigidity of
the commuting square relations allows us to overcome some technical
difficulties regarding the convergence of the second order terms.

In the last section of the paper we present some applications to com-
muting squares arising from complex Hadamard matrices (see [Po3]).
In the recent years, complex Hadamard matrices have found applica-
tions in several areas of mathematics and physics, such as quantum
information theory, error correcting codes, spectral sets and Fuglede’s
conjecture. The classification of Hadamard matrices is largely unknown
(see [TaZy]).

Our result can be used to show that certain parametric families of
Hadamard matrices can not be extended to multi-parametric families.
We exemplify on Petrescu’s matrices of order 7 ([Pe]). These are the
only known infinite families of Hadamard matrices of order 7. They
consist in two one-parameter families, intersecting at one point. It is a
natural question in the study of the moduli space of Hadamard matrices
whether these families are in fact part of a 2-dimensional manifold. We
answer it in the negative.
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2. Preliminaries

In this section we recall the definition of isolation in the context
of commuting squares, as well as the span condition and some other
results from [Ni]. All algebras considered will be matrix algebras, i.e.
*-closed subalgebras of Mn(C) for some n ≥ 1. Such an algebra is
always of the form ⊕iMni

(C), with ni positive integers.
We recall the definition of a commuting square (see [Po2]):

Definition 2.1. A commuting square of matrix algebras is a square of
inclusions:





P−1 ⊂ P0

∪ ∪
Q−1 ⊂ Q0

, τ





where P0, P−1, Q0, Q−1 are matrix algebras and τ a faithful positive trace
on P0, τ(1) = 1, satisfying the condition:

(1) EP−1
EQ0

= EQ−1

Here EA = EP0

A denotes the τ -invariant conditional expectation of P0

onto the subalgebra A ⊂ P0.
We say that the commuting square is non-degenerate if P0 =

span(P−1 · Q0).

We will assume all our commuting squares to be non-degenerate.

Definition 2.2. We say that the commuting squares

C =





P−1 ⊂ P0

∪ ∪
Q−1 ⊂ Q0

, τ



 , C̃ =





P̃−1 ⊂ P̃0

∪ ∪
Q̃−1 ⊂ Q̃0

, τ̃





are isomorphic if there exists a trace-invariant *-isomorphism φ : P0 →
P̃0 such that φ(P−1) = P̃−1, φ(Q−1) = Q̃−1, φ(Q0) = Q̃0

The following definition is from [Chr]:

Definition 2.3. Let A be a matrix algebra with normalized trace τ .
Denote S(A) = the set of all *-subalgebras of A containing the identity.
For B1, B2 ∈ S(A) and δ > 0 we say that B1 is δ-contained in B2 if
for every element x ∈ B1 of ‖x‖ = 1 there exists y ∈ B2 such that
‖x − y‖2 < δ. If B1 is δ-contained in B2 and B2 is δ-contained in B1

we write ‖B1 − B2‖2,A < δ.

We can now recall the definition of isolation from [Ni]:
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Definition 2.4. The commuting square of matrix algebras

C =





P−1 ⊂ P0

∪ ∪
Q−1 ⊂ Q0

, τ





is isolated (among all commuting squares) if there exists δ > 0 such
that if

C̃ =





P̃−1 ⊂ P̃0

∪ ∪
Q̃−1 ⊂ Q̃0

, τ̃





is a commuting square and φ : P0 → P̃0 a trace-invariant * isomor-
phism satisfying

‖φ(P−1) − P̃−1‖2,P̃0
< δ, ‖φ(Q−1) − Q̃−1‖2,P̃0

< δ, ‖φ(Q0) − Q̃0‖2,P̃0
< δ

then C̃ is isomorphic to C.

In [Ni] we showed that to check isolation it is enough to restrict to
commuting squares in which just one corner changes:

Lemma 2.5. Let

C =





P−1 ⊂ P0

∪ ∪
Q−1 ⊂ Q0

, τ





be a commuting square of finite dimensional von Neumann algebras,
with trace τ . C is isolated if and only if there exists ε > 0 such that if
U ∈ Q′

−1 ∩ P0 is a unitary, ‖U − I‖2 < ε, and

C(U) =





P−1 ⊂ P0

∪ ∪
Q−1 ⊂ UQ0U

∗
, τ





is a commuting square, then C(U) is isomorphic to C.

