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Abstract. We revisit the well-known work of K. Masuda in 1984 on the
weak-strong uniqueness of L∞L3 Leray-Hopf weak solutions of Navier-Stokes

equation. We modify the argument, and extend the uniqueness result to the
scaling critical anisotropic Lebesgue space with mixed-norms. As a conse-

quence, our results cover the class of initial data and solutions which may be

singular or decay with different rates along different spatial variables. The
result relies on the establishment of several refined properties of solutions of

the Stokes and Navier-Stokes equations in mixed-norm Lebesgue spaces which

seem to be of independent interest.

1. Introduction

Consider an incompressible fluid moving in Rd with velocity u : Rd×(0, T )→ Rd
and pressure P : Rd × (0, T ) → R, the Cauchy problem for the Navier-Stokes
equations is written by ut −∆u+ (u · ∇)u+∇P = 0, in Rd × (0, T ),

div(u) = 0 in Rd × (0, T ),
u(0, ·) = a0(·) in R,

(1.1)

where T ∈ (0,∞], d ≥ 3 and a0 : Rd → Rd is a given divergence-free vector
field representing the initial velocity. This paper revisits the well-known work of
K. Masuda [28] and extends its uniqueness result for Leray-Hopf weak solutions
of the Navier-Stokes equation (1.1) to the setting of critical anisotropic Lebesgue
spaces. For the reader’s convenience, let us recall the definition of Leray-Hopf weak
solutions of (1.1).

Definition 1.1. Let T ∈ (0,∞], a0 ∈ L2
σ(Rd), the subspace of L2(Rd) consisting

of divergence free vector field functions. A function u : Rd× (0, T )→ Rd satisfying
u ∈ L∞((0, T ), L2

σ(Rd)) and ∇u ∈ L2(Rd × (0, T )) is called a Leray-Hopf weak
solution of (1.1) if the following hold.

(i) For every smooth compactly supported ϕ : Rd × (0, T ) → Rd such that
div(ϕ) = 0, we haveˆ T

0

ˆ
Rd

[
v · ∂tϕ−∇u : ∇ϕ+ (u⊗ u) : ∇ϕ

]
dxdt = 0.

(ii) The energy inequality

sup
t∈(0,τ)

ˆ
Rd
|u(x, t)|2dx+ 2

ˆ τ

0

ˆ
Rd
|∇u(x, t)|2dxdt ≤

ˆ
Rd
|a0(x)|2dx (1.2)
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holds for a.e. τ ∈ [0, T ).
(iii) For every ϕ ∈ L2(Rd), the map

t 7→
ˆ
Rd
u(x, t) · ϕ(x)dx

is continuous on [0, T ).
(iv) The initial condition is satisfied in the L2(Rd) sense

lim
t→0+

‖u(·, t)− a0(·)‖L2(Rd) = 0.

The existence of a global time Leray-Hopf weak solution for (1.1) was first proved
by J. Leray in the foundation work [23] (see also [22]). J. Leray’s result can be
summarized in the following theorem.

Theorem 1.2. For each a0 ∈ L2
σ(R3), there exists at least one Leray-Hopf weak

solution of (1.1) in R3 × (0,∞).

There are two open problems concerning Theorem 1.2.

(i) Given a0 ∈ L2
σ(R3), is there a global time Leray-Hopf weak solution that is

regular for all time?
(ii) Given a0 ∈ L2

σ(R3), is the global time Leray-Hopf weak solution unique in
the class of Leray-Hopf weak solution?

This paper concerns question (ii) on the uniqueness of Leray-Hopf weak solutions.
We are particularly interested in the weak-strong uniqueness criterion for solutions
in Lebesgue spaces that are invariant under the scaling. To put our work into
perspectives, let us recall several known results in this direction. First of all, it
should be noted that the solution set of the Navier-Stokes equation (1.1) is invariant
under the scaling

uλ(x, t) = λu(λx, λ2t), λ > 0. (1.3)

Then, it follows that

‖uλ‖Ls((0,∞),Lp(Rd)) = ‖u‖Ls((0,∞),Lp(Rd)), ∀ λ > 0

if and only if
2

s
+
d

p
= 1. (1.4)

Under (1.4) and with d = 3, uniqueness of Leray-Hopf weak solutions which are in
Ls((0, T ), Lp(R3)) with s ∈ [2,∞) and p > 3 are proved in [29, 12, 21, 33]. Many
other results in this direction with different functional spaces are also obtained, see
[24, 2, 27] for examples, and [25, p. 361] and [35, p. 92] for discussion and more
references.

The special case when s = 2 and p = d = 3 is non-trivial and it was resolved in
the well-known work [28] by K. Masuda and [17] by H. Kozono and H. Sohr. See
also [11] for some extension of this result. Indeed, [17] proves that as long as there
is a Leray-Hopf weak solution u of (1.1) in R3× (0, T ), u ∈ L∞((0, T ), L3(R3)) and
u : [0, T ) → L3(R3) is right continuous, then there is only one Leray-Hopf weak
solution of (1.1) on R3× (0, T ). Later, the strong continuity of u : [0, T )→ L3(R3)
is affirmed in the work [17] as long as u is a Leray-Hopf weak solution and u ∈
L∞((0, T ), L3(R3)). Among others, the results on the weak-strong uniqueness of
solutions in [28, 17] are summarized in the following theorem.
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Theorem 1.3. Let u and v be Leray-Hopf weak solutions of (1.1) in R3 × (0, T )
with the same initial data a0 ∈ L2

σ(R3) ∩ L3
σ(Rd) and with some T > 0. If u ∈

L∞((0, T ), L3(R3)), then u ≡ v in R3 × [0, T ).

Note also that, similar to the uniqueness problem (ii) that we just mentioned, the
problem (i) about the regularity of the Leray-Hopf weak solutions in critical scaling
Lebesgue space sasitifying (1.4) has been studied by many mathematicians (see the
books [25, 34, 35] for details and a complete list of references). Significantly, the
smoothness of Leray-Hopf weak solution u ∈ L∞((0, T ), L3(R3)) was proved in the
famous paper [20]. Recent extension of this result to larger functional spaces can
be found in [32, 1], for examples.

This paper has two folds. On one hand, this work is inspired by Theorem 1.3 and
we would like to revisit and highlight the beautiful ideas in the great work [28, 17].
On the other hand, we are interested in the anisotropic behavior of the initial data
and solutions. This is specially motivated from the physical interpretation that the
fluid behavior can be different in different directions. Therefore, understanding the
solutions of Stokes, and Navier-Stokes equations in anisotropic functional spaces
seem to be a topic of independent interest.

Throughout the paper, for a given #»p = (p1, p2, . . . , pd) ∈ [1,∞)d, the mixed
norm Lebesgue space L

#»p (Rd) is defined to be the space consisting of all measurable
functions f : Rd → R such that the norm

‖f‖L #»p (Rd)
=

ˆ ∞
−∞

(
. . .

ˆ ∞
−∞

(ˆ ∞
−∞
|f(x)|p1dx1

) p2
p1

dx2 . . .

) pd
pd−1

dxd


1
pd

<∞.

(1.5)

Similar definitions can be formulated if any of {p1, p2, . . . , pd} is the same as∞. We
note that in case p1 = p2 = . . . = pd = p, the mixed-norm Lebesgue space L

#»p (Rd)
is reduced to the usual Lebesgue space Lp(Rd). Clearly, a significant feature of
the mixed-norm L

#»p (Rd) is that it captures functions that are singular or decay
with different rates along different variable directions. Interested readers can read
the classical work [3] for more details about this anisotropic mixed-norm Lebesgue
space L

#»p (Rd).
For the Navier-Stokes equation (1.1), by a simple calculation, we can see that

under this mixed-norm, and for uλ defined in (1.3)

‖uλ(t, ·)‖L #»p (Rd) = ‖u(t, ·)‖L #»p (Rd), ∀ λ > 0 ∀ t ∈ (0, T )

if and only if
1

p1
+

1

p2
+ . . .+

1

pd
= 1. (1.6)

As before, L
#»p
σ (Rd) denotes the subspace of L

#»p (Rd) consisting of all divergence free
vector field functions

L
#»p
σ (Rd) =

{
u ∈ L

#»p (Rd) :

ˆ
Rd
u(x) · ∇ϕ(x)dx = 0, ∀ ϕ ∈ C∞0 (Rd)

}
.

