
$\sum_{\square=\Omega} \int_{\Omega} u(x) d x=m$

$$
\begin{array}{ll}
u \in L^{2}(\Omega), & \nabla u \in L^{2}\left(\Omega ; \mathbb{R}^{N}\right), \\
\int_{\Omega}|u(x)|^{2} d x c+\infty & \left.\int_{\Omega}|\operatorname{lu}(x)|^{2} d x+\infty\right)
\end{array}
$$

$m \in(0,1)$

$\Omega \subset \mathbb{R}^{N}$ open, bounded domain, $\{w=0\}=\{0,1\}$

Fix e>0: Rore exinturce of rerivimeizen of $I_{\varepsilon}, u_{\varepsilon}$
Use Direct Metlend of the Celuclus of Vaciations:
Stop Gousides infiniziy sequence $\left\{u_{\varepsilon}^{n}\right\}_{\mu \in \mathbb{X}}$, ie,

$$
\lim _{u \rightarrow+\infty} \quad I_{\varepsilon}\left(y_{n}^{\varepsilon}\right)=\inf \left\{I_{\varepsilon}(v): v \in W^{\mid 2}(\Omega), f_{\Omega} v=m\right\}
$$

$\frac{\text { Step } 2}{4}$ [Comprectress] $\}^{n}\left\{u^{n_{k}}\right\}_{k \in \mathbb{N}} \subset\left\{u_{\varepsilon}^{n}\right\}_{n \in \mathbb{N}}$
f $u_{\varepsilon} \in W^{l^{2}}(\Omega), f_{\Omega} u_{\varepsilon}=m$,
$u_{\varepsilon}^{n_{u}} \rightarrow u_{\varepsilon}$ weakle in W^{12}, i.e.

- $\int_{\Omega}\left|u_{\varepsilon}^{n_{k}}-u_{\varepsilon}\right|^{2} d x \rightarrow 0 \quad\left(u_{\varepsilon}^{n_{k}} \rightarrow u_{\varepsilon}\right.$ in L^{2} strouy)
- $\nabla u_{\varepsilon}^{n_{k}} \rightarrow \nabla u_{\varepsilon}$ weakly in L^{2}, i.e.,
$\forall \varphi \in L^{2}\left(\Omega ; \mathbb{R}^{N}\right)$

$$
\int_{\Omega} \nabla u_{\varepsilon}^{n_{k}} \cdot \varphi d x \rightarrow \int_{\Omega} \nabla u_{\varepsilon} \cdot \varphi d x
$$

TODAY: stat with STEP3, i.e.,
I_{ε} is sepuentialy weakly $\left(W^{\prime \prime 2}\right)$ lower semicontivuoss, ie,

$$
v_{n} \longrightarrow \sigma w^{112} \Rightarrow I_{\varepsilon}(v) \leqq \lim _{n \rightarrow+\infty} I_{\varepsilon}\left(v_{n}\right)
$$

If so, than $T_{\varepsilon}\left(u_{\varepsilon}\right)=\min \left\{I_{\varepsilon}(v): v_{\varepsilon} W^{12}(\Omega), f_{\Omega} v=m\right\}$ DDNE!
Why: $\quad v_{n} \nu v w^{\prime 2}$

$$
\text { \|. } \begin{cases}v_{m} \rightarrow v & \text { strougly in } L^{2} \\ \nabla v_{m} \rightarrow \nabla v & \text { wealey in } L^{2}\end{cases}
$$

Fact: $\quad f: \mathbb{R}^{N} \rightarrow(0,+\infty)$ courex $\quad \Rightarrow$ (iff)
$\Sigma_{n} \rightarrow \xi$ in $L^{2}\left(\mathbb{R}^{N}\right)$-weak

$$
\int_{\Omega} f(\xi(x)) d x \leqq \lim \int_{\Omega} f\left(\xi_{n}(x)\right) d x
$$

$f=1.1^{2}$ courex
Hence $\quad \int_{\Omega}|\nabla v(x)|^{2} d x \leqq \lim \int_{\Omega}\left|\nabla v_{M}(x)\right|^{2} d x$
$\delta_{n} \rightarrow 5$ in L^{2} strong (up to a suhtervence)

$$
\Rightarrow \quad v_{n}(x) \rightarrow v_{x}(x) \quad \mathcal{L e}^{N} \text { a.e. } x \in \Omega
$$

W continuas, use Falor's lamena $(W \equiv 0)$:

$$
\begin{align*}
\int_{\Omega} W(v(x)) d x & =\int_{\Omega} \lim _{n \rightarrow+\infty} W\left(v_{m}(x)\right) d x \\
& =\int_{\Omega} \frac{\lim _{n \rightarrow+\infty} w\left(v_{n}(x)\right) d x}{} \\
& \equiv \frac{\lim _{n \rightarrow+\infty}}{} \int_{\Omega} W\left(v_{n}(x)\right) d x \tag{2}
\end{align*}
$$

Therefore.