Assume C is not isolated. This means that there exists a sequence
of unitaries Un → I in Q′

−1 ∩ P0, such that C(Un) is not isomorphic to
C, ∀n ≥ 1.

We can write Un as Un = exp(ihn) with hn ∈ Q′
−1 ∩ P0 hermitian

non-zero elements, converging to 0. Because of the compactness of the
unit ball of the finite dimensional algebra P0, by eventually passing to a
subsequence of hn we may assume that hn

‖hn‖ → h ∈ Q′
−1 ∩ P0, ‖h‖ = 1.

It is easy to see that h = limn→∞
Un−I

i‖Un−I‖ .

Definition 2.6. h is called the direction of convergence of the sequence
C(Un).



LIMIT POINTS OF COMMUTING SQUARES 5

In [Ni] it was proven that the unitaries Un can be modified, without
altering the isomorphism equivalence class of the commuting squares,
such that h also satisfies: EP ′

−1
∩P0

(h) = EQ′

0
∩P0

(h) = EQ′

−1
∩P−1

(h) =

EQ′

−1
∩Q0

(h) = 0.
We will refer to such an h as a normalized direction of convergence.
We give some notations needed for the span condition.

Notation 2.7. Let C be a commuting square as before. For V, W vector
subspaces of the algebra P0, denote

V + W = {v + w|v ∈ V, w ∈ W}

[V, W ] = span{vw − wv|v ∈ V, w ∈ W}
Denote by H(C) the following vector subspace of P0, which we will

refer to as the spanning space of C:

H(C) = [P−1, Q0] + (Q′
−1 ∩P−1) + (Q′

−1 ∩Q0) + (P ′
−1 ∩P0) + (Q′

0 ∩P0)

Definition 2.8. C is said to satisfy the span condition if H(C) = P0.

We end this section by recalling the main result of [Ni]:

Theorem 2.9. If C is not isolated and h is a normalized direction of
convergence for C then h satisfying the conditions:

(i). h = h∗

(ii). τ(h[p, q]) = 0 for all p ∈ P−1 and q ∈ Q0.
In other words, any direction of convergence h is a hermitian orthogonal
to the vector space H(C).

Corollary 2.10. If C satisfies the span condition then C is isolated.

3. The Main Result

We have seen that if H(C) = P0 then the commuting square C is
isolated. We now ask the reverse question: assume there exists a her-
mitian h ∈ P0⊖H(C), ||h|| = 1. Does there exist a sequence of unitaries
Un → I of direction h, Un ∈ P0, such that C(Un) are all non-isomorphic
commuting squares?

We find new restrictions on h for the existence of such a sequence
of commuting squares. The span condition was found by taking the
”derivative” of the commuting square relation along the direction h.
Our new conditions are obtained by considering what one might call
the second derivative along h. The main technical difficulty is using
the commuting square and unitary relations to control the growth of
the second order coefficient of Un in terms of the first order coefficient.
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In the next theorem we will often use the following relation that
holds true for every a, b, c ∈ P0:

(2) τ([a, b]c) = τ(a[b, c]) = τ([c, a]b)

as it can easily be checked: τ([a, b]c) = τ(abc−bac) = τ(abc)−τ(bac) =
τ(abc) − τ(acb) = τ(a[b, c]) = τ(cab) − τ(acb)

Theorem 3.1. Let

C =





P−1 ⊂ P0

∪ ∪
Q−1 ⊂ Q0

, τ





be a commuting square of finite dimensional von Neumann algebras,
with trace τ . If C is not isolated and h is a normalized direction of
convergence then there exists s ∈ P0 satisfying the conditions:

(i). s + s∗ = h2

(ii). τ(s[p, q]) = τ(pqh2) − τ(phqh) for all p ∈ P−1 and q ∈ Q0.