In the setting of mixed-norm L
#»p (Rd)-spaces with (1.6), the main result of the paper

is now stated in the following theorem on weak-strong uniqueness of Leray-Hopf
weak solutions.
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Theorem 1.4. Let #»p = (p1, p2, . . . , pd) ∈ [2,∞)d such that (1.6) holds and pd 6= 2.
Suppose that u, v are two Leray-Hopf weak solutions of the Navier-Stokes (1.1)
on Rd × (0, T ) with the same initial data a0 ∈ L2

σ(Rd) ∩ L #»p
σ (Rd) and with some

T ∈ (0,∞]. If u ∈ L∞loc((0, T ), L
#»p (Rd)), then u ≡ v in Rd × [0, T ).

Observe that in the special case when d = 3 and p1 = p2 = pd = p, (1.6) implies that
p = 3. Therefore, Theorem 1.4 recovers the classical Masuda uniqueness theorem,
Theorem 1.3. Note that Theorem 1.4 allows that some of pk, k = 1, 2 . . . , d− 1 can
be the same as 2, and therefore the condition on initial data a0 and the solutions
are more relaxed compared to those of Theorem 1.3. For example, consider a
function in the form g(x) = g0(x1)g1(x′) with x = (x1, x

′) ∈ R × Rd−1 and take
#»p = (2, p2, . . . , pd) satisfying (1.6). Then, the condition g ∈ L2(Rd) ∩ L #»p (Rd) is
equivalent to

g0 ∈ L2(R) and g1 ∈ L2(R2) ∩ L
#»p ′(Rd−1), for #»p ′ = (p2, . . . , pd).

Meanwhile, g ∈ L2(R2) ∩ L3(Rd) is equivalent to

g0 ∈ L2(R) ∩ L3(R) and g1 ∈ L2(Rd−1) ∩ L
#»p ′(Rd−1).

In other words, in the setting of anisotropic spaces, no more requirement except
the initial L2(R)-condition is needed for the part g0 of g.

Theorem 1.4 is based on an establishment of some new results on properties of
solutions of Stokes and Navier-Stokes equations in the anisotropic space L

#»p (Rd).
More precisely, several estimates of the Stokes semi-group in mixed-norm L

#»p (Rd)-
spaces will be derived. Further regularity estimates of mild solutions in the mixed-
norm space L

#»p (Rd) obtained recently in [30] are investigated. These results seem
to be new and and they strongly demonstrate the persistence of the anisotropic
behavior of the initial data under the evolution of the Stokes and Navier-Stokes

equations. Note that L
#»p (Rd) ⊂ Ḃ−1+ d

p̄

p̄,∞ (Rd), where Ḃ
−1+ d

p̄

p̄,∞ (Rd) is the homogeneous

Besov space with negative regularity index −1+ d
p̄ and p̄ = max{p1, p2, . . . , pd} > d.

When d = 3 and with a sufficiently small time, the weak-strong uniqueness of

Leray-Hopf weak solution with initial data a0 ∈ Ḃ
−1+ 3

p̄

p̄,∞ (R3) ∩ L2
σ(R3) and p̄ ∈

(3,∞) is obtained in [2, Corollary 1.4]. See also [5, 6] for earlier results in slightly
different spaces, and [7, Theorem 1.5] for another weak-strong uniqueness result

with initial data in Ḣs ∩ B̃MO
−1
∩ L2

σ(R3) for some s > 0, where B̃MO
−1

is the
closure in BMO−1 of the set of compactly supported smooth functions. On the
other hand, when d ≥ 4, the weak-strong uniqueness of Leray-Hopf weak solutions

in L∞((0, T ), Ḃ
−1+ d

p̄

p̄,q̄ (Rd)) when 4 ≤ d < p̄, q̄ < ∞ is proved in [27, Corollary
1.7], where T > 0 and may be large. Clearly, Theorem 1.4 is not covered by the
mentioned results. Moreover, our analysis and approach here are slightly different
from [2, 5, 7, 27] as we follow the spirits of Masuda work [28], and parts of this
work focus on the anisotropic behavior of solutions of the Stokes and Navier-Stokes
equations, which could be of physical interest as explained earlier. It seems to be
an interesting problem to extend the Masuda weak-strong uniqueness result to the

borderline cases such as L∞((0, T ), Ḃ
−1+ d

p̄

p̄,∞ (Rd) or L∞((0, T ),BMO−1(R3)) given
the existence results obtained in the well-known paper [16], where T > 0 and may
be large. We plan to come back to this problem in the near future.
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We would like to point out that the mixed-norm Lebesgue spaces were introduced
in [3]. Due to various interests, the analysis theory on wellposedness and regular-
ity estimates in mixed-norm Lebesgue spaces and weighted mixed-norm Lebesgue
spaces is extensively developed for elliptic and parabolic equations. For examples,
see [18, 8], the survey paper [19] and references therein. The local regularity es-
timates in weighted mixed-norm Lebesgue spaces for solutions to Stokes systems
with variable coefficients are just recently developed in [10, 9]. Following this line
of research and this paper, it seems to be an interesting problem to extend results
on energy equality for Leray-Hofp weak solutions Navier-Stokes equations such as
[26, 36, 14, 15] to the setting of mixed-norm Lebesgue spaces.

The rest of the paper is organized as follows. In Section 2, we recall and prove
several analysis estimates in mixed-norm spaces. In particular, the Sobolev embed-
ding theorem in mixed-norm spaces will be recalled. Several estimates of the Stokes
semi-group will be introduced and proved. The existence of the mild solutions of
Navier-Stokes equations in the critical mixed-norm spaces will be stated. The proof
of Theorem 1.4 is provided in Section 3. We follow the approach used in [28, 17]
and adapt it to the setting in mixed-norm spaces. The key step in this approach is
to prove that the mild solution in mixed-norm spaces is a Leray-Hopf weak solution.
This is done in Proposition 3.4 for which the estimates for mixed-norm spaces in
Section 2 that we just mentioned are essential.

2. Preliminary inequalities and estimates in mixed-norm spaces

2.1. Analysis inequalities and Sobolev embedding in mixed-norm spaces.
We recall the following theorem which is a special case of the Sobolev embedding
theorem in mixed-norm spaces proved in [4, p. 181].

Theorem 2.1 (Mixed-norm Sobolev Embedding). Let #»q = (q1, q2, . . . , qd) ∈ [2,∞]d

satisfy

1

q1
+

1

q2
+ . . .+

1

qd
=
d

2
− 1 and qd ∈ (2,∞).

Then there exist constants N = N( #»q ) such that

‖u‖L #»q (Rd) ≤ N
[
‖Du‖L2(Rd) + ‖u‖L2(Rd)

]
, ∀ u ∈W 1,2(Rd)

where the mixed-norm L
#»q (Rd) is defined as in (1.5).

Next, we recall the following classical lemma about mixed-norm estimate of the
Riesz transform, its proof is can be found in, for example, [30, Theorem 2.23] in
which the ideas developed in [19, 8] were used.

Lemma 2.2. Let #»p = (p1, p2, . . . , pd) ∈ (1,∞)d. Then, there exists a constant
N = N( #»p ) > 0 such that

‖Ri(f)‖L #»p (Rd) ≤ N‖f‖L #»p (Rd) ∀ f ∈ L
#»p (Rd),

where Ri is the i-th Riesz transform defined by Ri(f) = ∂xi(−∆)−1/2(f) for i =
1, 2, . . . , d.

