Second Order Conditions for Hadamard Matrices
Stemming from the Fourier Matrix

Remus Nicoara and Joseph White
University of Tennessee, Knoxville

Abstract

Let G be a finite group and denote by €5 the commuting square associated to G.
In [Ni3] the first author introduced second order conditions necessary for a commuting
square to admit sequential deformations in the moduli space of non-isomorphic com-
muting squares. In this paper we investigate these conditions for group commuting
squares €. We are especially interested in the case G = Z,, since deforming the
commuting square €z, is equivalent to deforming the Fourier matrix F}, by complex
Hadamard matrices. We show that for G = Z, the second order conditions follow
automatically from the first order conditions, but the same is not true for every fi-
nite abelian group G. Our result gives a complete description of the second order
deformations of the Fourier matrix F), in the moduli space of non-equivalent complex
Hadamard matrices.

1 Introduction

Commuting squares were introduced in [Po2], as invariants and construction data in Jones’
theory of subfactors ([Jo], [JS]). They encode the generalized symmetries of the subfactor,
and in certain situations they are complete invariants of the subfactor ([Pol],[Po2]). The
‘easiest’ class of commuting squares arises from groups. Any finite group G can be encoded
in a group commuting square:

D < M,y(C)
Cq = U U
Cl, c C[G]

where D =~ [*((@) is the algebra of n x n diagonal matrices, and C[G] denotes the group
algebra of G. It can be shown that two group commuting squares are isomorphic if and only
if the corresponding groups are isomorphic. The subfactor associated to €4 by iterating
Jones’ basic construction is a cross product subfactor, hence of depth 2. Moreover, if G
is abelian then €4 is a spin model commuting square, and the associated subfactor is a
Hadamard subfactor in the sense of [Ni2].



In this paper we attempt to better understand the structure of the moduli space of
non-isomorphic commuting squares around some of its ’easier’ points. Even in the case
of commuting squares arising from Fourier matrices (cyclic groups), this is an unsolved
problem with far-reaching consequences. For example, the structure of the moduli space
of non-equivalent 6 x 6 Hadamard matrices in a neighborhood of Fg has applications in
quantum information theory (see [We|, [TaZy2]).

In [Nil] the first author initiated a study of the sequential deformations of a commuting
square, in the class of commuting squares. It was shown that if a commuting square satisfies
a certain span condition, then it is isolated among all non-isomorphic commuting squares.
In the case of €¢, the span condition is V' = M, (C), where V' is the subspace of M,,(C) given
by:

V =span{du —ud : d € D,u € C[G]} + C[G] + C[G] + D

When the span condition fails, the dimension d'(G) of V+ = M, (C)©V can be interpreted
as an upper bound for the number of independent directions in which €5 can be deformed
by non-isomorphic commuting squares. In [NiWh| we computed this dimension, which we
called the dephased defect of the group G. We also studied the related quantity d(G) =
dimc([D, C[G]]*), called the undephased defect of G (or just the defect of G), which can
be interpreted as an upper bound for the number of independent directions in which €q
can be deformed by (not necessarily non-isomorphic) commuting squares. The terminologies
'dephased defect’ and 'undephased defect’ are based on previous work of [Kal, [TaZyl] and
[Bal].

Let C(n) = M,(T) N y/nU(n) denote the real algebraic manifold of n x n complex
Hadamard matrices, where U(n) C M,(T) denotes the set of unitary matrices. The de-
fect d(Z,) can be interpreted as the dimension of the enveloping tangent space of C(n) at
the matrix F),:

TFHC(H) == TFHMH(T) N TFn ﬁU(H)

(see [TaZyl], [Bal], [Ba2]). Thus the defect can be regarded as an upper bound for the
dimension of the tangent space to C(n), at the point F,,.

Note that, for general n, the manifold C(n) is not smooth or connected. In this paper
we study further conditions on matrices a in the tangent space to C(n) (and more generally
the tangent space to a group commuting square) to admit an analytic family of commuting
squares tangent to a. We show that for G = Z,, the second order conditions introduced in
[Ni3] follow automatically from the first order conditions, but the same is not true for every
finite group G. In other words, the bound on the number d(F') of possible directions of
convergence around F'; obtained as tangent vectors using a first order derivative argument,
is not decreased by the second order condition which corresponds to taking second order
derivatives. This is rather surprising and we note that the same result does not hold in
general, for other abelian groups.