Remark 3.2. Condition (i) is just a normalization on s, as will result
from the proof. Condition (ii) entails the new restriction on h, which
states that the bilinear map (p, q) → τ(pqh2)−τ(phqh) depends just on
[p, q].

Proof. Let Un ∈ Q′
−1∩P0 be unitaries converging to the identity and of

direction h, i.e. h = limn→∞
Un−I

i‖Un−I‖ , such that C(Un) are commuting

squares non-isomorphic to C. We know from Theorem 2.9 that h is
orthogonal to [P−1, Q0].

Let cn = ||Un − I|| and let vn = Un−I
icn

− h, for all n ≥ 1. Clearly vn

converges to 0 and Un = I + icnh + icnvn.
We express the unitary condition Un · U∗

n = I in terms of vn:
I = (I + icnh + icnvn)(I − icnh − icnv

∗
n) = I + icn(vn − v∗

n) + c2
n(h2 +

hvn + vnh + vnv∗
n). After canceling I and dividing by c2

n we obtain:

i(vn − v∗
n)

cn

= −(h + vn)(h + v∗
n)

In particular this means that

lim
n→∞

i(vn − v∗
n)

cn

= −h2

Let us now use the commuting square relations. Let p ∈ P−1 ⊖ Q−1

and q ∈ Q0. Since C(Un) is a commuting square we now that p is
orthogonal to UnqU

∗
n for all n. Thus:

τ(pUnqU∗
n) = 0, ∀n ≥ 1



LIMIT POINTS OF COMMUTING SQUARES 7

We rewrite this relation in terms of vn:

τ(p(I + icnh + icnvn)q(I − icnh − icnv
∗
n)) = 0

After opening the parenthesis and using τ(pq) = 0 we obtain:
cnτ(−ipqh+iphq−ipqv∗

n+ipvnq)+c2
nτ(phqh+phqv∗

n+pvnqh+pvnqv
∗
n) =

0.
We have τ(h[p, q]) = 0 implies τ(−ipqh + iphq) = τ(−ipqh) +

τ(iphq) = τ(−ipqh) + τ(qiph) = iτ((−pq + qp)h) = 0. Thus the
precedent relation becomes: cnτ(−ipqv∗

n + ipvnq)+ c2
nτ(phqh+phqv∗

n +
pvnqh + pvnqv∗

n) = 0. After dividing by c2
n and taking the limit we

obtain:

lim
n→∞

τ(
−ipqv∗

n + ipvnq

cn

) = −τ(phqh)

for all p ∈ P−1 ⊖ Q−1 and q ∈ Q0.

Since τ(−ipqv∗
n
+ipvnq

cn

) = τ( ipq(vn−v∗
n
)

cn

) + τ(−ipqvn+ipvnq

cn

) and

limn→∞
i(vn−v∗n)

cn

= −h2 we obtain:

lim
n→∞

τ(
−ipqvn + ipvnq

cn

) = −τ(phqh) + τ(pqh2)

Equivalently, after using τ(pvnq) = τ(qpvn):

(3) lim
n→∞

τ([p, q]
vn

icn

) = −τ(phqh) + τ(pqh2)

We know that (3) holds for all (p, q) ∈ (P−1 ⊖ Q−1) × Q0. We want
to show that it actually holds for all (p, q) ∈ P−1 × Q0. By linearity it
is sufficient to show that it also holds for (p, q) ∈ Q−1 ×Q0. The right
side is clearly 0 as h commutes with p ∈ Q−1. The left side is also 0
since τ([p, q]vn) = τ([vn, p]q) and [vn, p] = 0 if p ∈ Q−1. Here we used
that Un ∈ Q′

−1 ∩ P0, which implies vn ∈ Q′
−1 ∩ P0.

Note that we do not know if the sequence vn

icn

is bounded, which
would allow to pass to a convergent subsequence whose limit s would
satisfy the theorem.