We now conclude this subsection with the following elementary result that will
be used in the paper.
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Lemma 2.3. Let f ∈ C1((0,∞)) such that

N = sup
s>0

[|f(s)|+ s|f
′
(s)|] <∞.

Then,

|f(|ζ|)ζ − f(|η|)η)| ≤ N |ζ − η|, ∀ ζ, η ∈ Rd.

Proof. We provide the proof for completeness. For fixed η, ζ ∈ Rd, let x(t) =
η + t(ζ − η). We note that

| d
dt
|x(t)|| = |x(t) · x′(t)

|x(t)|
| ≤ |x′(t)| ≤ |ζ − η|.

Then, it follows that

|ζf(ζ)− ηf(η)| =|f(|x(1)|)x(1)− f(|x(0)|)x(0)|

=
∣∣∣ˆ 1

0

[f(|x(t)|)x(t)]′dt
∣∣∣

≤
ˆ 1

0

|x′f(|x|) + xf(|x|)|x|′|dt

≤
ˆ 1

0

|x′|f(|x|)dt+

ˆ 1

0

|x|f ′(|x|)||x|′|dt

≤|ζ − η|
ˆ 1

0

[f(|x|) + |x||f ′(|x|)|]dt

≤N |ζ − η|.

�

2.2. Stokes and Navier-Stokes equations in mixed-norm spaces. We recall
and introduce several results and estimates of solutions for Stokes and Navier-
Stokes equations in mixed-norm spaces that are needed in this paper. Let P(·) =
(Id−∇∆−1∇)(·) be the Helmholtz-Leray projection onto the space of divergence-
free vector fields. It is important to note that P : L

#»p (Rd) → L
#»p (Rd) is bounded

for all #»p ∈ (1,∞)d, see Lemma 2.2 and also [30, Corollary 2.25]. Also, let us denote

A = −P∆ = −∆P.

We have the following estimate for the semi-group e−At of the Stokes equations in
mixed-norm Lebesgue spaces, which is partially derived in [30, Lemma 3.5].

Lemma 2.4. Let #»p = (p1, p2, . . . , pd),
#»q = (q1, q2, . . . , qd) ∈ (1,∞)d such that

qk ≥ pk for all k = 1, 2, . . . , d. Then, there exists N = N(d, #»p , #»q ) such that

‖e−AtPa‖L #»q (Rd) ≤ Nt−
σ
2 ‖a‖L #»p (Rd)

‖e−AtP∂xka‖L #»q (Rd) ≤ Nt−
1
2−

σ
2 ‖a‖L #»p (Rd), k = 1, 2, . . . , d,

for all a ∈ L #»p (Rd), where

σ =

d∑
k=1

[ 1

pk
− 1

qk

]
.
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Proof. The proof is standard, for instance, see [30, Lemma 3.5]. In particular, for
the second assertion, we write

‖e−AtP∂xka‖L #»q (Rd) = ‖A1/2e−AtA−1/2P∂xka‖L #»q (Rd)

≤ ‖A1/2e−At‖L #»p
σ (Rd)→L

#»q
σ (Rd)‖A

−1/2P∂xka‖L #»p (Rd)

≤ Nt− 1
2−

σ
2 ‖a‖L #»p (Rd),

where in the last estimate, we used the second assertion and the fact thatA−1/2P∂xk :
L

#»p (Rd)→ L
#»p (Rd) is bounded, which follows from Lemma 2.2. �

Next, we introduce the following fundamental result about time smoothing es-
timate of the semi-group e−At in mixed-norm L

#»p (Rd)-spaces. The result seems to
be new and it is important in the proof of Theorem 1.4.

Lemma 2.5. Let #»p = (p1, p2, . . . , pd) ∈ (1,∞)d such that (1.6) holds. Let #»q =
(q1, q2, . . . , qd) ∈ (1,∞)d. Assume that

qk ≥ pk for all k ∈ {1, 2, . . . , d− 1}, qd > pd,

and

1− 2

pd
< δ :=

1

q1
+

1

q2
+ . . .+

1

qd
. (2.1)

Then, for l ∈ (2,∞) so that
2

l
+ δ = 1, (2.2)

there exists N = N(d, #»p , #»q , l) > 0 such that

‖e−AtPa‖Ll((0,∞),L
#»q (Rd)) ≤ N‖a‖L #»p (Rd), ∀ a ∈ L

#»p (Rd).

Proof. We combine results in Lemma 2.4 with an interpolation. Recall that for
α ∈ [1,∞), a function g : (0,∞)→ R is said to be in Lαw(0,∞), the weak-Lα(0,∞)
space, if its norm

‖g‖Lαw((0,∞)) = sup
τ>0

τ |{|g(t)| > τ}|1/α <∞.

In particular, a simple calculation shows that

‖g‖Lαw((0,∞)) = 1 for g(t) = t−1/α, t ∈ (0,∞). (2.3)

Now, let us denote

U [a](t) = ‖e−AtPa‖L #»q .

Then, for every r ∈ (1, qd] such that

σ = σ(r) =
1

r
+

d−1∑
k=1

1

pk
−

d∑
k=1

1

qk
=

1

r
+
(
1− 1

pd

)
− δ ≥ 0, (2.4)

it follows from Lemma 2.4 that

U [a](t) ≤ Nt−σ2 ‖a‖Lr(X ), ∀ a ∈ Lr(X ),

where

X = {measurable g : R→ L
#»p ′(Rd−1)}, #»p ′ = (p1, p2, . . . pd−1),

and N = N(d, #»p ′, r, #»q ) > 0. This last estimate and (2.3) imply that

‖U [a]‖
L

2
σ
w (0,∞)

≤ N‖a‖Lr(X ), ∀ a ∈ Lr(X ),
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which means that U is of weak type (r, 2
σ ) if σ = σ(r) > 0. Observe that as pd < qd

we have δ < 1 and then it follows from (2.4) that σ(pd) = 1− δ ∈ (0, 1). Therefore,
for every r0, r1 sufficiently close to pd and r0 < pd < r1 < qd, by the continuity of
σ in r, we see that 0 < σ(r1) < σ(pd) < σ(r0) < 1 and then

2 < l0 :=
2

σ(r0)
<

2

σ(pd)
< l1 :=

2

σ(r1)
.

Note also that it follows from (2.4) that l = 2
σ(pd) . Moreover, for y(r) = 2

σ(r)−r, we

find from (2.1) and (2.4) that y(pd) = l− pd > 0. Then, by using the continuity of
the function y at r = pd, we can chose r0, r1 sufficiently close to pd so that y(r0) > 0
and y(r1) > 0. Consequently, we have

r0 < l0 and r1 < l1.

From the above choice of r0, r1 and as U is simultaneously of weak types (r0, l0) and
(r1, l1), we apply the Marcinkiewic’s interpolation to conclude that U : Lpd(X ) →
Ll(0,∞) is bounded and therefore

‖e−AtPa‖Ll((0,∞),L
#»q (Rd)) ≤ N‖a‖L #»p (Rd), ∀ a ∈ L

#»p (Rd).

The proof of the lemma is completed. �

Remark 2.6. It is possible that Lemma 2.5 is still true when the strict inequality
in (2.1) is replaced by the equality. However, we do not pursue this direction as it
is not needed in this paper. When d = 3 and with the un-mixed norm case, i.e.
p = p1 = p2 = pd = 3 and q = q1 = q2 = qd, we see that (2.1) is equivalent to
q < 9. Therefore, Corollary 2.1 recovers the classical result in the un-mixed norm
case, see [35, Lemma 5.2]. It is important to point out that the un-mixed norm
time smoothing estimate is still true for q = 9 (see [13, Acknowledgement]), but
the case q > 9 seems to be open (see [35, Lemma 5.2 and p. 83]).

