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Abstract

We consider II1 factors Lμ(G) arising from 2-cocyles μ ∈ H2(G,T) on groups G containing infinite
normal subgroups H ⊂ G with the relative property (T) (i.e., G w-rigid). We prove that given any separable
II1 factor M , the set of 2-cocycles μ|H ∈ H2(H,T) with the property that Lμ(G) is embeddable into M

is at most countable. We use this result, the relative property (T) of Z2 ⊂ Z2 � Γ for Γ ⊂ SL(2,Z) non-
amenable and the fact that every cocycle μα ∈ H2(Z2,T) � T extends to a cocycle on Z2 � SL(2,Z),
to show that the one parameter family of II1 factors Mα(Γ ) = Lμα (Z2 � Γ ), α ∈ T, are mutually non-
isomorphic, modulo countable sets, and cannot all be embedded into the same separable II1 factor. Other
examples and applications are discussed.
© 2006 Elsevier Inc. All rights reserved.
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0. Introduction

Ever since Connes’ celebrated “rigidity” paper [6], groups with the property (T) of Kazhdan
have played an important rôle in operator algebra, being used to obtain a plethora of rigidity
results and interesting examples (see, e.g., [3,4,20,22–25,29]), especially in the theory of II1 fac-
tors. More recently, a weaker version of the property (T), merely requiring the existence of
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a “large” subgroup with the relative property (T) of Kazhdan and Margulis [16,18], proved to be
equally important (cf. [23–25]). The prototype of such group is Z2 � SL(2,Z), with Z2 its rela-
tive property (T) subgroup (cf. [16,18]). Thus, it is shown in [23] that the II1 factors associated
with this arithmetic group, and more generally with the groups Z2 � Γ , for Γ non-amenable
finitely generated subgroups of SL(2,Z), have trivial fundamental group and are non-isomorphic
if the groups Γ have different �2-Betti numbers, e.g., Γ = Fn, n = 2,3, . . . . (For Γ ⊂ SL(2,Z)

non-amenable the inclusion of groups Z2 ⊂ Z2 � Γ was shown to have relative property (T)
in [2].) This provided the first examples of factors with trivial fundamental group [19].

More generally, in [23], see also [25], one considers a one parameter family of II1 factors
Mα(Γ ),α ∈ T, associated with Z2 � Γ , for each Γ ⊂ SL(2,Z) non-amenable, and one proves
several rigidity properties and classification results for Mα(Γ ). We continue in this paper the
analysis of this interesting class of II1 factors.

The factors Mα(Γ ) are defined to be crossed product II1 factors of the form Mα(Γ ) =
Rα �σα Γ , where α ∈ T, Rα is the finite von Neumann algebra generated by two unitaries
u,v ∈ Rα satisfying the relation uv = αvu and trace τ(ukvl) = 0, ∀(k, l) �= (0,0), Γ is an ar-
bitrary non-amenable subgroup of SL(2,Z) and the action σα is implemented by the restriction

to Γ of the action of SL(2,Z) on Rα given by σα(g)(ukvl) = α
1
2 (kl−(ak+bl)(ck+dl))uak+blvck+dl ,

where

g =
(

a b

c d

)
∈ Γ

(see [1]).
If α is a primitive root of unity of order n, then Rα is isomorphic to L((nZ)2)⊗Mn×n(C) and

Mα(Γ ) � L((nZ)2 � Γ ) ⊗ Mn×n(C) [23, Corollary 5.2.1]. If Γ is finitely generated and α′ is
another primitive root of 1 of order n′ then by [23] Mα(Γ ) � Mα′(Γ ) if and only if n = n′. If, in
turn, α = e2πiθ ∈ T with θ ∈ [0,1/2) irrational then Rα is isomorphic to the hyperfinite II1 factor,
represented as the irrational rotation von Neumann algebra Rα [26]. The factors Mα(Γ ) are
called irrational (respectively rational) rotation HT factors when α = e2πiθ with θ ∈ [0,1/2)\Q
(respectively θ ∈ Q). By [23], if Γ is non-amenable then an irrational rotation HT factor Mα(Γ )

cannot be embedded into a rational rotation HT factor Mα′(Γ ′).
The problem of classifying the family of factors Mα(Γ ), in terms of the embedding Γ ⊂

SL(2,Z) and the parameter α ∈ T, is quite natural. In this respect, it has been conjectured in [23]
that for each fixed Γ ⊂ SL(2,Z) non-amenable (notably for Γ = SL(2,Z)), the factors Mα(Γ ),
α ∈ T, irrational, are mutually non-isomorphic. In this paper we will give a partial, positive
answer to this problem, by showing that for each fixed non-amenable group Γ ⊂ SL(2,Z) the
factors Mα(Γ ), α ∈ T, are mutually non-stably isomorphic, modulo countable sets, i.e., there are
at most countably many α’s in T such that Mα(Γ ) � Mα0(Γ ), for a fixed, arbitrary α0 ∈ T.

We will alternatively view a factor Mα(Γ ) as a cocycle group von Neumann algebra
Lμα(Z

2 � Γ ) (see [7]) corresponding to a projective left regular representation λμα with the
scalar 2-cocycle μα ∈ H2(Z2 � Γ,T) depending on α ∈ T. To explain this, let us first recall
some definitions.

Let G be a discrete group and μ ∈ H2(G,T) a 2-cocycle on G, i.e., μ :G × G → T satisfies
μg,hμgh,k = μh,kμg,hk , ∀g,h, k ∈ G. One associates to μ the projective left regular represen-
tation λμ :G → U(l2(G)), defined by λμ(g)(

∑
h∈G chξh) = ∑

h∈G chμg,hξgh, where {ξh}h∈G

is the canonical basis of l2(G). Denote by Lμ(G) = λμ(G)′′ the cocycle group von Neumann
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algebra of (G,μ). It is well known that one has an isomorphism H2(Z2,T) ∼= T, taking α ∈ T to
μα ∈ H2(Z2,T), where

μα

(
(k, l), (k′, l′)

) = α
1
2 (kl′−k′l).

If we define Rμα to be the cocycle group von Neumann algebra Lμα(Z
2), then Rμα is gener-

ated by the unitary elements u = λμα (1,0), v = λμα (0,1), which satisfy the relation uv = αvu,
thus being naturally isomorphic to Rα . Moreover, μα is invariant to the action σ of SL(2,Z)

on Z2, thus σ implements an action σμα of SL(2,Z) on Rμα = Rα which coincides with the
action σα defined above.

Since any Γ ⊂ SL(2,Z) has Haagerup’s compact approximation property [12], by [23, 6.9.1]
it follows that Mα(Γ ) has Haagerup’s property relative to Rα (as defined in [23, 2.1]). Also, by
[2, Example 2, p. 62] the pair (Z2 � Γ,Z2) has the relative property (T) for any non-amenable
subgroup Γ ⊂ SL(2,Z) and thus, by [23, 6.9.1], the embedding Rα ⊂ Mα(Γ ) is rigid in the sense
of [23, Definition 4.2].