Let sn be the orthogonal projection of vn

icn

onto the subspace [P−1, Q0]
of P0. The projection is taken with respect to the inner product of P0

given by the trace τ : < x, y >= τ(y∗x). We thus have τ([p, q] vn

icn

) =

τ([p, q]sn) for all n ≥ 1. Relation (3) becomes:

lim
n→∞

τ([p, q]sn) = −τ(phqh) + τ(pqh2)

Note that [P−1, Q0] is ∗-closed, as [p, q]∗ = −[p∗, q∗], and thus
v∗ ∈ [P−1, Q0] whenever v ∈ [P−1, Q0]. It follows that the sequence
< sn, v >= τ(v∗sn) converges for all v ∈ [P−1, Q0]. Thus sn can be
thought of as a sequence of vectors in the Hilbert space [P−1, Q0] whose
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coefficients (in some orthonormal basis of [P−1, Q0]) converge. It fol-
lows from finite dimensionality that sn converges to some s0 ∈ [P−1, Q0]
and s0 satisfies:

(4) τ([p, q]s0) = −τ(phqh) + τ(pqh2)

By taking the adjoint of (4) and using the properties of the trace τ

we obtain:

τ(−[p∗, q∗]s∗0) = −τ(p∗hq∗h) + τ(q∗p∗h2)

Since p∗, q∗ are generic elements of P−1 respectively Q0 we also have:

τ(−[p, q]s∗0) = −τ(phqh) + τ(qph2)

for all p ∈ P−1 and q ∈ Q0. After subtracting this relation from (4) we
obtain:

τ([p, q](s0 + s∗0)) = τ([p, q]h2)

Thus s0+s∗0−h2 is orthogonal to [P−1, Q0]. Let s = s0− 1
2
(s0+s∗0−h2).

Then s still satisfies (4), as τ([p, q]s) = τ([p, q]s0). We also have s+s∗ =
h2. Thus both relations (i) and (ii) are satisfied. �

Corollary 3.3. If the commuting square C is not isolated then there
exists a hermitian h ∈ P0 such that:

(i). h is orthogonal to H(C) = [P−1, Q0] + (Q′
−1 ∩ P−1) + (Q′

−1 ∩
Q0) + (P ′

−1 ∩ P0) + (Q′
0 ∩ P0)

(ii). The bilinear map on P−1 × Q0 given by (p, q) → τ(pqh2) −
τ(phqh) depends only on [p, q]. More precisely, whenever pi ∈ P−1, qi ∈
Q0 (1 ≤ i ≤ n for some n ≥ 1) satisfy

∑n

i=1[pi, qi] = 0, we must have
∑n

i=1 τ(piqih
2) − τ(pihqih) = 0.

Remark 3.4. From (i) we know that if C is not isolated then H(C) 6=
P0. Moreover, it is easy to check that [P−1, Q0] is orthogonal to (Q′

−1 ∩
P−1) + (Q′

−1 ∩ Q0) + (P ′
−1 ∩ P0) + (Q′

0 ∩ P0). Thus condition (ii) is
meaningful, as the vector space [P−1, Q0] has dimension significantly
smaller than dim(P−1) · dim(Q0) = dim(P0).

4. Examples

In this section we show that the new restriction (ii) found on h is
meaningful and it does not happen automatically for any direction h

orthogonal to H(C). We restrict ourselves to commuting squares arising
from complex Hadamard matrices, i.e. we assume C to be of the form:

C =





Dn ⊂ Mn(C)
∪ ∪
C ⊂ UDnU

∗
, τ







LIMIT POINTS OF COMMUTING SQUARES 9

where Dn denotes the algebra of diagonal matrices of size n and U is
a unitary matrix with all entries of absolute value 1√

n
. This condition

on U is equivalent to C being a commuting square (see [Po3], [Ni]). In
other words U = 1√

n
A, where A is a complex Hadamard matrix.

Let p1, p2, ..., pn be the diagonal matrix units of order n and let
qi = UpiU

∗ for 1 ≤ i ≤ n. The space [P−1, Q0] = [Dn, UDnU
∗] is

thus spanned by [pi, qj], 1 ≤ i, j ≤ n. Hence H(C) is spanned by
pi, qj, [pi, qj ], 1 ≤ i, j ≤ n.