Next, we denote

G(u, v)(t) = −
ˆ t

0

e−(t−s)AF (u(·, s), v(·, s))ds, (2.5)

where

F (u, v) = P((u(·, s) · ∇)v(·, s)).
We observe that the Navier-Stokes equation (1.1) can be recast as an integral equa-
tion as

u = u1 +G(u, u), where u1(t) = e−Ata0. (2.6)

Our next result gives the estimates of the bilinear form G.

Lemma 2.7. Let zi ∈ (1,∞) and αi, βi, γi ∈ (0, 1] be given numbers satisfying

γi ≤ αi + βi ≤ zi, ∀ i = 1, 2, . . . , d. (2.7)

We write

#»α =
( z1

α1
,
z2

α2
, . . . ,

zd
αd

)
,

#»

β =
( z1

β1
,
z2

β2
, . . . ,

zd
βd

)
, #»γ =

( z1

γ1
,
z2

γ2
, . . . ,

zd
γd

)
,

and denote

ᾱ =

d∑
i=1

αi
zi
, β̄ =

d∑
i=1

βi
zi
, and γ̄ =

d∑
i=1

γi
zi
.
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Then, there exists N = N(d, #»α,
#»

β , #»γ ) > 0 such that

‖G(u, v)(t)‖L #»γ (Rd) ≤ N
ˆ t

0

(t− s)−
ᾱ+β̄−γ̄

2 ‖u(·, s)‖L #»α (Rd)‖∇v(·, s)‖L #»
β (Rd)ds, (2.8)

and

‖∇G(u, v)(t)‖L #»γ (Rd)

≤ N
ˆ t

0

(t− s)−
1+ᾱ+β̄−γ̄

2 ‖u(·, s)‖L #»α (Rd)‖∇v(·, s)‖L #»
β (Rd)ds,

(2.9)

Moreover, for u ∈ L #»α
σ (Rd) and v ∈ L

#»
β
σ (Rd), we also have

‖G(u, v)(t)‖L #»γ (Rd)

≤ N
ˆ t

0

(t− s)−
1+ᾱ+β̄−γ̄

2 ‖u(·, s)‖L #»α (Rd)‖v(·, s)‖L #»
β (Rd)ds.

(2.10)

Proof. Note that (2.8) and (2.9) are proved in [30, Lemma 3.4]. Indeed, we observe
that [30, Lemma 3.4] is stated with the condition

γi ≤ αi + βi < zi, ∀ i = 1, 2, . . . , d,

meaning that the second inequality in (2.7) is required to be a strict inequality.
However, by observing the proof in [30, Lemma 3.4], one can easily see that this
strictness requirement is not needed as we only need to use Lemma 2.4 and Hölder’s
inequality. A similar result can be seen in [31, Lemma 3.1]. We therefore skip the
details of the proof of (2.8) and (2.9). It then remains to prove (2.10). Observe
that when u and v are divergence free, we can write

G(u, v)(t) = −
ˆ t

0

e−(t−s)AP∇ · (u(·, s)⊗ v(·, s))ds.

Therefore, by the last assertion in Lemma 2.4, it follows that

‖G(u, v)(t)‖L #»γ (Rd)

≤ N
ˆ t

0

(t− s)−
1+ᾱ+β̄−γ̄

2 ‖u(·, s)⊗ v(·, s)‖
L

z1
α1+β1

,...,
zd

αd+βd (Rd)
ds.

Then, as
αk + βk
zk

=
αk
zk

+
βk
zk
, ∀ k = 1, 2, . . . , d

we can apply Hölder’s inequality to derive (2.10). The proof of the lemma is then
completed. �

Now, for each #»p = (p1, p2, . . . , pd) ∈ (1,∞)d such that (1.6) holds, and for each
#»q = (q1, q2, . . . , qd) such that qk ∈ [pk,∞) for k = 1, 2, . . . , d, set

δ :=
1

q1
+

1

q2
+ . . .+

1

qd
∈ (0, 1). (2.11)

Then, with each T > 0, let us denote X #»p , #»q ,T be the space consisting of all measur-
able vector field functions f : Rd × [0, T )→ Rd such that for

g(x, t) = t
1−δ

2 f(x, t) and g̃(x, t) = t
1
2Dxf(x, t) (x, t) ∈ Rd × (0, T )

we have

g ∈ C([0, T ), L
#»q
σ (Rd)) g̃ ∈ C([0, T ), L

#»p
σ (Rd)).
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and the space X #»p , #»q ,T is endowed with the norm

‖f‖Xp,q,T = sup
t∈(0,T )

[
‖g(·, t)‖L #»q (Rd) + ‖g̃(·, t)‖L #»p (Rd)

]
<∞.

In a similar manner, Y #»p ,T consists of all measurable vector field functions f :
Rd × [0, T )→ Rd such that

f ∈ C([0, T ), L
#»p
σ (Rd)) in t

1
2Dxf ∈ C([0, T ), L

#»p
σ (Rd))

and it is endowed with the norm

‖f‖Y #»p ,T
= sup
t∈(0,T )

[
‖f(·, t)‖L #»p (Rd) + t

1
2 ‖Dxf(·, t)‖L #»p (Rd)

]
<∞.

We now conclude this subsection by recalling the following result on the existence
of mild solutions of (1.1) in mixed-norm spaces which is due to [30, Theorem 1.9].

Theorem 2.8. Let #»p = (p1, p2, . . . , pd) ∈ (1,∞)d and #»q = (q1, q2, . . . , qd) ∈
(1,∞)d. Assume that qi ≥ pi for i = 1, 2, . . . , d, (1.6) and (2.11) holds, and

pi
qi

+ 1 ≤ pi, i = 1, 2, . . . , d. (2.12)

Then for every a0 ∈ L
#»p
σ (Rd) there exists T0( #»p , #»q , a0) > 0 sufficiently small such

that there is a unique local time mild solution u ∈ X #»p , #»q ,T0
∩ Y #»p ,T0

to the Navier-
Stokes equation (2.6). Moreover,

‖u‖X #»p , #»q ,T0
≤ N‖a0‖L #»p (Rd)

and

‖u‖Y #»p ,T0
≤ N

[
‖a0‖L #»p (Rd) + ‖a0‖2L #»p (Rd)

]
,

where N = N(d, #»p , #»q ).

Remark 2.9. We would like to point out that [30, Theorem 1.9] is stated under
the restriction that pi ≥ 2 for i = 1, 2, . . . , d. However, by following the proof of [30,
Theorem 1.9], we see that the theorem still holds for pi ∈ (1,∞) with an additional
condition (2.12). Certainly, (2.12) is trivial if pi ≥ 2 for i = 1, 2, . . . , d. A similar
result for dissipative quasi-geostrophic equation can be found in [31, Theorem 1.1].

3. Proof of Theorem 1.4

This section provides the proof of Theorem 1.4. We need to better understand
the mild solutions in mixed-norm space obtained in Theorem 2.8. We begin with
the following lemma which shows that when the initial data a0 ∈ L2(Rd)∩L #»p (Rd),
the solution u obtained in Theorem 2.8 is indeed in L∞((0, T0), L2(Rd)).

Lemma 3.1. Let #»p = (p1, p2, . . . , pd) ∈ [2,∞)d satisfy (1.6) and a0 ∈ L
#»p (Rd) ∩

L2(Rd). Then, for the solution u of (1.1) on Rd× (0, T0) obtained in Theorem 2.8,
we have u ∈ L∞((0, T ), L2(Rd)) for sufficiently small T ∈ (0, T0], and moreover
u : [0, T ]→ L2(Rd) is continuous.

Proof. We follow the standard approach using our mixed-norm estimates in Lemma 2.7.
We provide it here for completeness. Let #»q be as in Theorem 2.8 and let δ be defined
as in (2.11). Recall that u ∈ X #»p , #»q ,T0

∩ Y #»p , #»q ,T0
and satisfies

u = u1 +G(u, u),
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where G and u1 are defined in (2.5) and (2.6). Moreover, by the construction, u is
the limit of the sequence {um}m in X #»p , #»q ,T0 ∩Y #»p , #»q ,T0 , where {um}m is defined by
the Picard’s iteration

um = u1 +G(um−1, um−1), m ≥ 2, and u1 = e−Ata0.