Since the action of SL(2,Z) on Z2 is outer, by [23, 3.3.2(ii)] σα are properly outer actions of
SL(2,Z) (thus of Γ as well) on Rα . Furthermore, since the stabilizer of any non-trivial element
in Z2 is a cyclic group, it follows that if Γ leaves a finite subset �= {(0,0)} of Z2 invariant, then it
is almost cyclic. Thus, by [23, 3.3.2(i)] any non-amenable Γ ⊂ SL(2,Z) acts ergodically on Rα .
Thus, Rα ⊂ Mα(Γ ) satisfies R′

α ∩Mα(Γ ) ⊂ Rα . In particular, when α is irrational, Rα ⊂ Mα(Γ )

are irreducible inclusions of II1 factors, and they are HT inclusions in the sense of [23, 6.1].
By [23] the factors Mα(Γ ) are non-Γ and by [21] they are prime, i.e., they cannot be de-

composed into a tensor product of II1 factors. It was shown in [25] that two factors Mα(Γ ) with
Γ torsion free are isomorphic iff σα(Γ ) are cocycle conjugate in Out(R). In particular, isomor-
phism between irrational rotation HT factors Mα(Γ ), with torsion free Γ , implies isomorphism
of the corresponding groups Γ . Also, it follows from [23] that if Γ is torsion free then Mα(Γ )

has countable fundamental group (see Appendix A for a more general result).
The factors Mα(Γ ) are easily seen to be “approximately embeddable” into the hyperfinite

II1 factor R (in the sense of Connes [5]), i.e., Mα(Γ ) ⊂ Rω. Indeed, let mk/nk be a sequence
of rational numbers such that αk = exp(2πimk/nk) → α and nk → ∞. Let πk be the projec-
tive representation with 2-cocycle μαk

, of the group Z2 � SL(2,Z) on Hn = �2((Z/nkZ)2 �
SL(2,Z/nkZ)). Then g �→ (πn(g))n is an embedding of Lα(Z2)�SL(2,Z) into ΠnB(Hn) ⊂ Rω.
However, we have:

0.1. Theorem. Let M be a separable II1 factor. For each fixed Γ ⊂ SL(2,Z) non-amenable there
exist at most countably many α ∈ T such that Mα(Γ ) is embeddable into M (not necessarily
unitaly). In particular, the factors {Mα(Γ )}α∈T are non-stably isomorphic modulo countable
sets.

Note that the above theorem gives an alternative proof to Ozawa’s result on the non-existence
of universal separable II1 factors in [20], without using Gromov’s property (T) groups. More
precisely, in the same spirit as the results in [20], the above theorem shows that there exists no
separable finite von Neumann algebra M that can contain an uncountable set of projective unitary
representations {πj }j∈J of Z2 � SL(2,Z) with distinct scalar 2-cocycles {μπj

}j . Theorem 0.1
will follow as a special case of the following theorem.
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0.2. Theorem. Let H ⊂ G be an inclusion of discrete groups with the relative property (T).
Let M be a separable finite von Neumann algebra. Let J be the set of scalar 2-cocycles μ ∈
H2(G,T) such that Lμ(G) can be embedded into M (not necessarily unitaly). Then the set
{μ|H | μ ∈ J } ⊂ H2(H,T) is countable.

We prove this result in Section 1, by using a separability argument similar to [6,11,20,22,
23] and a characterization of the relative property (T) in terms of projective representations.
In Section 2 we give examples of pairs of groups H ⊂ G with the relative property (T) with
the torus T embedded as a subgroup of 2-cocycles T ⊂ H2(G,T), such that T � μ �→ μ|H ∈
H2(H,T) is one-to-one. In Section 3 we give an explicit description of the disintegration of
type II1 von Neumann algebras from the property (T) groups Λ constructed by Serre, see [13,
p. 40], as central extensions of property (T) groups Γ , in terms of factors Lα(Γ ) associated with
2-cocycles of Γ . We also show that the factors in the disintegration of the algebra L(Λ) of an
arbitrary property (T) group Λ are mutually non-isomorphic, modulo countable sets, by using a
separability argument similar to Ozawa’s proofs in [20].

There are strong indications from [23] and results in this paper that for each Γ ⊂ SL(2,Z)

non-amenable the factors {Mα(Γ )}α∈I , where I = {e2πit | t ∈ [0,1/2) \ Q}, are all mutually
non-stably isomorphic and have trivial fundamental group, and that if the normalizer of Γ in
GL(2,Z) is equal to Γ then Out(Mα(Γ )) is isomorphic to the character group of Γ . Further-
more, if Γ1,Γ2 ⊂ SL(2,Z) non-amenable and α1, α2 ∈ I then Mα1(Γ1) should be isomorphic
to Mα2(Γ2) if and only if α1 = α2 and Γ1,Γ2 are conjugate in SL(2,Z), by an automorphism of
SL(2,Z) (thus, by an element in GL(2,Z)). In this respect, note that by [25] the non-isomorphism
of the factors Mα(Γ ) for a fixed Γ amounts to showing that if α1 �= α2 then σα1, σα2 are not co-
cycle conjugate. While we cannot prove this fact, we obtain in Section 4 the following result,
whose proof is inspired from an argument in [3].

0.3. Theorem. Let Γ ⊂ SL(2,Z) be a subgroup of SL(2,Z) containing a parabolic element a

and an element b that does not commute with a. If for some α1, α2 ∈ I the actions σαi
of Γ on

Rαi
, i = 1,2, are conjugate, then α1 = α2.

1. A cocycle characterization of relative property (T)

Recall that an inclusion of discrete groups H ⊂ G has the relative property (T) of Kazhdan–
Margulis if there exist δ0 > 0 and a finite subset F0 ⊂ G such that if π :G → U(H) is a unitary
representation of G on the Hilbert spaceH with a unit vector ξ ∈H satisfying ‖π(g)ξ − ξ‖ < δ0
for all g ∈ F0, then there exists a vector ξ0 ∈H such that π(h)ξ0 = ξ0 for all h ∈ H . Note that in
case H = G this amounts to G itself having Kazhdan’s property (T). It is easy to see that if H is
normal in G then the above condition is equivalent to the following:

(1.0) ∀ε > 0 there exist a finite subset F(ε) ⊂ G and δ(ε) > 0 such that if π :G → U(H)

is a unitary representation of G on the Hilbert space H with a unit vector ξ ∈ H satisfying
‖π(g)ξ − ξ‖ < δ(ε), ∀g ∈ F(ε), then there exists a unit vector ξ0 ∈H such that ‖ξ0 − ξ‖ < ε

and π(h)ξ0 = ξ0, ∀h ∈ H .

The above condition is in fact equivalent to the relative property (T) even for inclusions that
are not necessarily normal (cf. [15]), but we will only use here the equivalence for normal inclu-
sions.
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We first show that if H ⊂ G has the relative property (T) then the projective representa-
tions satisfy a property similar to (1.0). To state the result, recall that a projective (unitary)
representation of the group G on the Hilbert space H is a map π :G → U(H) satisfying
π(g)π(h) = μg,hπ(gh), ∀g,h ∈ G, for some scalar 2-cocycle μ on G, i.e., μ :G × G → T
satisfies μg,hμgh,k = μh,kμg,hk , ∀g,h, k ∈ G. It is immediate to see that the equivalence class

of such a π only depends on the class of μ in H2(G,T)
def= Z1(G,T)/B1(G,T), where Z1(G,T)

denotes the multiplicative group of all scalar valued 2-cocycles and B1(G,T) is the subgroup of
coboundaries, μg,h = λgλhλgh, for some λ :G → T.

