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Abstract

Let A = UDn(C)U∗ be a Maximal Abelian Self-Adjoint Subalgebra (MASA) of
Mn(C), where Dn(C) denotes the diagonal matrices and U ∈ Mn(C) is a unitary matrix.
Assume that U is full superregular, i.e. all the minors of U are nonzero. We show that
A contains at most finitely many complex Hadamard matrices, up to equivalence given
by multiplication by complex units. In particular, since almost every unitary is full
superregular (with respect to the Haar distribution), it follows that almost every MASA
of Mn(C) contains only finitely many complex non-equivalent Hadamard matrices.

1 Introduction

A complex Hadamard matrix is a matrix H ∈ Mn(C) having all entries of absolute value 1
and all rows mutually orthogonal (with respect to the complex inner product). Equivalently,
1√
n
H is a unitary matrix with all entries of the same absolute value. For example the Discrete

Fourier Transform Fn = (ωk·l)0≤k,l≤n−1, with ω = e2πi/n, is a complex Hadamard matrix.
In recent years complex Hadamard matrices have found significant applications in various

topics of mathematics and physics, including Quantum Information Theory (see [16], [1], [13],
[12]), Operator Algebras (see [7],[6],[9],[10],[8]), Cyclic Roots of Unity (see [5]), and Fuglede’s
Conjecture in Harmonic Analysis (see [14]). A general classification of complex Hadamard
matrices is not available. A catalogue of most known complex Hadamard matrices can be
found in [13]. The complete classification is only known for n ≤ 5 (see [4]) and for self-adjoint
matrices of order 6 (see [2]).

In this paper we prove finiteness results for complex Hadamard matrices with certain
symmetries. More precisely, we look at complex Hadamard matrices belonging to a fixed
Maximal Abelian Self-Adjoint Subalgebra (MASA) of Mn(C). Denote by Dn(C) the algebra
of n×n diagonal matrices with complex entries. Then any MASA A of Mn(C) is of the form
A = UDn(C)U∗, where U ∈ Mn(C) is a unitary matrix. The main result of this paper is the
following:
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Theorem 1.1. Let U ∈ Mn(C) be a unitary matrix that is full superregular (i.e., all minors
of U are nonzero). Then the algebra A = UDn(C)U∗ contains at most finitely many complex
Hadamard matrices, up to equivalence given by multiplication by complex units.

To prove this result, we first embed the real algebraic variety of complex Hadamard
matrices that belong to A = UDn(C)U∗ in a complex algebraic variety of CN , with N = 2n.
Since any compact complex algebraic variety of CN is finite, it is sufficient to show that our
complex variety is compact. The difficulty lies in proving that it cannot be unbounded. We
achieve this by employing a ’derivative at infinity’ argument, which leads to new relations
that contradict the superregularity of U . The contradiction is obtained by first proving a
more general version of Tao’s uncertainty principle for cyclic groups of prime order from [15]
(see also Haagerup’s equivalent formulation of this principle from [5]).

We note that almost every unitary matrix (with respect to the Haar distribution) has all
minors nonzero, hence it is full superregular and it satisfies the hypothesis of our theorem.

For a large class of concrete examples, consider real orthogonal Cauchy-like matrices.
These matrices were completely classified in [3], in connection to Information Theory. The
terminology full superregular comes from Information Theory, as full superregular matrices
can be used to generate maximal distance separable block codes. Cauchy matrices are known
to be full superregular.

Another interesting example of a unitary full superregular matrix is the Discrete Fourier
Transform Fn for n prime. Indeed, it is a classical result of Chebotarëv that all the minors
of this matrix are nonzero (see [15] for an elementary proof). In this case, it is easy to see
that the algebra A = FnDn(C)F ∗

n is the algebra of circulant matrices:

A =




x0 x1 x2 . . . xp−1

xp−1 x0 x1 . . . xp−2

xp−2 xp−1 x0 . . . xp−3
...

...
...

...
...

x1 x2 x3 . . . x0

 : x0, x1, ...xp−1 ∈ C


.

Thus, as a consequence of our result we also obtain that there exist only finitely many
circulant complex Hadamard matrices of prime dimension (up to multiplication by complex
units). This is a theorem of Haagerup from [5], and it is the result that inspired this paper.