Assume that C is not isolated and let h be any normalized direction
of convergence for C. According to Theorem 3.1, there exists a matrix
s such that

(5) τ(s[pi, qj]) = τ(piqjh
2) − τ(pihqjh) for all 1 ≤ i, j ≤ n

This is equivalent to asking for a linear system of n2 × n2 equations
with n2 unknowns (the entries of s) to be consistent. We give a concrete
example when the system is not consistent for some h perpendicular
to the space H(C).

Let λ ∈ T, w = cos2π
6

+ isin2π
6

and let U(λ) denote the following
family of complex Hadamard matrices found by Petrescu in [Pe]:

(6) U(λ) =
1√
7





















λw λw4 w5 w3 w3 w 1
λw4 λw w3 w5 w3 w 1
w5 w3 λw λw4 w w3 1
w3 w5 λw4 λw w w3 1
w3 w3 w w w4 w5 1
w w w3 w3 w5 w4 1
1 1 1 1 1 1 1





















For the purpose of calculations, it is better to express U(λ) by using
the following formula:

U(λ) = (I + (λ − 1)pq + (λ̄ − 1)p′q′)U

where p = p2 + p3, p′ = p4 + p5, q = UpU∗, q′ = UqU∗ (see [Ni]).
Let C be the commuting square constructed from U = U(1). Clearly

C is not isolated, as U(λ) → U when λ → 1. This means that the
span condition is not satisfied, which should be no surprise as there are
certain relations between the vectors in [P−1, Q0]. For instance one can
easily check that [p, q] + [p′, q′] = 0.

There are in fact two other 1-parameter families of complex
Hadamard matrices containing U , which can be obtained by noticing
that U has certain symmetries. Indeed, let σ1, σ2 denote the following
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permutation matrices:

σ1 =



















1 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 1 0 0 0 0 0



















, σ2 =



















1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0



















It is easy to check that σ1Uσ∗
2 = U Thus Ũ(λ) = σ1U(λ)σ∗

2 also
yields a continuous parametric family of commuting squares containing
C, as Ũ(1) = U . Similarly one can construct another family by using
σ2Uσ∗

1 = U

Let h denote the direction of the family of commuting squares ob-
tained from U(λ). Since U(λ) = (I +(λ−1)pq +(λ̄−1)p′q′)U , it easily

follows that h = pq−p′q′

‖pq−p′q′‖ . Let h̃ denote the direction of the family

Ũ(λ). Since Ũ(λ) = σ1U(λ)σ∗
2 , we have h̃ = σ1hUσ∗

2U
∗ = σ1hσ∗

1 . It is

easy to check that h 6= h̃.
Clearly for both h and h̃ the conditions of Theorem 3.1 must be

satisfied, and thus the system (5) must be consistent. However, let

h0 = h+h̃

‖h+h̃‖ . It is an easy check with Mathematica that the system (5)

is not consistent, with h0 instead of h.
Thus, h0 is orthogonal to H(C) but it is not a direction of conver-

gence. It is in fact not surprising that for an arbitrary linear combi-
nation of h, h̃ the conditions of Theorem 3.1 are no longer satisfied, as
the map h → τ(pqh2)− τ(phqh) is no longer linear (for fixed p, q). Our
choice of h0 is unimportant, since it is immediate to see that any linear
combination of h, h̃ with non-zero coefficients yields a consistent system
(5) if and only if one such combination yields a consistent system.

We conclude with the following corollary, asserting that there exists
no multi-parametric C1 family of complex Hadamard matrices con-
taining both families U(λ), Ũ(λ). Such questions are of interest in the
classification of complex Hadamard matrices.

Corollary 4.1. There does not exist a differentiable map W : T×T →
M7(C), taking values in the set of complex Hadamard matrices and

satisfying W (λ, 1) =
√

7U(λ) and W (1, λ) =
√

7Ũ(λ) for all λ ∈ T

close to 1.

Proof. The derivative of the map λ → 1√
7
W (λ, λ)U∗ at λ = 1 equals

h + h̃. It follows that the (normalized) direction of convergence of the
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unitaries 1√
7
W (λ, λ)U∗ is h+h̃

‖h+h̃‖ = h0. However, we have seen that h0

is not a direction of convergence for C, contradiction.
�
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