1.1. Lemma. Let H ⊂ G be an inclusion of groups satisfying the relative property (T). Fix
1 � ε > 0 and let F(ε), δ(ε) be the constants given by (1.0). Denote F̃ (ε) = F(ε2/28), δ̃(ε) =
δ(ε2/28)/2. Then the following holds true:

If π :G → U(H) is a projective representation with scalar 2-cocycle μ ∈ H2(G,T), and
ξ ∈ H is a unit vector satisfying d(π(g)ξ,Cξ) � δ̃(ε), ∀g ∈ F̃ (ε), then ∃ξ0 ∈ H and
λ :H → T, such that

‖ξ − ξ0‖ < ε, π(h)ξ0 = λhξ0 and μh,h′ = λhλh′ λ̄hh′ , ∀h,h′ ∈ H.

In particular, if δ1 = 1
2δ( 1

28 ), F1 = F( 1
28 ), then whenever π :G → U(H) is a projective rep-

resentation with scalar 2-cocycle μ such that ‖π(g)ξ − ξ‖ < δ1, ∀g ∈ F1, for some unit vector
ξ ∈H, μ|H follows coboundary.

Proof. Note first that if π :G → U(H) is a projective representation of the group G on the
Hilbert space H, then π ⊗ π̄ :G → U(H⊗H) is a genuine representation of G on the Hilbert
spaceH⊗H. IdentifyH⊗HwithHS , the Hilbert space of Hilbert–Schmidt operators onH, and
then note that π ⊗ π̄ can be extended to all B(H) by the formula (π ⊗ π̄ )(g)(T ) = π(g)T π(g)∗
for all g ∈ G and for all T in B(H).

Fix ε > 0 and let F̃ (ε) and δ̃(ε) be defined as in the second part of the statement. Let ξ ∈H
be a unit vector such that d(π(g)ξ,Cξ) � δ̃(ε), ∀g ∈ F̃ (ε). Then for all g ∈ F(ε2/28)

∥∥(π ⊗ π̄)(g)(ξ ⊗ ξ̄ ) − ξ ⊗ ξ̄
∥∥ = ∥∥π(g)ξ ⊗ π̄ (g)ξ̄ − ξ ⊗ ξ̄

∥∥
HS < δ

(
ε2/28

)
.

By the relative property (T) applied to the representation π ⊗ π̄ onHS , there exists a Hilbert–
Schmidt operator T of HS-norm equal to 1 such that (π ⊗ π̄ )(h)(T ) = T , ∀h ∈ H and ‖T −
ξ ⊗ ξ̄‖ � ‖T − ξ ⊗ ξ̄‖HS < ε2/28.

Thus, π(h)T π(h)∗ = T , ∀h ∈ H , implying that the operators π(h) and T on the Hilbert
space H commute, ∀h ∈ H . But then T ∗ and T T ∗ also commute with π(h), ∀h ∈ H . Thus, all
the spectral projections of T T ∗ are in the commutant of π(H) in B(H). Since T T ∗ is a trace
class operator, its spectral projections have finite trace, i.e., they are finite-dimensional.

Since ‖T T ∗ − ξ ⊗ ξ̄‖ < 2ε2/28, it follows that ‖(T T ∗)2 − ξ ⊗ ξ̄‖ < 4ε2/28 and ‖(T T ∗)2 −
T T ∗‖ < 6ε2/28. Thus, if ε < 1, then there exist a non-zero spectral projection P of T T ∗ with
finite rank such that ‖P − T T ∗‖ < 12ε2/28. This implies that ‖P − ξ ⊗ ξ̄‖ < ε2/2.

In particular P has to be a rank one projection, i.e., P is of the form ξ ′ ⊗ ξ̄ ′ and |〈ξ ′, ξ 〉| >

1 − ε2/2. Taking α ∈ T such that α〈ξ ′, ξ 〉 > 0 we get that ‖αξ ′ − ξ‖ < ε.
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Let ξ0 = αξ ′. Then π(h)ξ0 ⊗ π(h)(ξ0) = (π ⊗ π̄)(h)(ξ0 ⊗ ξ̄0) = ξ0 ⊗ ξ̄0 for all h ∈ H which
implies that π(h)(ξ0) = λhξ0 with λh ∈ T. Since π(h)π(h′)ξ0 = μh,h′π(hh′)ξ0 we get λhλh′ =
μh,h′λhh′ for all h,h′ ∈ H . �
1.2. Theorem. Let M be a separable finite von Neumann algebra. Let G be a discrete group
with a subgroup H such that (G,H) has the relative property (T). Let {πj }j∈J be projective
representations of G into the unitary group of pjMpj , with scalar 2-cocycles {μ

j
}j∈J , where

pj ∈ P(M) are non-zero projections in M . Then the image of the set {μj |H }j∈J in H2(H,T) is
at most countable.

Proof. Let J0 ⊂ J be such that the cocycles μj |H , j ∈ J0, are distinct in H2(H,T) and
{μj |H }j∈J0 = {μj |H }j∈J . We have to prove that J0 is countable.

Assume it is not. Then there exists c > 0 such that the set J1 = {j ∈ J0 | τ(pj ) � c} is un-
countable. Let F1 and δ1 be as in Lemma 1.1. Let also τ be a normal faithful trace state on M and
denote as usual by ‖x‖2 = τ(x∗x)1/2 for x ∈ M the corresponding Hilbert norm on M . Since M

is separable and J1 is uncountable, there exist j1, j2 ∈ J1 such that

‖pj1 − pj2‖2 < δ1c/4,∥∥πj1(g) − πj2(g)
∥∥

2 < δ1c/4, ∀g ∈ F1.

In particular, the first inequality shows that

‖pj1‖2 − ‖pj1pj2‖2 �
∥∥pj1(pj1 − pj2)

∥∥
2 � δ1c/4 � c/2,

implying that ‖pj1pj2‖2 � c − c/2 = c/2.
For x ∈ M , denote by L(x),R(x) the operators of left, respectively right multiplication by x

on L2(M, τ). Define π :G → B(pj1L
2(M, τ)pj2) by π(g)η = L(πj1(g))R(πj2(g)∗)η. Then π

is a projective representation of cocycle μj1μ̄j2 and if we denote ξ = ‖pj1pj2‖−1
2 (pj1pj2 )̂ then

ξ has norm one and we have for all g ∈ F1 the estimates:

∥∥π(g)ξ − ξ
∥∥ = ‖pj1pj2‖−1

2

∥∥πj1(g)pj2 − pj1πj2(g)
∥∥

2

= ‖pj1pj2‖−1
2

∥∥(
πj1(g) − πj2(g)

)
pj2 + (pj2 − pj1)πj2(g)

∥∥
2

� (cδ1/4 + cδ1/4)‖pj1pj2‖−1
2 � (cδ1/2)‖pj1pj2‖−1

2 � δ1.