2 Preliminaries

For most of our paper we will assume that G = Z,, is a cyclic group with n elements.
In this case we can identify the group algebra C[G] with the matrix algebra FFDF* where
F' is the n x n Fourier matrix, and D denotes the algebra of n x n diagonal matrices with
complex entries. When n is non-prime, the dephased defect of G is nonzero and there are
several constructions of analytic families of non-isomorphic Hadamard matrices containing
F' (see for instance [Di]).

However, it is not known what are all the analytic families of complex Hadamard matrices,
containing the Fourier matrix. This problem is quite interesting for n as low as 6, as it has
potential applications in quantum information theory (see [We|). We present below a more
general, discrete version of this question, which pertains to the local structure around F' of
the moduli space of (non-equivalent) complex Hadamard matrices U.

It is more convenient to phrase our question in terms of the matrices V' = U F* which
are close to the identity matrix I, rather than in terms of the Hadamard matrices U which
are close to F. Observe that that VC[G]V* = VFDF*V* = UDU*, and the fact that U is
Hadamard means that the following is a commuting square:

D < M,(C)
u U
CI c VC[GV*

Question 2.1. Let F' be the Fourier matriz of order n, and Uy, # F (k > 1) be any sequence
of Hadamard matrices satisfying U, — F as k — oo. Let V, = UpF™* — 1. What are the
possible directions of convergence for Vi, ?

A direction of convergence for a sequence (Vj)g>1, as defined in [Nil], is the limit a €
M, (C) of a subsequence of % By a compactness argument, (Vj)r>1 must have at least
one direction of convergence. From results in [Nil] it follows that any such a is orthogonal
to span[D, C[G]]. Thus, the undephased defect d(G) = dime(span[D, C[G]]*) is an upper
bound for the number of independent directions of convergence. Also, the dephased defect
d'(G) is an upper bound for the number of independent directions of convergence if we only
allow for non-equivalent Hadamard matrices.

There are however further restrictions that @ must satisfy. We recall the following theorem

from [Ni3], which we now state just for the case of Hadamard matrices.

Theorem 2.2. Let n > 1 be non-prime, let Uy # F be n X n Hadamard matrices converging
to the Fourier matriz F', and let a € M,(C), ||a|| = 1, be a direction of convergence for U.

Then a must satisfy the conditions:
(i). a =a* and for alld € D, u € FDF* we have:

a L [d,u]



(1i). There exists b € M, (C) such that b+b* = a* and for alld € D, uw € FDF* we have:
7(bld, u]) = 7(dua®) — 7(daua)

Note that the second condition (éi) is linear in d and u, but not in a. Thus it is a
priori possible that a linear combination of directions of convergence is not a direction of
convergence.

Remark 2.3. Assume that an analytic family Uy — F exists (t € R), and expand

t2

Then a, b satisfy (i) and (ii). This follows easily by just writing the unitary and commuting
square relations, then identifying the coefficients of t to obtain (i) and of t* to obtain (7).
This suggests that also in the general situation of just a discrete sequence of Hadamard
matrices we can think of (i) as a first order condition, and (ii) as a second order condition
on a.

The following lemma gives us an equivalent form of the second order condition (77), which
is more suitable for computations as it no longer involves b.

Lemma 2.4. Condition (ii) is equivalent to the following:
(11)” Let d, = ey, be the canonical basis for D, and let u, € C[G] be the unitaries
representing G = Zy, (9,h € G). Then for any c,, € C (g,h € G) we have:

If Z Conldg, up) =0, then Z con(T(dgupa®) — 7(dyaupa)) = 0

g,heG g,heG

Proof. The fact that (ii) implies (i)’ follows easily by summing up the relations
cgnT(bldg, un)) = cgn(7(dguna®) — 7(dgauna))

for all g,h € G. Indeed, the left side of the sum is 0:

S cour(Bldg un)) = (0 Y couldyum])) = 0

g9,heG g,heG

which gives Y 1< Con(T(dguna®) — 7(dgauna)) = 0.