To prove the claim, it is sufficient to show that {um}m is Cauchy in L∞((0, T ), L2(Rd))
with sufficiently small T ∈ (0, T0]. Observe that for all m,n ∈ N

‖um+1 − un+1‖L2(Rd) =‖(u1 +G(um, um))− (u1 +G(un, un))‖L2(Rd)

=‖G(um, um)−G(um, un) +G(um, un)−G(un, un)‖L2(Rd)

≤‖G(um, um − un)‖L2(Rd) + ‖G(um − un, un)‖L2(Rd). (3.1)

Also, by using the assumption that pi ≥ 2, we can use (2.8) in Lemma 2.7 with
αi = 2

pi
≤ 1, βi = γi = 1, and zi = 2 to obtain

‖G(um, um − un)‖L2(Rd)

≤ N
ˆ t

0

(t− s)− 1
2 ‖um‖L2(Rd)‖Dx(um − un)‖L #»p (Rd)ds

≤ N‖um‖L∞((0,T0),L2(Rd))‖um − un‖X #»p , #»q ,T0

ˆ t

0

(t− s)− 1
2 s−

1
2 ds

By a simple calculation, we see thatˆ t

0

(t− s)− 1
2 s−

1
2 ds =

ˆ t/2

0

(t− s)− 1
2 s−

1
2 ds+

ˆ t

t/2

(t− s)− 1
2 s−

1
2 ds

≤ 2 +
√

2, ∀ t > 0,

Then, we have

‖G(um, um − un)‖L2(Rd) ≤ N‖um‖L∞((0,T0),L2(Rd))‖um − un‖X #»p , #»q ,T0
. (3.2)

On the other hand, for every T ∈ (0, T0], by applying Lemma 2.7 on um+1 directly
like what we just did, we have

‖um+1‖L∞((0,T ),L2(Rd)) ≤ ‖u1‖L∞((0,T ),L2(Rd)) + ‖G(um, um)‖L∞((0,T ),L2(Rd))

≤ ‖a0‖L2(Rd) +N‖um‖L∞((0,T ),L2(Rd))‖um‖X #»p , #»q ,T0
.

Then, as ‖um‖Xp,q,T0
→ 0 when T0 → 0+ and {um}m is Cauchy in X #»p , #»q ,T0 , we can

choose T ∈ (0, T0] sufficiently small such that

‖vm+1‖L∞((0,T ),L2(Rd)) ≤ ‖a0‖L2(Rd) +
1

2
‖um‖L∞((0,T ),L2(Rd)), ∀ m ∈ N.

By iterating this estimate, we obtain

‖um‖L∞((0,T ),L2(Rd)) ≤ 2‖a0‖L2(Rd), ∀ m ∈ N. (3.3)

Then, we feed (3.3) into (3.2) to obtain

‖G(um, um − un)‖L2(Rd) ≤ N‖a0‖L2(Rd)‖um − un‖X #»p , #»q ,T0
.

Similarly, we also have

‖G(um − un, un)‖L2(Rd) ≤ N‖a0‖L2(Rd)‖um − un‖X #»p , #»q ,T0
.

Now, by combining the last two estimates with (3.1), we conclude that

‖vm+1 − vn+1‖L∞((0,T ),L2(Rd)) ≤ N‖a0‖L2(Rd)‖um − un‖X #»p , #»q ,T0
.
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As {um}m is Cauchy in X #»p , #»q ,T , we see from this last estimate that {um}m is
also Cauchy in L∞((0, T ), L2(Rd)). Therefore, u ∈ L∞((0, T ), L2(Rd)). Finally, we
note that the continuity of u : [0, T ] → L2(Rd) follows from the continuity of the
semi-group eAt. The proof of the lemma is completed. �

Next, we also need the following result about the time smoothing estimates of
the solution u obtained in Theorem 2.8.

Lemma 3.2. Let #»p = (p1, p2, . . . , pd) ∈ [2,∞)d satisfy (1.6) and #»q = (q1, q2, . . . , qd) ∈
(1,∞)d such that qk ≥ pk for all k = 1, 2, . . . , d− 1, qd > pd, and

1− 2

pd
< δ :=

d∑
k=1

1

qk
.

For each a0 ∈ L
#»p (Rd), let u be the solution of (1.1) obtained in Theorem 2.8. We

have u ∈ Ll((0, T ), L
#»q (Rd)) for sufficiently small ∈ (0, T0] and l ∈ (2,∞) such that

2

l
+ δ = 1.

Proof. Note that as qd > pd, we have δ ∈ (0, 1). Let {um}m be defined as in
the proof of Lemma 3.1. As in the proof of Lemma 3.1, it is sufficient to prove
that {um}m is a Cauchy sequence in Ll((0, T0), L

#»q (Rd)). Note that it follows from
Lemma 2.5 that

‖u1‖Ll((0,∞),L
#»q (Rd)) ≤ N‖a0‖L #»p (Rd).

Then, by following the proof of Lemma 3.1, it is sufficient to prove that the bilinear
form G is bounded in Ll((0, T0), L

#»q
σ (Rd)). For every u, v ∈ Ll((0, T0), L

#»q
σ (Rd)), we

apply (2.10) in Lemma 2.7 with zk = qk, γk = βk = αk = 1 to see that

‖G(u, v)(t)‖L #»q (Rd) ≤ N
ˆ t

0

(t− s)−
1+δ

2 ‖u(·, s)‖L #»q (Rd)‖v(·, s)‖L #»q (Rd)ds

= N

ˆ t

0

‖u(·, s)‖L #»q (Rd)‖v(·, s)‖L #»q (Rd)

(t− s)1− 1−δ
2

ds

Then, as

1

l
=

1

l/2
− 1− δ

2

it follows from the Hardy-Littlewood inequality and Hölder inequality that

‖G(u, v)‖Ll((0,T0),L
#»q (Rd))N‖‖u(·, s)‖L #»q (Rd)‖v(·, s)‖L #»q (Rd)‖L l

2 (0,T0)

≤ N‖u‖Ll((0,T0),L
#»q (Rd))‖u‖Ll((0,T0),L

#»q (Rd))

and this completes the proof of the lemma. �

Our next lemma is similar to Lemma 3.1 and Lemma 3.2 but for the gradient of
the solution u.

Lemma 3.3. Let #»p = (p1, p2, . . . , pd) ∈ [2,∞)d satisfy (1.6) and a0 ∈ L
#»p (Rd) ∩

L2(Rd). Then, for the solution u of (1.1) on Rd× (0, T0) obtained in Theorem 2.8,
we have ∇u ∈ L2((0, T ), L2(Rd)) for sufficiently small T ∈ (0, T0].
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Proof. Let {um}m be the sequence defined as in Lemma 3.1. We prove that
{∇um}m is Cauchy in L2(Rd × (0, T )) with sufficiently small T ∈ (0, T0]. The
approach is the same as that of the proof of Lemma 3.1. Therefore, we just outline
some important steps. Note that we have

‖∇u1‖L2(Rd×(0,∞)) ≤ N(d)‖a0‖L2(Rd).

Now, let #»q be as in Lemma 3.2. By using (2.9) in Lemma 2.7, we have

‖∇G(um, um − un)‖L2(Rd) ≤ N
ˆ t

0

(t− s)− 1
2−

δ
2 ‖um − un‖L #»q (Rd)‖∇um‖L2(Rd)ds,

for all m,n ∈ N and for δ ∈ (0, 1) defined in (2.11). Now, let l ∈ (2,∞) and
l0 ∈ (1, 2) as

l =
2

1− δ
∈ (2,∞),

1

l0
=

1

l
+

1

2
= 1− δ

2
.