From Lemma 1.1 it follows that the cocycle μj1μ̄j2 is a coboundary in H , which contradicts
μj1 |H �= μj2 |H . �

For the next corollary, recall that given any scalar 2-cocycle μ on a discrete group G, one asso-
ciates to it the projective left regular representation λμ :G → U(L2(G)), with scalar 2-cocycle μ,
defined by λμ(g)(

∑
h chξh) = ∑

h chμg,hξgh. We denote Lμ(G) = λμ(G)′′ the corresponding
von Neumann algebra, as considered by Connes and Jones in [7].

1.3. Corollary. Let H ⊂ G be an inclusion of discrete groups with the relative property (T).
Let M be a separable finite von Neumann algebra. Let J be the set of scalar 2-cocycles μ ∈
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H2(G,T) such that Lμ(G) can be embedded into M (not necessarily unitaly). Then the set
{μ|H | μ ∈ J } ⊂ H2(H,T) is countable.

Proof. It is enough to show that for every n the set: {μ|H | μ ∈ H2(G,T) with Lμ(G) embed-
dable (not necessarily unitaly) in Mn(M)} is at most countable. Since for any scalar 2-cocycle μ

for G the μ-twisted left regular representation λμ is a projective representation with scalar
2-cocycle μ and whose von Neumann algebra is Lμ(G), the statement follows from the pre-
vious theorem. �

Note that when applied to the case M = Mn×n(C) the proof of Lemma 1.1 gives an estimate
of the number of certain sets of scalar 2-cocycles of H in terms of the constants of rigidity of
H ⊂ G. We emphasize this in the next proposition, where we also include an estimate of the
number of projective representations of dimension n of a group with the property (T), generaliz-
ing a result in [14].

We need the following notations. For G a discrete group and n a positive integer, we denote
by PR(G,n) the set of equivalence classes of projective representations of G of dimension n.
Also, we denote by H2(G,n) the set of scalar 2-cocycles μ ∈ H2(G,T) for which there exists a
projective representation π ∈PR(G,n) with cocycle μ.

1.4. Proposition.

(1) Let G be a discrete group with property (T). There exists a constant c > 1, which depends
only on the constants of rigidity of G, such that PR(G,n) has at most cn2

elements, ∀n � 1.
(2) Let H ⊂ G be an inclusion of discrete groups such that (G,H) has the relative property (T).

There exists a constant d such that the subset {μ|H | μ ∈ H2(G,n)} of H2(H,T) has at most
dn2

elements, ∀n � 1.

Proof. (1) Let (F1, δ1) be as in Lemma 1.1, for H = G. By [30] there exists c0 > 1 such that
one can cover the unit sphere in R2n2

with cn2

0 balls of radius δ1/2, ∀n � 1. Thus one can cover

the sphere of radius
√

n with cn2

0 balls of radius
√

nδ1/2.

We first show that there are at most c
|F1|n2

0 irreducible projective representations of dimen-

sion n. Assume not. Regarding unitaries in Mn(C) as vectors of norm
√

n in R2n2
, the pigeonhole

principle implies that there exist π1,π2 irreducible such that ‖π1(g) − π2(g)‖2 < δ1, ∀g ∈ F1.
As in the proof of Theorem 1.2, define π :G → B(L2(Mn(C), τ )) by

π(g)η = L
(
π1(g)

)
R

(
π2(g)∗

)
η, ∀η ∈ L2(Mn×n(C), τ

)
,

where τ is the normalized trace. Then π is a projective representation of G with cocycle
μπ = μπ1μ̄π2 and it satisfies ‖π(g)1̂ − 1̂‖2 < δ1, ∀g ∈ F1. Lemma 1.1 implies that there ex-
ist λ :G → T and a unit vector ξ0 ∈ Mn(C) such that if we define π ′

1(g) = λ̄gπ1(g) then
π ′

1(g)ξ0 = ξ0π2(g), ∀g, and π ′
1, π2 have the same cocycle μ′. Taking the adjoint and noticing

that π ′
1(g)π ′

1(g
−1) = π2(g)π2(g

−1) = μ′
g,g−11, ∀g ∈ G, it follows ξ∗

0 π ′
1(g) = π2(g)ξ∗

0 , ∀g ∈ G.

The two relations imply that ξ∗
0 ξ0 commutes with π2(g), ∀g ∈ G, and using the irreducibility

of π2 it follows that π ′
1, π2 are conjugate.
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Thus, for every n there are at most c
|F1|n2

0 irreducible projective representations of order n.

This implies that the number of projective representations of dimension n is at most 2nc
|F1|n2

0 , so

c = 2c
|F1|
0 will do.

(2) Let (F1, δ1) be the constants from Lemma 1.1 for (G,H), and let c0 be as before. Let
d = c

|F1|
0 . Assume that {μ|H | μ ∈ H2(G,n)} has more than dn2

elements. By the pigeon-
hole principle if follows that there exist πj1,πj2 ∈ PR(G,n) with cocycles μj1 , μj2 such that
μj1 |H �= μj2 |H and ‖πj1(g) − πj2(g)‖2 < δ1, ∀g ∈ F1. This leads to a contradiction, as in the
proof of Lemma 1.1. �
1.5. Remark. The same proof as for part (1) of the above proposition shows that the similar
result for groups G with the property (τ ) of Lubotzky holds true (see [17, 1.3] for the definition
of property (τ ) and [17, 1.4.3] for related statements).

2. Examples

Recall that the groups SL(n,Z), n > 2, and Sp(2n,Z), n > 1, have the property (T) of
Kazhdan [16]. Obvious examples of inclusions with relative property (T) are H ⊂ H × Γ

with H a property (T) group and Γ an arbitrary discrete group. It is shown in [16,18,27] that
Z2 ⊂ Z2 � SL(2,Z) has the relative property (T). More generally, by a result of Burger [2], any
inclusion of the form Z2 ⊂ Z2 � Γ , with Γ ⊂ SL(2,Z) non-amenable, has the relative prop-
erty (T). Recently Valette [28] showed that if Γ is an arithmetic lattice in an absolutely simple
Lie group, then there exists an embedding of Γ in SL(m,Z) for some m, such that Zm ⊂ Zm �Γ

has the relative property (T). Fernos [10] constructed other examples of inclusions of groups
Zm ⊂ Zm � Γ with the relative property (T), for Γ ⊂ GL(m,Z).

More examples of pairs of groups having the relative property (T) come out from the following
easy observation.

2.1. Lemma. Let σ :Γ → Aut(H) and σ ′ :Γ → Aut(H ′) be actions of a Γ on H , H ′ and denote
by σ̃ :Γ → Aut(H × H ′) the diagonal action, σ̃ (g)(x, y) = (σ (g)x,σ ′(g)y), x ∈ H , y ∈ H ′,
g ∈ Γ .

(1) If H ⊂ H �σ Γ and H ′ ⊂ H ′ �σ ′ Γ have the relative property (T) then (H × H ′) ⊂ (H ×
H ′) �σ̃ Γ has the relative property (T).