2 Proof of the main result

In this section we prove Theorem 1.1. Let U ∈ Mn(C) be a unitary full superregular matrix.
We want to show that the algebra A = UDn(C)U∗ contains at most finitely many complex
Hadamard matrices, up to multiplication by complex units.

For convenience, we note that Dn(C) =
√
nDn(C) so we can write A =

√
nUDn(C)U∗.

Thus we want to prove that there exist only finitely many complex Hadamard matrices of
the form

√
nUDU∗ (up to complex units multiplication), with D a diagonal matrix.

For any x = (x0, . . . , xn−1) ∈ Cn denote by Dx the diagonal matrix with entry xk on
position (k, k) for all k ∈ Zn, and denote by x̂i,j the (i, j)th entry of the matrix

√
nUDxU

∗.
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Note that if
√
nUDxU

∗ is a Hadamard matrix then in particular UDxU
∗ is unitary, so

|xk| = 1 for all k ∈ Zn. By replacing the matrix
√
nUDxU

∗ by the matrix x0

√
nUDxU

∗ =√
nU(x0Dx)U

∗, or equivalently by replacing Dx by x0Dx, it suffices to work with diagonal
matrices Dx with x0 = 1 (up to equivalence via complex units multiplication).

The next proposition is crucial to the proof, as it allows us to work with a complex
algebraic manifold instead of the real algebraic manifold of complex Hadamard matrices in
A.

Proposition 2.1. If
√
nUDxU

∗ is a Hadamard matrix with x0 = 1, and if we let y =
(y0, y1, ...., yn−1) with yk = xk, then (x, y) is a solution to the set of equations

x0 = y0 = 1, xkyk = 1, x̂k,0ŷ0,k = 1 for all k ∈ Zn.

Proof. By design, x0 = y0 = 1. Since
√
nUDxU

∗ is Hadamard, in particular UDxU
∗ is

unitary, which implies Dx is unitary, which implies |xk| = 1 for all k. Thus for all k ∈ Zn

xkyk = xkxk = xk
1

xk

= 1.

Now, since
√
nUDxU

∗ is Hadamard each entry has modulus 1, and thus |x̂k,0| = 1 for all
k ∈ Zn. Note also that, since (UDxU

∗)∗ = UDxU
∗ = UDyU

∗, we have ŷ0,k = x̂k,0. Hence
for all k ∈ Zn we have:

x̂k,0ŷ0,k = x̂k,0x̂k,0 = 1.

We now introduce some notations that will be used in the next proposition. For K,L ⊂
Zn, denote by (U)K×L the submatrix of U obtained by keeping the elements at the intersec-
tion of the rows of U indexed by K with the columns of U indexed by L. Also, for x ∈ Cn

define its support, supp(x), to be the set of all k ∈ Zn such that xk ̸= 0.
The following statement is in the vein of Tao’s uncertainty principle from [15].

Proposition 2.2. Suppose U is an n × n unitary matrix which is full superregular (i.e.,
det(U)K×L ̸= 0 for any subsets K,L ⊂ Zn with |K| = |L| ≥ 1). For every nonzero x ∈ Cn

and for every t ∈ Zn we have:

|supp(x)|+ |supp(x̂t)| ≥ n+ 1

where x̂t = (x̂k,t)0≤k≤n−1 ∈ Cn is the tth column of
√
nUDxU

∗.

Proof. Suppose by contradiction that for some nonzero x ∈ Cn and some t ∈ Zn we have:

|supp(x)|+ |supp(x̂t)| ≤ n.

Set L = supp(x), then |L| ≥ 1 (since x ̸= 0) and

|Zn \ supp(x̂t)| = n− |supp(x̂t)| ≥ |supp(x)| = |L|.
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So we may choose K ⊂ Zn \ supp(x̂t) such that |K| = |L|. Since K ⊂ Zn \ supp(x̂t), we have
for all k ∈ K

0 = x̂k,t =
√
n
∑
i∈Zn

uk,ixiu
∗
i,t =

√
n
∑
i∈L

uk,ixiu
∗
i,t.

Let T ⊂ Zn such that t ∈ T and |T | = |L| = |K|. Note that the (k, t) entry of
√
nUDxU

∗ is

(
√
n(U)K×L(Dx)L×L(U

∗)L×T )k,t =
√
n
∑
i∈L

uk,ixiu
∗
i,t.