We then apply the Hardy-Littlewood inequality to get

‖∇G(um, um − un)‖L2(Rd×(0,T )) ≤ N‖‖um − un‖L #»q (Rd)‖∇um‖L2(Rd)‖Ll0 (0,T )

≤ N‖um − un‖Ll((0,T ),L
#»q (Rd))‖∇um‖L2(Rd×(0,T )),

for every T ∈ (0, T0]. We use (2.9) in Lemma 2.7 again but directly to um+1 to see
that

‖∇um+1‖L2(Rd×(0,T )) ≤‖∇u1‖L2(Rd×(0,T )) + ‖∇G(um, um)‖L2(Rd)

≤‖a0‖L2(Rd) +N‖∇um‖L2(Rd)×(0,T ))‖um‖Ll((0,T ),L
#»q (Rd)).

Recall that it follows from the proof of Lemma 3.2 that the sequence {um}m is
bounded in Ll((0, T ), L

#»q (Rd)), and ‖um‖Ll((0,T ),Lq(Rd)) is sufficiently small when
T is sufficiently small. Therefore, with the choice of T sufficiently small, we obtain

‖∇um+1‖L2(Rd×(0,T )) ≤ ‖a0‖L2(Rd) +
1

2
‖∇um‖L∞((0,T ),L2(Rd)).

Then, by iterating this estimate, we obtain

‖∇vm+1‖L2(Rd×(0,T )) ≤ 2‖∇u1‖L2(Rd×(0,T )) ≤ 2‖a0‖L2(Rd)

showing the uniform bound of ‖∇vm+1‖L2(Rd×(0,T )) as needed. The proof of the
lemma is now completed. �

Now, we are ready to prove that the solution u obtained in Theorem 2.8 is a
Leray-Hopf weak solution as long as the initial data a0 ∈ L2(Rd) ∩ L #»p (Rd). The
result is stated in the following proposition.

Proposition 3.4. Let #»p = (p1, p2, . . . , pd) ∈ [2,∞)d satisfy (1.6) and pd 6= 2. Let
a0 ∈ L

#»p (Rd) ∩ L2(Rd), and u be the solution of (1.1) on Rd × (0, T0) obtained by
Theorem 2.8. Then, u is a Leray − Hopf weak solution of (1.1) on Rd × (0, T )
for sufficiently small T ∈ (0, T0). Moreover, u : [0, T ] → L2(Rd) ∩ L #»p (Rd) is
continuous.

Proof. By Lemma 3.1, Lemma 3.2 and Lemma 3.3, it remains to prove that u
satisfies the energy inequality. We adapt the standard approach to our mixed-norm
case. The procedure is standard, but careful analysis is needed in the mixed-norm
space and we provide the proof here for completeness. Let #»q = (q1, q2, . . . , qd) be
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as in Lemma 3.2. In particular, qk ≥ pk for all k = 1, 2, qd > pd, and δ ∈ (1− 2
pd
, 1),

where δ is defined in (2.11). By Lemma 3.1, Lemma 3.2 and Lemma 3.3, we have

u ∈ L∞((0, T ), L2(Rd)) ∩ Ll((0, T ), L
#»q (Rd)) and ∇u ∈ L2(Rd × (0, T )) (3.4)

with sufficiently small T ∈ (0, T0]. Our goal is to use u as a test function for the
Navier-Stokes equation (1.1) on Rd× (0, T ). To proceed, we need to use an approx-
imation. We split our proof into several steps.

Step 1. In this step, we smooth out the time variable for function u. Let
φ ∈ C∞0 ((−1, 1)) to be even, non-negative cut-off function and satisfyˆ 1

−1

φ(t)dt = 1.

For a fixed small τ ∈ (0, T ) and for sufficiently small h let

uh(x, t) =

ˆ τ

0

u(x, t′)φh(t− t′)dt′, t ∈ (0, τ), (3.5)

where φh(t) = 1
hφ( th ) for t ∈ R. We claim that

lim
h→0+

‖uh − u‖Ll((0,τ),L
#»q (Rd)) = 0,

lim
h→0+

‖uh − u‖L2(Rd×(0,τ)) = 0, and

lim
h→0+

‖∇uh −∇u‖L2(Rd×(0,τ)) = 0.

(3.6)

We only provide the proof of the first assertion in (3.6) as the proof of the others
are similar. First of all, we note that

‖uh − u‖Ll((0,h),L
#»q (Rd)) ≤ ‖uh‖Ll((0,h),L

#»q (Rd)) + ‖u‖Ll((0,h),L
#»q (Rd))

≤ 2‖u‖Ll((0,h),L
#»q (Rd)) → 0 as h→ 0+.

Similarly, we also have

‖uh − u‖Ll((τ−h,τ),L
#»q (Rd)) → 0 as h→ 0+.

Therefore, it suffices to prove that

‖uh − u‖Ll(I,L #»q (Rd)) → 0 as h→ 0+, where I = Ih = (h, τ − h).

Note that for t ∈ I, as
´ τ

0
φh(t− t′)dt′ = 1, we find that

‖uh(·, t)− u(·, t)‖L #»p (Rd) =

∥∥∥∥ˆ τ

0

[u(·, t′)− u(·, t)]φh(t− t′)dt′
∥∥∥∥
L

#»p (Rd)

≤
ˆ (τ−t)/h

−t/h
‖u(·, t+ hs)− u(·, t)‖L #»p (Rd)φ(s)ds

=

ˆ 1

−1

‖u(·, t+ hs)− u(·, t)‖L #»p (Rd)φ(τ)ds.

Then, we have

‖uh − u‖Ll(I,L #»p (Rd)) ≤
ˆ 1

−1

‖u(·, ·+ hs)− u(·, ·)‖Ll(I,L #»p (Rd))φ(τ)ds.

Now, observe that by the triangle inequality, we have

‖u(·, ·+ hs)− u(·, ·)‖Ll(I,L #»p (Rd)) ≤ 2‖u‖Ll((0,T ),L
#»p (Rd)).
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Moreover, ‖u(·, ·+hs)−u(·, ·)‖Ll(I,L #»p (Rd)) → 0 as h→ 0+ by the continuity of the
Lebesgue norm. Therefore, it follows from the Lebesgue dominated convergence
theorem that

lim
h→0+

‖uh − u‖Ll(I,L #»p (Rd)) = 0

which proves the claim.

Step 2. Note that the function uh + uh(·,0)−uh(·,τ)
τ t − uh(·, 0) is zero at t = 0, τ .

Hence, it can be represented as the limit of a sequence of functions {uhk}k in
C∞0,σ(Rd × [0, τ ]). Then, by testing the equation (1.1) with {uhk}k and taking the
limit as k →∞, we obtain

ˆ τ

0

ˆ
Rd

[
− u · ∂tuh +∇u : ∇ud + (u · ∇)u · uh

]
dxdt

= (u(0, ·), uh(·, 0))L2(Rd) − (u(·, τ), uh(·, τ))L2(Rd).

(3.7)

Step 3. In this step, we will pass through the limit as h → 0+ and obtain the
energy inequality from (3.7). We will evaluate each of the three integrals on the
left hand side of (3.7) separately. Observe that

∂tuh(x, t) =

ˆ τ

0

u(x, t′)∂tφh(t− t′)dt′.