(2) Assume H ⊂ H �Γ has the relative property (T). Let β ∈ Aut(Γ ). Denote σ ′ = σ ◦β and σ̃

the diagonal action σ̃ (g) = σ(g)× σ ′(g) of G on H ×H . Then (H ×H) ⊂ (H ×H) �σ̃ Γ

has the relative property (T).
(3) If Γ is a subgroup of GL(n,Z) such that Zn ⊂ Zn � Γ has the relative property (T) then

Z2n ⊂ Z2n �θ Γ also has the relative property (T), where for each g ∈ Γ θ(g) ∈ SL(2n,Z)

is the matrix
( g 0

0 (g−1)t

)
.

Proof. (1) If π is a unitary representation of (H × H ′) � Γ on H with an almost invariant unit
vector ξ ∈H then by (1.0) ξ follows uniformly almost invariant to H × {e′} and to {e} × H ′.
Since ∥∥π(h,h′)ξ − ξ

∥∥ �
∥∥π(h, e′)π(e,h′)ξ − π(h, e′)ξ

∥∥ + ∥∥π(h, e′)ξ − ξ
∥∥

�
∥∥π(e,h′)ξ − ξ

∥∥ + ∥∥π(h, e′)ξ − ξ
∥∥
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for all h ∈ H , h′ ∈ H ′, it follows that ξ is uniformly almost invariant to H × H ′. Thus, if ξ0 is
the element of minimal norm in cow{π(h,h′)ξ : h ∈ H, h′ ∈ H ′} ⊂ H, then ξ0 is invariant to
π(H × H ′) and ξ0 �= 0.

(2) Since the inclusions H ⊂ H �σ Γ and H ⊂ H �σ ′ Γ are isomorphic, and the first inclusion
has the relative property (T), the second one has this property as well. Thus, part (1) applies to
get the conclusion.

(3) Apply (2) to (H ⊂ H � Γ )=(Zn ⊂ Zn � Γ ) and β(g) = (g−1)t . �
Of all these examples of inclusions of groups H ⊂ G with the relative property (T) we are

interested in those for which the set of restrictions of 2-cocycles {μ|H : μ ∈ H2(G,T)} is “large”
(uncountable), so we can take advantage of Corollary 1.3. There are difficulties in obtaining
such examples. First it is difficult to calculate second cohomology groups. Secondly it is hard to
control the size of this group when restricted to H . We overcome these difficulties by looking at
inclusions of the form (H ⊂ G) = (Z2n ⊂ Z2n �Γ ), and the 2-cocycles on G arise as extensions
to G of Γ -invariant 2-cocycles in H . A similar construction has been considered in [4].

Denote with J the matrix
( 0 In−In 0

) ∈ GL(2n,Z). It defines a 2-cocycle ν : Z2n × Z2n → Z by
the formula ν(x, y) = xtJy. For each α ∈ T we denote with να the T-valued 2-cocycle defined

by να
def= αν/2. Since να is a coboundary iff α = 1, α �→ να is an embedding of T into H2(Z2n,T).

The set of invertible matrices that leave ν (and also να) invariant is the symplectic group
Sp(2n,Z). Thus, given any subgroup Γ of Sp(2n,Z), να can be extended to a 2-cocycle on

Z2n � Γ , which we still denote να , by the formula να((x1, γ1), (x2, γ2))
def= να(x1, γ1x2).

2.2. Notations. For each subgroup Γ ⊂ Sp(2n,Z) and each α ∈ T let Nα and Mα(Γ,n) be the

cocycle von Neumann algebras Nα
def= Lνα (Z

2n) ⊂ Lνα (Z
2n � Γ )

def= Mα(Γ,n). Alternatively,
Mα(Γ,n) can be regarded as the cross product von Neumann algebra Nα �σα Γ , where the
action σα is defined by σα(g)(λνα (x)) = λνα (gx) for all x ∈ Z2n and all g ∈ Γ . Note that the
isomorphism class of Mα(Γ,n) may in fact depend on the embedding Γ ⊂ Sp(2n,Z). In other
words it may depend on the way Γ acts on Z2n, a fact that is not well emphasized by the nota-
tion Mα(Γ,n). For instance, the group F2 can be embedded in SL(2,Z) in many ways, giving
different actions of F2 on Z2 and thus on Lνα (Z

2).

If α is a root of unity of order m then Nα is homogeneous of type Inm, while if α is not a root
of unity, then Nα is isomorphic to the hyperfinite II1 factor R. N ′

α ∩ Mα(Γ,n) = Z(Nα). Also,
if either Z2n has no Γ -invariant finite subsets other than {0} or if α is not a root of unity then
Mα(Γ,n) is a II1 factor.

In the case when n = 1, Sp(2,Z) is in fact equal to SL(2,Z) and if we denote by u and
v the canonical generators of Z2 we have that λuλv = να(u, v)λuv = α1/2λuv and λvλu =
να(v,u)λvu = α−1/2λuv showing that λuλv = αλvλu. So when n = 1 and α = exp(2πıθ) with θ

irrational, Lνα (Z
2) is the hyperfinite II1 factor represented as the irrational rotation algebra Rα of

angle θ . Thus if Γ is an arbitrary non-amenable subgroup of SL(2,Z), then Mα(Γ )
def= Mα(Γ,1)

is an irrational rotation HT factor, as considered in [23,25].
Recall that two finite von Neumann algebras M and N are stably isomorphic if M is isomor-

phic to an amplification Nt of N , i.e., if there exist n ∈ N and a projection p ∈ Mn(N) such that
M is isomorphic to pMn(N)p (= Nt , where t = nτ(p)).
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2.3. Corollary. Let M be a separable II1 factor. If Γ is a subgroup of Sp(2n,Z) such that Z2n ⊂
Z2n � Γ has the relative property (T), then the set of α ∈ T for which some amplification of
Mα(Γ,n) can be embedded into M is at most countable. Thus, the factors {Mα(Γ,n)}α∈T are
non-stably isomorphic modulo countable sets.

2.4. Corollary.

(1) The irrational rotation HT factors Mα(Γ ) cannot be all embedded into a separable II1 factor
and are non-stably isomorphic modulo countable sets.

(2) If Γ is a subgroup of GL(n,Z) such that Zn ⊂ Zn � Γ has the relative property (T) then the
factors Mα(Γ,n) = Lνα (Z

2n �θ Γ ) where θ is as in 2.1(3) cannot be all embedded into a
separable II1 factor and are non-stably isomorphic modulo countable sets.

3. Disintegration of rigid von Neumann algebras

We now use results from the previous section to derive some properties of the disintegration
of the type II1 von Neumann algebras coming from property (T) groups Λ with large (infinite)
radical, i.e., for which L(Λ) has diffuse center. Thus, we give an explicit description of the
disintegration of the type II1 von Neumann algebras from the property (T) groups Λ with large
center constructed by Serre (see [13, p. 40]), which arise as central extensions of property (T)
groups. We also use an argument from [20] to show that the factors in the disintegration of
the algebra L(Λ) of an arbitrary property (T) group Λ are mutually non-isomorphic, modulo
countable sets.