We now show that (ii)" implies (). Let f : DxC[G] — C be the map f(d,u) = 7(dua®)—
7(daua) and let g : D x C[G] — W be the map ¢(d,u) = [d, u], where W = span[D, C[G]].
f and g are bi-linear maps. Notice that (i)’ is equivalent to the existence of a linear map
0 : W — C satisfying 6 o g = f. Any such linear map is of the form 6(z) = 7(xby) for some
by € M,(C). Thus we obtain:

7(bold, u]) = 7(dua®) — 7(daua), for all d € D,u € C[G]
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Taking the adjoint of this relation, using a = a*, and using that D and C[G] are *-closed
yields:

—7(bo[d, u]) = T(a*ud) — T(auad), for all d € D,u € C[G]

Subtracting the last two relations gives:
7((bo + b)[d, u]) = 7([d, u]a®), or equivalently 7((by + b — a®)[d,u]) =0

Thus, if we denote b = by — 3(by + b — a?), we have that 7(b[d, u]) = 7(bo|d, u]). This
means that b still satisfies 7(b[d, u]) = 7(dua?®) —7(daua). Also, it is easy to check b+b* = a.
Thus b satisfies both the conditions that form (7).

[

We end this section by recalling two results from [NiWh], which give us ’easy’ bases that
we will need for our computations. Note that these results are for general finite groups G

and thus are in multiplicative notation, but we will switch to additive notation when working
with G = Z,,.

Remark 2.5. Let G be a finite group. If for fivred g, h € G we define c(h,g) € M, (C) by

(c(h, ). . = 1 ifp=hFg and g = h for some k € N
9)pa = 0 otherwise

then the distinct c(h, g) form a basis for {(cgn)gnhec € Ma(C) : 32, 1, gnldg, un] = 0}.

Theorem 2.6. For every g,h € G let a(h,g) € M, (C) be the matriz

(a(h, g)) 1 ifp=hFg and g = h*'g for some k € N
a Y - .
9Vpa 0 otherwise

For each h € G, let g}, ...gﬁ(h) be a choice of representatives of the right cosets of G/ < h >,
where n(h) = |G|/ord(h) is the number of elements of G/ < h >. Then the matrices
{a(h,gt) : h € G,1 <k <n(h)} form a basis for W+.

3 The main result

We first recall a well known group theory lemma, which we will use in the proof of the main
result.

Lemma 3.1. Let G be a group, let {H;};cr be a family of subgroups of G and let (g;)ics € G.
Then the set N;crg; H; is either empty, or it is a left coset of Nier H;.



We are now ready to prove the main result of this paper, stating that any hermitian a
in the tangent space W= (i.e. satisfying the first order condition) automatically satisfies
the second order condition. In other words, the bound on the number of possible directions
of convergence around F', given by the defect of F', is not decreased by the second order
condition. This is rather surprising, and the same result does not necessarily hold for other
examples of Hadamard matrices or abelian groups (see the remark at the end of this section).

Theorem 3.2. Let G = 7Z,, and a € M,(C) such that a satisfies the first order condition:
a=a* and a L [D,C[G]]. Then there exists b € M, (C) satisfying the second order condition

b+ b* = a® and 7(bld,u]) = 7(dua®) — 7(daua) for all d € D,u € C[G]

Proof. By Lemma 2.4, it suffices to show that whenever >__, . ¢4n[dg, un] = 0 then we must
have

Z con(T(dgupa®) — 7(dyaupa)) = 0.
g,heG

Since these relations are linear in ¢y, it is sufficient to check them for a basis for all
matrices (cg5) satisfying >, cgnldg, un] = 0. We will use the basis introduced in Remark
2.5 (which is Theorem 2.8 of [NiWh]). Fix ¢, h € Z,, and let ¢ = ¢(g, h) be the matrix with
entries 0 except for ¢,pny =1 for k =1, ..., |h|, where |h| denotes the order of h.

In the computations below, all sums and products involved in the indices are taken
modulo n. We have to show that

Al
Z(T (drnrguna®) — 7(dpnigaupa)) = 0
k=1

Let (a;)1<i<y be a basis for [D,C[G]]* as in Theorem 2.6 (which is Theorem 2.13 of
[NiWh]). Then every a € [D, C[G]]"* is of the form S~ | aya; (o € C) and we have:

7(dua®) — 7(daua) = Z a;a(7(duaa;) — 7(daua;))

ij=1

for all d € D and u € C[G]. Combining the last two equalities, it follows that it is sufficient
to show that for any (fixed) g, h we have:

Al

Z(T(dkthguhaiaj) — 7(dinsgaiuna;)) = 0 (1)

k=1

for any a;,a; (not necessarily distinct) elements of our basis.
For simplicity, we will slightly change notations and call a = a; and @ = a; for the rest
of the proof. Then (1) can be rewritten as:

|h‘ n \h| n

E E ah(k—l)—i—g,h’ah/,thrg:E E Ahkt-g b O— s hkt-g -

k=1 h'=1 k=1 h'=1



With the notations from Theorem 2.6, we have a = a(hg, go) for some hg, go € Z,,. For
the ease of notation in our computations, we will denote a by a"*%. Similarly we have
a = a(hy,q) = a™9 for some hy, g1 € Z,. Let S, = (h) + g, S, = (ho) + go, and
Sh, = (k1) + g1. Let 6/ denote the Kronecker function. We have:

bl n |R|
~ _ h'—ho h'+hy
PIPBLIEIRTIITIVED DI DR A A
k=1 h'=1 k=1 h’EShOﬂShl
|h|

_ R'+hy sh—ho
= E E 5hk+g 5h1

k=1 hIEShOmShl

= 510t N Sy, N (S — ha)l-

Similarly, we have:

17—

SN ankrgnionen kg = 64" [Shg N (Shy + 1) N (Sh + ho)l .

k=1 h'=1

By Lemma 3.1, if Sy, NSy, N (Sh — hy) and Sk, N (Sk, + h) N (S + hg) are either both
empty or non empty, then |Sy, N Sy, N (Sp — h1)| =[Sk, N (Sh, + k) N (SK + ho)| and hence,
Z‘khz‘l Z’:l ah(k,1)+g7h/dh/7hk+g = Zlkhil ZZ,:l ahk+gvh/&_h+h/,hk+g. ':[‘hUS7 it suffices to show
that if h = hg + hq, then

Sho NSp, N (Sh — h1) #0 < Shy N (Sh, +h) N (Sh+ ho) #0

Assume h = hg + hy and x € Sy, N Sp, N (Sp — hy). We exhibit a y € Sp, N (Sp, +h) N
(S + ho). If we write y = x + z, then z will have to satisfy z €< hg > N(< hy > +h) N (<
h > +hg + hy), which can be simplified to:

< ho>N(< hy >+ho)N < h >

We used here that h = hg + h;.
For simplicity of notations, let r = —hg and s = h. Then h; = r + s. We need to show
that:
<r>nN(<r+s>-rN<s>#0, forany r,s €7z,

If we rewrite this statement in terms of elements of the group Z, we have to show that
for all integers n > 1 and r, s, we have:

(rZ+nZ)N(SZ+nZ)N(—r+ (r+s)Z+nZ) #0 (2)

In what follows, we will use the notations (z,y) and [z, y] for the greatest common divisor,
respectively the least common multiple of the integers x,y. We have:

7



rZ +nZ = (r,n)Z and sZ + nZ = (s,n)Z
It follows that
(rZ +nZ) N (sZ + nZ) = [(r,n), (s,n)]|Z

Thus, (2) can be rewritten as:

[(r,n), (s,n)]ZN(=r+ (r+s,n)Z) #0

or equivalently

r € kZ, where k = ([(r,n), (s,n)], (r + s,n))

which means that all we have to check is that k divides r. It is a well known identity that
[(r,n), (s,n)] = ([r,s],n). Thus k = (([r,s],n), (r + s,n)) = ([r,s],r + s,n). In particular k
divides ([r, s|,r + s), so if we show that ([r, s|,r + s) divides r we are done.

Let d = (r,s), r =dr', s = ds' with (r',s') = 1. Then ([r,s],r + s) = (dr's’,dr' + ds') =
d(r's',r" + s') = d, which divides r = dr’. We used here that (r's’,7" 4+ s') = 1, which follows
immediately from (r/,s") = 1. This ends the proof.

[

We conclude with an example that shows that the result from the previous theorem can
not be extended from 7Z, to any abelian finite group. The computations for this example
were performed using Mathematica.

Remark 3.3. Let G = Zo ® Zs. If

0 -1 0 1
(-1 0 -10
““lo -1 0 1
1 0 1 0

then there is no 4 X 4 matriz b satisfying 7(b[d,u]) = 7(daua) — 7(dua?) for all d € D and
u € C[G].
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