Therefore,

ˆ τ

0

u · ∂tuhdxdt =

ˆ τ

0

ˆ
Rd

ˆ τ

0

u(x, t) · u(x, t′)∂tφh(t− t′)dt′dxdt

=

ˆ τ

0

ˆ τ

0

(u(·, t), u(·, t′))L2(Rd)∂tφh(t− t′)dt′dt

=0,

for small h, as ∂tφh is odd and the map (t, t′) 7→ (u(·, t), u(·, t′))L2(Rd) is symmetric.
Next, we show that the second term on the left hand side of (3.7) converges to´ τ

0

´
Rd |∇u|

2dxdt as h→ 0+. In fact, we have∣∣∣∣ˆ τ

0

ˆ
Rd

(
∇uh · ∇u−∇u · ∇u

)
dxdt

∣∣∣∣
=

ˆ τ

0

ˆ
Rd
|∇(uh − u) · ∇u|dxdt

≤ ‖∇uh −∇u‖L2(Rd×(0,τ))‖∇u‖L2(Rd×(0,τ)) → 0 as h→ 0+

where we used (3.6) in our last step.
We now consider the third term on the left hand side of (3.7). By the integration

by parts, we find that
ˆ τ

0

ˆ
Rd

(u · ∇)uh · uhdxdt.
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Then, we writeˆ τ

0

ˆ
Rd

(u · ∇)uh · udxdt

=

ˆ τ

0

ˆ
Rd

(u · ∇)uh · uhdxdt+

ˆ τ

0

ˆ
Rd

(u · ∇)uh · (u− uh)dxdt

=

ˆ τ

0

ˆ
Rd

(u · ∇)uh · (u− uh)dxdt.

Let #»α = (α1, α2, . . . , αd) ∈ (2,∞]d such that

1

αk
+

1

pk
=

1

2
, k = 1, 2, . . . , d.

Then, we have∣∣∣∣ˆ τ

0

ˆ
Rd

(u · ∇)uh · (u− uh)dxdt

∣∣∣∣
≤ ‖∇uh‖L2(Rd×(0,τ))

(ˆ τ

0

ˆ
Rd
|u− uh|2|u|2dxdt

) 1
2

≤ N‖∇u‖L2(Rd×(0,τ))

(ˆ τ

0

‖u− uh‖2L #»α (Rd)‖u‖
2
L

#»p (Rd)dt

) 1
2

≤ N‖∇u‖L2(Rd×(0,τ))‖u‖L∞((0,τ),L
#»p (Rd))‖‖u− uh‖L2((0,τ),L

#»α (Rd)),

where we have used the Hölder inequality in the last estimate. Now, observe that
we have

d∑
k=1

1

αk
=
d

2
− 1 and αd ∈ (2,∞).

Therefore, we can apply Theorem 2.1 about the mixed-norm Sobelev embedding
and (3.6) to see that

‖u− uh‖L2((0,τ),L
#»α (Rd)) ≤ N

[
‖u− uh‖L2(Rd×(0,τ)) + ‖∇u−∇uh‖L2(Rd×(0,τ))

]
→ 0, as h→ 0+.

Hence,

lim
h→0+

ˆ τ

0

ˆ
Rd

(u · ∇)uh · udxdt = 0.

It remains to find the limits of terms in the the right hand side of (3.7). As´ h
0
φh(s)ds = 1

2 , it follows that when h is sufficiently small,

1

2
‖u(·, τ)‖2L2(Rd) =

ˆ τ

0

‖u(·, τ)‖22φh(s)ds =

ˆ τ

0

‖u(·, τ)‖22φh(τ − t′)dt′.

Therefore, ∣∣(u(·, τ), uh(·, τ))L2(Rd) −
1

2
‖u(·, τ)‖22

∣∣
≤
ˆ τ

0

‖u(·, τ)‖L2(Rd)‖u(·, t′)− u(·, τ)‖L2(Rd)φh(τ − t′)dt′

≤ ‖u‖L∞((0,τ),L2(Rd))

ˆ 1

−1

‖u(·, τ + hs)− u(·, τ)‖L2(Rd)φ(s)ds.

(3.8)
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By the strong continuity of u in L2(Rd) on [0, T ], we see that

‖u(·, τ + hs)− u(·, τ)‖L2(Rd) → 0 as h→ 0+.

Moreover, we also have

‖u(·, τ + hs)− u(·, τ)‖L2(Rd) ≤ 2‖u‖L∞((0,τ),L2(Rd)).

Then, by the Lebesgue dominated convergence theorem, we obtain from (3.8) that

lim
h→0+

(u(·, τ), uh(·, τ))L2(Rd) =
1

2
‖u(·, τ)‖2L2(Rd).

By a similar proof, we also have

lim
h→0+

(u(·, 0), uh(·, 0))L2(Rd) =
1

2
‖u(·, 0)‖2L2(Rd).

In conclusion, when passing the limit as h → 0+, we obtain from (3.7) the energy
equality

1

2
‖u(·, τ)‖22 +

ˆ τ

0

ˆ
Rd
|∇u|2dxdt =

1

2
‖u(·, 0)‖22

showing that u is a Leray-Hopf weak solution. �

Proposition 3.4 implies the following important result that will be useful in the
proof of Theorem 1.4. In the special case with p1 = p2 = pd = 3, the result is due
to H. Kozono and H. Sohr in [17].

Corollary 3.5. Let #»p ∈ [2,∞)d and a0 be as in Proposition 3.4. If u is a Leray-
Hopf weak solution of (1.1) in Rd × [0, T ) and u ∈ L∞loc((0, T ), L

#»p (Rd)), then
u : [0, T )→ L

#»p (Rd) is weakly continuous, and strongly continuous from the right.

Proof. We adapt the idea in [17] to our mixed-norm setting. Let t0 ∈ [0, T ) and
tk → t+0 . As u ∈ L∞loc((0, T ), L

#»p (Rd)), we may assume that

‖u(·, tk)‖L #»p (Rd) ≤M, ∀ k = 1, 2, . . . .

As in [3], we know that L
#»p (Rd) is reflexive. Then, it follows from the Banach-

Alaoglu theorem that there is a subsequence of {u(·, tk)}k converging weakly in
L

#»p (Rd) to some ũ ∈ L
#»p (Rd). On the other hand, by the assumption that u is

a Leray-Hopf weak solution, and so {u(·, tk)}k also converges weakly in L2(Rd)
to u(·, t0). Then, it is not too hard to verify that ũ(·) = u(·, t0) and therefore
u(·, t0) ∈ L2(Rd) ∩ L #»p (Rd) and

‖u(·, t0)‖L #»p (Rd) ≤M.

Now, we claim that u(·, t) converges weakly in L
#»p (Rd) to u(·, t0) as t→ t0. Indeed,

let #»p ′ = (p′1, p
′
2, . . . , p

′
d) be the conjugate of #»p , i.e.

1

pk
+

1

p′k
= 1, ∀ k = 1, 2, . . . , d.

Also, let φ ∈ L #»p ′(Rd), we need to check thatˆ
Rd
u(x, t)φ(x)dx→

ˆ
Rd
u(x, t0)φ(x)dx, as t→ t0. (3.9)
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To see this, fix ε > 0 and let φ ∈ L
#»p ′(Rd). By the density of C∞c (Rd), we may

choose ψ ∈ L2(Rd) ∩ L #»p ′(Rd) such that

‖φ− ψ‖L #»p ′ (Rd) ≤
ε

4‖u‖L∞loc((0,T ),L
#»p (Rd))

.

Then, it follows that∣∣∣∣ˆ
Rd

(u(x, t)− u(x, t0))φ(x)dx

∣∣∣∣
≤
∣∣∣∣ˆ

Rd
(u(x, t)− u(x, t0))ψ(x)dx

∣∣∣∣+

∣∣∣∣ˆ
Rd

(u(x, t)− u(x, t0))(φ− ψ)dx

∣∣∣∣
≤
∣∣∣∣ˆ

Rd
(u(x, t)− u(x, t0))ψ(x)dx

∣∣∣∣+ 2‖u‖L∞loc(0,T ),L
#»p (Rd)‖φ− ψ‖L #»p ′ (Rd)

≤
∣∣∣∣ˆ

Rd
(u(x, t)− u(x, t0))ψ(x)dx

∣∣∣∣+
ε

2
.

Because ψ ∈ L2(Rd) and u is weakly continuous in L2(Rd), we see that∣∣∣∣ˆ
Rd

(u(x, t)− u(x, t0))ψ(x)dx

∣∣∣∣→ 0 as t→ t0.