We first recall some facts about the disintegration theory of a von Neumann algebra (see
[8, Chapter 2] for a detailed treatment). Thus, let (Z,μ) be a Borel space with a positive measure
and ξ →Hξ be a measurable field of Hilbert spaces on Z . We denote by H = ∫ ⊕

ξ∈ZHξ dμ the
corresponding direct integral Hilbert space. An operator field ξ → Tξ , Tξ ∈ B(Hξ ) is called
diagonalizable if it is of the form ξ → c(ξ)IHξ

where c :Z → C is measurable. An operator T

acting on H is called decomposable if it comes from a measurable operator field ξ → Tξ , in
which case we write T = ∫ ⊕

ξ∈Z Tξ dμ. An operator T is decomposable if and only if it commutes
with the set of diagonalizable operators.

Now assume that for each ξ ∈ Z , Aξ is a von Neumann algebra acting on Hξ . ξ → Aξ is
a measurable field of von Neumann algebras if there exist a sequence {Ti}i∈Z of measurable
operator fields such that for each ξ ∈ Z , {Ti(ξ)}i∈Z generates Aξ . The set of decomposable
operators T = ∫ ⊕

ξ∈Z Tξ dμ for which Tξ ∈ Aξ is a von Neumann algebra and it is denoted by

A= ∫ ⊕
ξ∈Z Aξ dμ.

3.0. Example. Let G be a discrete group with a 2-cocycle ν :G × G → A where A is a dis-
crete abelian group. The central extension of G with cocycle ν is a group G̃ where G̃ = A × G

as a set and the multiplication is given by (a1, g1)(a2, g2) = (a1a2ν(g1, g2), g1g2). Notice that
(a1, g1)

−1 = (a−1
1 ν(g1, g

−1
1 )−1, g−1

1 ). By a result of Serre, if G is a property (T) group and ν �= 0
in H2(G,A) then G̃ also has property (T).

For each character α ∈ Â let Lα(G) = Lνα (G), where να is the T-valued 2-cocycle given by
the formula να(g1, g2) = α(ν(g1, g2)).

Let B = C∗
red(G̃) and τ be the natural trace on B defined by τ(a, g) = δ

(eA,eG)
(a,g)

. For each

α ∈ Â let τα be the trace on B defined by τα(a, g) = α(a)δ
eG
g . Let (π,H◦) and (πα,Hα) be the
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GNS representations of B with respect to the states τ and τα . Then H◦ = �2(G̃), Hα = �2(G),
π(B)′′ = L(G̃) and πα(B)′′ � Lα(G). The last equality is easy to check since τα((a −α(a))(a −
α(a))∗) = 0 so πα(a) = α(a)I .

For each g ∈ G define the vector field xg to be xg(α) = (̂eA, g)
Hα

, where for any b ∈ B ,
b̂Hα denotes the class of b in Hα . It is clear that for each α ∈ Â fixed, the set {xg(α)}g∈G is
an orthonormal basis of Hα and that for each g1, g2 ∈ G the function α → 〈xg1(α), xg2(α)〉Hα

is continuous. Then by [8, II.1.4, Proposition 4], there exists a unique structure of measurable
Hilbert spaces on α �→Hα that make the vector fields xg measurable. Moreover, a vector field x

is measurable if and only if α → 〈xg(α), x(α)〉Hα
is measurable for every g ∈ G.

Let θ :H◦ → ∫ ⊕
α∈Â

Hα dα be the linear map defined by

θ (̂a, g)
H◦ =

(
(̂a, g)

Hα
)

α∈Â
= (

α(a)g
)
α∈Â

,

where the last equality is via the identification Hα = l2(G).
We show that θ is an isomorphism of Hilbert spaces and(

θ
(
π(x)ξ

))
α

= πα(x)θ(ξ), ∀x ∈ B, ξ ∈H◦.

Note that

〈
θ ̂(a1, g1)

H◦
, θ ̂(a2, g2)

H◦〉∫ ⊕Hα

=
∫

α∈Â

〈
̂(a1, g1)

Hα
, ̂(a2, g2)

Hα
〉
Hα

dα

=
∫

α∈Â

τα

(
a1a

−1
2 ν

(
g1, g

−1
2

)
ν
(
g2, g

−1
2

)−1
, g1g

−1
2

)
dα,

with the last term being zero whenever (a1, g1) �= (a2, g2). Thus

〈
̂θ(a1, g1), ̂θ(a2, g2)

〉∫ ⊕Hαdα
= δ

(a2,g2)

(a1,g1)
=

〈
̂(a1, g1)

H◦
, ̂(a2, g2)

H◦〉
H◦

showing that θ is an injective morphism of Hilbert spaces.
To check surjectivity, let {x(α)}α ∈ ∫ ⊕Hα dα be a measurable vector field. Since for every

fixed g ∈ G the function α �→ 〈x(α), xg(α)〉 belongs to L2(Â), there exist (da,g)a∈A,g∈G such
that ∑

a∈A

da,gα(a) = 〈
x(α), xg(α)

〉
, ∀α ∈ Â, g ∈ G.

Moreover,
∑

a,g |da,g|2 = ∫ ‖x(α)‖2 dα is finite. Define v = ∑
a,g da,g(a, g). Then v ∈H◦ and

θ(v) = {x(α)}α , which shows that θ is an isomorphism.

We now check that (θ(π(x)ξ))α = πα(x)θ(ξ)α , ∀x ∈ B , ξ ∈H◦. This is clear since

(
θ
(
π(x)ξ

))
α

= ̂(
π(x)ξ

)Hα = (̂xξ)
Hα = πα(x)(̂ξ)

Hα = πα(x)θ(ξ)α.
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The diagonalizable operator fields on
∫ ⊕
α∈Â

Hα dα correspond, via θ−1, to the elements of the
von Neumann algebra π(A)′′ ⊂ B(H0). Altogether, using [9, 8.4.1] we have thus obtained:

3.1. Proposition. Let G be a discrete group with a 2-cocycle ν :G × G → A, where A is
a discrete abelian group. Let G̃ be the central extension of G defined by the cocycle ν.
For each α ∈ Â let Lα(G) = Lνα (G), where να is the T-valued 2-cocycle on G defined as
να(g1, g2) = α(ν(g1, g2)). Then the von Neumann algebra L(G̃) has the following direct in-
tegral decomposition:

L(G̃) =
⊕∫

α∈Â

Lα(G)dα.

Note that if we let G = Z2n �Γ , n > 2, where Γ is a non-amenable subgroup of Sp(2n,Z) and
ν the Z-valued 2-cocycle on G defined in Section 2, then from Corollary 2.2 and Proposition 3.1
it follows that the factors in the above direct integral decomposition of L(G̃) are property (T)

and they are non-isomorphic modulo countable sets.
But, in fact, one can obtain a general result along these lines, by using an argument similar to

Ozawa’s proof that there are no “universal” separable II1 factors [20]. We include the details of
the argument, for completeness.

3.2. Theorem. Let Λ be a discrete property (T) group such that the von Neumann algebra L(Λ)

has diffuse center, and let L(Λ) = ∫ ⊕
t∈Z Mt dμ be its direct integral decomposition. Then there

exists a set Z0 ⊂ Z , μ(Z0) = 0, such that the factors Mt , t ∈ Z \ Z0, are mutually non-stably
isomorphic modulo countable sets.