As this holds for all k ∈ K, the tth column of
√
n(U)K×L(Dx)L×L(U

∗)L×T consists only of
zeros. This implies

0 = det
(√

n(U)K×L(Dx)L×L(U
∗)L×T

)
=

√
n det(U)K×L · det(Dx)L×L · det(U∗)L×T .

But this is a contradiction since det(U)K×L ̸= 0, det(U∗)L×T ̸= 0, and det(Dx)L×L =∏
l∈L xl ̸= 0 since L = supp(x).

Proposition 2.3. Suppose U is an n × n unitary matrix which is full superregular. For
every nonzero x ∈ Cn and for every s ∈ Zn we have:

|supp(x)|+ |supp(x̂s)| ≥ n+ 1

where x̂s = {x̂s,l}l∈Zn is the sth row of
√
nUDxU

∗.

Proof. This follows from the the previous proposition applied to x, by using that |supp(x)| =
|supp(x)| and |supp(x̂s)| = |supp(x̂s)|. The last equality follows by noticing that the sth row
of

√
nUDxU

∗ is the conjugate of the sth column of
√
nUDxU

∗, hence their supports have
the same cardinality.

We are now ready to prove Theorem 1.1. Note that, by using Proposition 2.1, the
following statement will imply Theorem 1.1.

Theorem 2.1. If U is a full superregular unitary matrix, then there are only finitely many
complex solutions to the following set of equations

x0 = y0 = 1, xkyk = 1, x̂k,0ŷ0,k = 1 for all k ∈ Zn.

Proof. Suppose, by contradiction, that there are infinitely many z = (x, y) ∈ Cn × Cn that
satisfy the system of equations. Since this system yields a complex algebraic variety, and
compact complex algebraic varieties in CN are finite (see for instance Theorem 14.3.i in [11];
here N = 2n), it follows that the set of solutions to the system is not compact. This set is
clearly closed, thus is must be unbounded. Let (z(m))m≥1 = ((x(m), y(m)))m≥1 be a sequence
such that

lim
m→∞

∥z(m)∥2 = ∞.

Here we use the notation ∥z(m)∥2 for the complex Euclidian norm of the element z(m) ∈ C2n.
Next note that

∥x(m)∥22∥y(m)∥22 =

(
1 +

n−1∑
i=1

|xi|2
)(

1 +
n−1∑
i=1

|yi|2
)

≥ ∥z(m)∥22 − 1
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which implies ∥x(m)∥2∥y(m)∥2 → ∞. Now we set

r(m) =
x(m)

∥x(m)∥2
, s(m) =

y(m)

∥y(m)∥2
.

Since ∥s(m)∥2 = ∥r(m)∥2 = 1 for all m, the sequence (r(m), s(m))m≥1 is bounded, hence it has
a convergent subsequence. By replacing the original sequence by its convergent subsequence,
we may assume that the following limits exist:

r = lim
m→∞

r(m), s = lim
m→∞

s(m).

It follows that for all k ∈ Zn we have

rksk = lim
m→∞

r
(m)
k s

(m)
k = lim

m→∞

x
(m)
k y

(m)
k

∥x(m)∥2∥y(m)
k ∥2

= lim
m→∞

1

∥x(m)∥2∥y(m)∥2
= 0

r̂k,0ŝ0,k = lim
m→∞

r̂
(m)
k,0 ŝ

(m)
0,k = lim

m→∞

x̂
(m)
k,0 ŷ

(m)
0,k

∥x(m)∥2∥y(m)∥2
= lim

m→∞

1

∥x(m)∥2∥y(m)∥2
= 0.

This implies that

supp(r) ∩ supp(s) = ∅ hence |supp(r)|+ |supp(s)| ≤ n

supp(r̂0) ∩ supp(ŝ0) = ∅ hence |supp(r̂0)|+ |supp(ŝ0)| ≤ n.

Combining this with Proposition 2.2 and Proposition 2.3, we obtain

2n+ 2 ≤ |supp(r)|+ |supp(s)|+ |supp(r̂0)|+ |supp(ŝ0)| ≤ 2n.

This contradiction ends the proof.

Thus Theorem 1.1 follows, by combining Proposition 2.1 with Theorem 2.1.
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