From this, and as ε is arbitrary, it follows thatˆ
Rd
u(x, t)φ(x)dx→

ˆ
Rd
u(x, t0)φ(x)dx, as t→ t0

and this proves the desired claim.
Finally, observe that we have shown that u(·, t0) ∈ L2(Rd) ∩ L #»p (Rd). By The-

orem 2.8 and Proposition 3.4 there exists a continuous Leray-Hopf weak solution
ũ of the Navier-Stokes equation in Rd × [t0, t0 + T0) for some T0 > 0 sufficiently
small. By the uniqueness of the solution as in Theorem 2.8, we have ũ = u on
Rd× [t0, t0 +T0). As ũ is continuous on L

#»p (Rd), we also obtain the right continuity
of u on [t0, t0 + T0). �

We now are ready to provide the proof of Theorem 1.4.

Proof of Theorem 1.4. We adapt the approach introduced in [28] to our mixed-
norm case. We split the proof into two steps.

Step 1. Let w = u− v and t0 ∈ [0, T ) such that

w ≡ 0 on Rd × [0, t0].

We claim that there exists a sufficiently small number ν > 0 such that w ≡ 0
on Rd × [0, t0 + ν]. Without loss of generality, we prove the claim with t0 = 0.
By writing the equation for w and following the standard procedure for energy
estimates, we have

ˆ
Rd
|w(t, x)|2dx+ 2

ˆ t

0

ˆ
Rd
|∇w|2dxdt

≤ I(t) := −2

ˆ t

0

ˆ
Rd
u · (w · ∇)wdxdt.

(3.10)
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We claim that it suffices to show that there is some small positive ν such that

|I(t)| ≤
ˆ t

0

ˆ
Rd
|∇w|2dxdt+N

ˆ t

0

ˆ
Rd
|w|2dxdt (3.11)

for all t ∈ [0, ν] and for some constant N = N(u) > 0 . Indeed, if (3.11) holds, it
follows from (3.10) that

ˆ
Rd
|w(t)|2dx+ 2

ˆ t

0

ˆ
Rd
|∇w|2dxdt ≤ 2

ˆ t

0

ˆ
Rd
|∇w|2dxdt+N

ˆ t

0

ˆ
Rd
|w|2dxdt,

which yields

ˆ
Rd
|w(t)|2dx ≤ N

ˆ t

0

ˆ
Rd
|w|2dxdt. (3.12)

From this and by Gronwall’s inequality, it follows that w ≡ 0 in Rd × [0, ν].
It remains to prove (3.11). We follow the decomposition strategy introduced by

K. Masuda in [28]. Choose f ∈ C1([0,∞)) such that f ≥ 0, f(s) = 1 if s < 1
2

and f(s) = 0 when s > 1. Let us define fλ(s) = f( sλ ) for λ > 0. Then, we write
u = u1 + u2, where

u1 = fλ(|u|)u u2 = (1− fλ(|u|))u.

Note that

‖u2(·, 0)‖L #»p (Rd) ≤ ‖1− fλ(|u(·, 0)|)‖L∞(Rd)‖u(·, 0)‖L #»p (Rd).

Consequently, for each ε ∈ (0, 1), there exists λ = λ(u(·, 0), ε) sufficiently large such
that

‖u2(·, 0)‖L #»p (Rd) ≤ ε and ‖u1‖L∞(Rd×(0,T )) ≤ λ.

Now, as u : [0, T )→ L
#»p (Rd) is right continuous at t0 = 0, there exists ν > 0 small

such that

‖u(·, t)− u(·, 0)‖L #»p (Rd) ≤ ε, ∀ t ∈ (0, ν).

From this, and Lemma 2.3, it follows that

‖u2(·, t)− u2(·, 0)‖L #»p (Rd) ≤ C‖u(·, t)− u(·, 0)‖L #»p (Rd) ≤ ε.

As a result, we have the estimate

‖u2(·, t)‖L #»p (Rd) ≤ ‖u2(·, t)− u2(·, 0)‖L #»p (Rd) + ‖u2(·, 0)‖L #»p (Rd) ≤ 2ε. (3.13)

Now, let #»α = (α2, α2, . . . , αd) ∈ [2,∞]d satisfy

1

αk
+

1

pk
=

1

2
, ∀ k = 1, 2, . . . , d.
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Then, for t1 ∈ (0, ν], we have

|I(t)| =2
∣∣∣ ˆ t1

0

ˆ
Rd
u1 · (w · ∇)wdxdt+

ˆ t1

0

ˆ
Rd
u2 · (w · ∇)wdxdt

∣∣∣
≤2

[
‖u1‖L∞(Rd×(0,T ))

ˆ t1

0

ˆ
Rd
|w · ∇w|dxdt+

ˆ t1

0

ˆ
Rd
|u2 · (w · ∇)w|dxdt

]
≤2‖u1‖L∞(Rd×(0,T ))

(ˆ t1

0

ˆ
Rd
|w|2dxdt

) 1
2
(ˆ t1

0

ˆ
Rd
|∇w|2dxdt

) 1
2

+ 2

ˆ t1

0

(ˆ
Rd
|u2 · w|2dx

) 1
2
(ˆ

Rd
|∇w|2dx

) 1
2

dt

≤2q‖w‖L2(Rd×(0,t1))‖∇w‖L2(Rd×(0,t1))

+ 2‖∇w‖L2(Rd×(0,t1))‖u2‖L∞((0,t1),L
#»p (Rd))‖w‖L2((0,t1),L

#»α (Rd)).

Next, we note that

1

α1
+

1

α2
+ · · ·+ 1

αd
=
d

2
− 1, and αd ∈ (2,∞).

Then, we apply the Sobolev embedding in mixed-norm, Theorem 2.1, to find that

‖w‖L2((0,t1),L
#»α (Rd)) ≤ N‖w‖L2((0,t1),W 1,2(Rd)).

Using this, (3.13) and as λ is sufficiently large, we obtain

|I(t)| ≤ 2λ‖w‖L2(Rd×(0,t1))‖∇w‖L2(Rd×(0,t1))

+N‖∇w‖2L2(Rd×(0,t1))‖u2‖L∞((0,t1),L
#»p (Rd))

+N‖∇w‖L2(Rd×(0,t1))‖w‖L2(Rd×(0,t1))‖u2‖L∞((0,t1),L
#»p (Rd))

≤ N1‖w‖2L2(Rd×(0,t1)) +
1

2
‖∇w‖2L2(Rd×(0,t1))

+N‖∇w‖2L2(Rd×(0,t1))‖u2‖L∞((0,t1),L
#»p (Rd))

≤ N1‖w‖2L2(Rd×(0,t1)) + (
1

2
+ εN)‖∇w‖2L2(Rd×(0,t1)),

where N1 = N1(λ, #»p ) > 0 and N = N(d, #»p ) > 0. From this, and by choosing
sufficiently small ε, we obtain (3.11).

Step 2. We prove that w := u− v ≡ 0 on Rd × [0, T ). Let us denote

U =
{
τ ∈ (0, T ) : w ≡ 0 on Rd × [0, τ ]

}
and T = supU .

By Step 1 and as w(·, 0) = 0, we see that T > 0. If T = T , we are done. Then, it
remains to consider the case that T̄ < T . Let {tk}k be an increasing sequence in U
such that tk → T̄ as k →∞. As u, v are both Leray-Hopf weak solutions of (1.1), we
can assume that {u(·, tk)}, {v(·, tk)} are in L2(Rd) and they both converge weakly
in L2(Rd) to u(·, T̄ ) and v(·, T̄ ), respectively. Consequently, {w(·, tk)} converges
weakly in L2(Rd) to w(·, T̄ ). However, from the definition of U , we see that

w(·, tk) = u(·, tk)− v(·, tk) ≡ 0, for all k ∈ N.

Therefore, w(·, T̄ ) ≡ 0. Then, by Step 1, we have ν > 0 and sufficiently small such
that w ≡ 0 on Rd × [0, T̄ + ν], which contradicts the definition of T̄ . The proof is
then complete. �
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