Proof. Let B = C∗
red(Λ), let τ be the canonical trace of B and let Z = Ẑ(B). The direct integral

decomposition of the GNS representation of (B, τ) induces factorial representations πt :Λ →
B(Ht ), t ∈ Z . The factors in the direct integral decomposition of L(Λ) are Mt = πt (Λ)′′ ⊂
B(Ht ), and we may assumeHt = L2(Mt). By [9, 8.4.1 and 8.4.2] there exists a measure zero set
Z0 ⊂Z such that the representations πt , t ∈Z \Z0, are mutually non-conjugate.

Assume, by contradiction, that Mt is isomorphic to an amplification Ms(t) of the same fac-
tor M , for all t ∈ S, where S ⊂ Z \ Z0 is uncountable. We may clearly assume c � s(t) � 1,
∀t , for some c > 0. To simplify notations, we still denote by πt the representations of Λ into
the unitary group of ptMpt , induced by the isomorphisms Mt � ptMpt , where pt ∈ P(M),
τ(pt ) = s(t), t ∈ S.

Let (F0, δ0) be property (T) constants for Λ as defined in Section 1. By using a separability
argument as in Theorem 1.2 and [11], it follows that there exist t1 �= t2 ∈ S such that pt1 is
close to pt2 and such that if π :Λ → B(pt1L

2(M)pt2) denotes the representation of Λ given
by the formula π(g)η = L(πt1(g))R(πt2(g)∗)η and ξ is the vector ξ = ‖pt1pt2‖−1(pt1pt2 )̂ then
‖π(g)ξ − ξ‖2 < δ0 for all g ∈ F0. Since Λ has property (T), there exists a non-zero vector
η ∈ pt1L

2(M)pt2 such that π(g)η = η, for all g ∈ Λ. Equivalently, if we regard η as a square
integrable operator, we have πt1(g)η = ηπt2(g), for all g ∈ Λ. By the standard trick, if v ∈ M is
the partial isometry in the polar decomposition of η with the property that the right supports of
η and v coincide, then vv∗ ∈ πt1(Λ)′ ∩ pt1Mpt1 = Cpt1 , v∗v ∈ πt2(Λ)′ ∩ pt2Mpt2 = Cpt2 and
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πt1(g)v = vπt2(g), for all g ∈ Λ. This implies that πt1 , πt2 are conjugate representations of Λ,
which contradicts t1 �= t2. �
4. Conjugacy and isomorphism problems for Mα(Γ )

We have seen that the cocycle von Neumann algebras Mα(Γ ) constructed in Section 2 can
be regarded as the crossed product von Neumann algebras Rα �σα Γ . Moreover, by [25], when
α ∈ T is irrational the isomorphism class of the algebras Mα(Γ ) is completely determined by
the cocycle conjugacy class of the actions σα of Γ on the hyperfinite II1 factor R � Rα . Thus,
the classification of the factors Mα(Γ ) amounts to the classification up to cocycle conjugacy of
the actions (σα,Γ ). In particular, for a fixed Γ ⊂ SL(2,Z), showing that the factors Mα(Γ ) are
non-isomorphic for different irrational numbers α amounts to showing that the corresponding
actions σα are non-cocycle conjugate. While we cannot solve this latter problem, we show here
that for a large class of subgroups Γ ⊂ SL(2,Z) the conjugacy class of the action σα determines
the irrational number α.

4.1. Theorem. Let Γ ⊂ SL(2,Z) be a subgroup of SL(2,Z) containing a parabolic element a and
an element b that does not commute with a. If α1 and α2 are irrationals in the upper-half torus
such that the actions σα1 and σα2 of Γ on the hyperfinite II1 factors Rαj

= Lμαj
(Z2) (j = 1,2)

are conjugate then α1 = α2.

Proof. By replacing Γ with γΓ γ −1 for a certain γ ∈ SL(2,Z), we may assume that a has (1,0)

as eigenvector. We may also assume that the corresponding eigenvalue is 1, by substituting a

with a2 if necessary. Thus a = (
1 n
0 1

) ∈ Γ , for some n ∈ Z non-zero.

For j = 1,2 let αj = e2πitj , α
1/2
j = eπitj with tj ∈ [0,1/2) \ Q, and let uj = λμαj

(1,0),

and vj = λμαj
(0,1) be the unitaries generating Lμαj

(Z2) = Rαj
. The cocycle relation ujvj =

αjvjuj implies uk
j v

l
j = αkl

j vl
j u

k
j for all k, l ∈ Z. For g = (

p q
r s

) ∈ Γ we have:

σαj
(g)

(
ukvl

) = α
1
2 (kl−(pk+ql)(rk+sl))

j u
pk+kl
j vrk+sl

j .

Assume σα1 and σα2 are conjugate, i.e., there exists an isomorphism θ :Rα2 → Rα1 such that
θ(σα2(g)(x)) = σα1(g)(θ(x)) for all g ∈ Γ , x ∈ Rα2 . We prove α1 = α2.

Denote u = u1, v = v1, u′ = θ(u2), v′ = θ(v2). To simplify notations, we identify x ∈ Rα1

with its image x̂ in L2(Rα1). Thus (ukvl)(k,l)∈Z2 is an orthonormal basis of L2(Rα1 , τ ) and
Rα1 is identified with the set of “Fourier expansions”

∑
(k,l)∈Z2 λk,lu

kvl in L2(Rα1 , τ ), that are

(twisted) left convolvers on L2(Rα1 , τ ). Let

u′ =
∑

(k,l)∈Z2

ck,lu
kvl, v′ =

∑
(k,l)∈Z2

dk,lu
kvl

for some ck,l, dk,l ∈ C such that

∑
(k,l)∈Z2

|ck,l |2 < ∞,
∑

(k,l)∈Z2

|dk,l |2 < ∞.
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Since the actions α1, α2 are conjugate via θ , we have

σα1(g)
(
(u′)k(v′)l

) = α
1
2 (kl−(pk+ql)(rk+sl))

2 (u′)pk+ql(v′)rk+sl .

Choosing g = a, k = 1, l = 0, we obtain σα1(a)(u′) = u′. Thus

σα1(a)

( ∑
(k,l)∈Z2

ck,lu
kvl

)
=

∑
(k,l)∈Z2

ck,lα
− 1

2 nl2

1 uk+nlvl =
∑

(k,l)∈Z2

ck,lu
kvl

which implies α
− 1

2 nl2

1 ck−nl,l = ck,l , ∀k, l ∈ Z. Thus, for l non-zero |ck,l | = |ck−nl,l | = |ck−2nl,l | =
· · · have to be all zero since

∑
(k,l)∈Z2 |ck,l |2 < ∞. Denote ck = ck,0. Then u′ = ∑

k∈Z
cku

k .
Let b = (

m1 m2
m3 m4

)
, m1m4 − m2m3 = 1. Then ab �= ba is equivalent to m3 �= 0. Using the for-

mula for σα1 for g = b, k = 1, l = 0, we obtain σα1(b)(u′) = α
− 1

2 m1m3

2 (u′)m1(v′)m3 .
This implies

u′σα1(b)(u′) = α
− 1

2 m1m3

2 (u′)m1u′(v′)m3 = α
m3
2 σα1(b)(u′)u′,

and thus

∑
k∈Z

cku
k

(∑
j∈Z

cjα
− 1

2 m1m3j
2

1 um1j vm3j

)

= α
m3
2

(∑
j∈Z

cjα
− 1

2 m1m3j
2

1 um1j vm3j

)∑
k∈Z

cku
k.

Hence we obtain:

∑
k,j∈Z

ckcjα
− 1

2 m1m3j
2

1

(
1 − α

m3
2 α

−m3kj

1

)
uk+m1j vm3j = 0.

Since the function (k, j) → (k + m1j,m3j) is injective for m3 �= 0, it follows:

ckcj

(
α

m3kj

1 − α
m3
2

) = 0, ∀k, j ∈ Z.

Letting k = j we obtain ck = 0, for all k except possibly two values k0,−k0. Indeed, since α1
is not a root of unity there exists at most one N = m3k

2 such that αN
1 = α

m3
2 .

Since u′ is not a scalar, we know k0 �= 0. Taking j = −k0 and using α
−m3k

2
0

1 �= α
m3k

2
0

1 = α
m3
2

we obtain ck0c−k0 = 0. Thus only one coefficient of the Fourier expansion of u′ is non-zero. So
far we have showed then that

u′ = cuk0 and α
k2

0
1 = α2.
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Now substituting u′ in the relation u′v′ = α2v
′u′ we obtain

cuk0

( ∑
(k,l)∈Z2

dk,lu
kvl

)
= α2

( ∑
(k,l)∈Z2

dk,lu
kvl

)
cuk0 .

Thus ∑
(k,l)∈Z2

dk,lu
k0+kvl =

∑
(k,l)∈Z2

dk,lα2α
−k0l
1 uk+k0vl

which yields

dk,l

(
1 − α2α

−k0l
1

) = 0, ∀k, l ∈ Z.

Since α
k0l
1 �= α2 unless l = k0 we obtain that dk,l = 0, for all k ∈ Z and l �= k0. Denote dk =

dk,k0 . Thus we have u′ = cuk0 and v′ = (
∑

k dku
k)vk0 . This implies that for every j � 1 there

exists wj ∈ W ∗(1, u) such that (v′)j = wjv
jk0 . Using the formula for σα1 one more time for

g = b, k �= 0 arbitrary and l = 1, we have

σα1(b)
(
(u′)kv′) = α

1
2 (k−(m1k+m2)(m3k+m4))

2 (u′)m1k+m2(v′)m3k+m4

= α
1
2 (k−(m1k+m2)(m3k+m4))

2 cm1k+m2uk0(m1k+m2)wm3k+m4v
k0(m3k+m4).

On the other hand,

σα1(b)
(
(u′)kv′) = σα1(b)

(∑
l

ckdlu
kk0+lvk0

)

=
∑

l

ckdlα
1
2 [(kk0+l)k0−(m1(kk0+l)+m2k0)(m3(kk0+l)+m4k0)]
1

× um1(kk0+l)+m2k0vm3(kk0+l)+m4k0 .

Identifying the corresponding coefficients, for every l we must have either dl = 0 or m3(kk0 +
l) + m4k0 = k0(m3k + m4), which implies l = 0. Thus dl = 0, ∀l �= 0 and v′ = dvk0 for some
d ∈ C. Altogether, u′ = cuk0 , v′ = dvk0 for some c, d ∈ C. Since u′, v′ generate Rα1 , this implies
k0 = 1 or k0 = −1. But α−1

1 �= α2 because α1, α2 belong to the upper half torus. Thus k0 = 1 and
α1 = α2. �
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Appendix A. A general result on fundamental groups

We give here a short proof of a result in [23], showing that the HT factors Mα(Γ ), α ∈ T,
Γ ⊂ SL(2,Z) non-amenable, have at most countable fundamental group. The result we prove is
in fact much more general, covering all results of this type in [22,23], as particular cases:

A.1. Theorem. Let M be a separable II1 factor. Assume there exists a non-zero projection p ∈ M

such that pMp contains a von Neumann subalgebra B such that B ⊂ pMp is a rigid inclusion
and B ′ ∩ pMp ⊂ B . Then F(M) is countable.

Proof. Recall from [23, 4.2] that B ⊂ M rigid implies there exist F ⊂ M finite and δ > 0 such
that if φ :M → M is a subunital, subtracial completely positive map which satisfies ‖φ(x) −
x‖2 � δ, ∀x ∈ F , then ‖φ(u) − u‖2 � 1/2, ∀u ∈ U(B).

Since the fundamental groups of M and pMp coincide, it is clearly sufficient to prove the
statement in the case p = 1. For each t ∈ (0,1) ∩F(M) choose a projection pt ∈ P(B) and an
isomorphism θt :M � ptMpt . Since B is diffuse we can make the choice so that, in addition, we
have pt � pt ′ whenever t � t ′.

Assume F(M) is uncountable. Thus, [c,1) ∩ F(M) is uncountable for some 0 < c < 1. By
the separability of M , this implies there exist t, s ∈ F(M) ∩ [c,1), t < s, such that ‖θs(x) −
θt (x)‖2 � δc, ∀x ∈ F .

Thus, if we denote θ = θ−1
s ◦ θt then θ is an isomorphism of M onto qMq , where q =

θ−1
s (θt (1)) = θ−1

s (pt ), and we have θ(1) � 1, τ(q) � c, τ ◦ θ � τ , ‖θ(x) − x‖2 � δ, ∀x ∈ F .
Consequently, we have ‖θ(u) − u‖2 � 1/2, ∀u ∈ U(B).

Let k denote the unique element of the minimal norm ‖ ‖2 in K = cow{θ(u)u∗ | u ∈ U(B)}.
Then ‖k − 1‖2 � 1/2 and thus k �= 0. Also, since θ(u)Ku∗ ⊂ K and ‖θ(u)ku∗‖2 = ‖k‖2,
∀u ∈ U(B), by the uniqueness of k it follows that θ(u)ku∗ = k, or equivalently θ(u)k = ku,
for all u ∈ U(B). By a standard trick, if v ∈ M is the (non-zero) partial isometry in the polar
decomposition of k and if we express any element in B as linear combination of unitaries, then
we get θ(b)v = vb, ∀b ∈ B , v∗v ∈ B ′ ∩ M =Z(B), vv∗ ∈ θ(B)′ ∩ qMq =Z(θ(B)q).

Since, in particular, v∗v ∈ B , we can apply the above to b = v∗v to get θ(v∗v)v = vv∗v. But
this implies θ(v∗v)vv∗ = vv∗, so that θ(v∗v) � vv∗. This is a contradiction, since θ shrinks the
trace of any elements by τ(q) < 1, while τ(vv∗) = τ(v∗v). �
A.2. Corollary. For each Γ ⊂ SL(2,Z) non-amenable and α ∈ T, the factor Mα(Γ ), as defined
in Sections 0 and 2, has countable fundamental group.

Proof. Since Z2 ⊂ Z2 � Γ has the relative property (T) (cf. [2]), the inclusion of von Neu-
mann algebras Rα = Lα(Z2) ⊂ Lα(Z2 � Γ ) = Mα(Γ ) has the relative property (T) and
R′

α ∩ Mα(Γ ) ⊂ Rα . Thus A.1 applies. �
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