$$
\begin{aligned}
& \lim _{n \rightarrow \text { tar }^{2}} I_{\varepsilon}\left(v_{n}\right)=\lim _{n \rightarrow+s} \int\left[\frac{1}{\varepsilon} w\left(\sigma_{n}(x)\right) d x+\varepsilon\left|\nabla t_{n}(x)\right| T d x\right. \\
& =\lim _{n \rightarrow+\infty}\left\{\frac{1}{\varepsilon} \int_{\Omega} W\left(v_{\mu}(x)\right) d x+\varepsilon \int_{\Omega}\left|\nabla_{\mu}(x)\right|^{2} d x\right\} \\
& \geqq \frac{1}{\varepsilon} \lim _{n \rightarrow+\infty} \int_{\Omega} W\left(v_{n}(x)\right) d x+\varepsilon \lim \int_{\Omega}\left|\nabla v_{n}(x)\right|^{2} d x \\
& \left.\geqq(\text { by }(1)+(2)) \frac{1}{\varepsilon} \int_{\Omega} W(\operatorname{rax}) d x+2 \int_{\Omega}(\nabla \operatorname{sic})\right)^{2} d x \\
& =I_{\varepsilon}(\theta) .
\end{aligned}
$$

Leture \#2 … road nap
(2) daice Up to a suchsquance (not rebbeled)
recall the proed that
(if) $\left.\sup _{\varepsilon} I_{\varepsilon} w_{\varepsilon}\right)=: H<+\infty$
$\left\{\right.$ (if) $u_{\varepsilon}(a) \rightarrow u(x)$ pointuise a.e.
(ored pototyce $\left.W(t):=t^{2}(1-t)^{2}\right)$
then by Fatoris lewura $\Rightarrow \mu(x)$ 20,13 a.e.
Recall also that we shovek that (if) u_{ε} minimizes $\frac{f}{2}$ then indeed $\sup _{\varepsilon} I_{\varepsilon}\left(v_{\varepsilon}\right)<+\infty$

To D_{0} : Our sequence of minimizes $\left\{u_{\varepsilon}\right\}$ converes (t in paticulas,
to some $u \in \operatorname{BV}(\Omega ;\{0.14)$

Define $\phi(t):=\int_{0}^{t} \sqrt{w(s)} d s$

$$
\int \begin{align*}
& v_{\varepsilon}:=\phi\left(u_{\varepsilon}\right) \tag{3}\\
& \nabla v_{\varepsilon}=\phi^{\prime}\left(u_{\varepsilon}\right) \nabla u_{\varepsilon}=\sqrt{w\left(u_{\varepsilon}\right)} \nabla u_{\varepsilon}
\end{align*}
$$

$W L O G$ [False!.] $0 \leqq u_{\varepsilon} \leqq 1$
(truncation)

$$
\begin{aligned}
& I_{\varepsilon}\left|\bar{u}_{\varepsilon}\right\rangle=\int_{\left\{u_{\varepsilon} \leqq 0\right\}} \frac{1}{\varepsilon} W(0)+\int_{\left\{0<u_{\varepsilon}<1\right\}} \frac{1}{\varepsilon} W\left(u_{\varepsilon}\right)+\int_{\left\{u_{\varepsilon} \geqq 1\right\}} \frac{1}{\varepsilon} W(0) \\
& +\int_{\left\{u_{\varepsilon} \leqq 0\right\}} \frac{1}{\varepsilon}\left|\nabla_{0}\right|^{2}+\int_{\left\{0<u_{\varepsilon}<1\right\}} \frac{1}{\varepsilon}\left|\nabla \mu_{\varepsilon}\right|^{2}+\int_{\left\{u_{\varepsilon} \equiv 1\right\}} \frac{1}{\varepsilon}|\nabla 1|^{2} \\
& \text { 差 } \frac{T}{\varepsilon}\left(u_{\varepsilon}\right) \cdots \quad u_{\varepsilon} \text { minimizas } \hat{X}^{\prime}
\end{aligned}
$$

Caveful! $\quad \int_{\Omega} \bar{u}_{\varepsilon}(x) d x \neq m$

$$
\begin{aligned}
& a^{2}+b^{2} \geqslant 2 a b
\end{aligned}
$$

[Mo dila-Mortola "hrick] $\geqq 2 \int_{\Omega}^{a^{2}} \sqrt{w\left(u_{\varepsilon}\right)}\left|\nabla u_{\varepsilon}\right| d x$

$$
\begin{equation*}
=2 \int_{\Omega}\left|\nabla v_{\varepsilon}\right| d x \tag{4}
\end{equation*}
$$

$\left.0 \leq u_{2} \leq 1 \quad \Rightarrow \quad 2 V_{\varepsilon}\right\}$ bourded in $L^{0} \Rightarrow\left\{v_{\varepsilon}\right\}$ bounded in $L^{1}(\Omega)$
(4) $\Rightarrow\{\nabla \sqrt{\varepsilon}\} \quad B$ bounded in $L^{\prime}\left(\Omega ; \mathbb{R}^{U}\right)$
i.e., $\left\{v_{\varepsilon}\right\}$ bounded in $W^{\prime \prime 1}(\Omega) \quad \int_{\Omega}\left|\nabla_{\varepsilon}\right| \leqq \frac{M}{2}$

7 suhseruence (not rebebelled) $\sqrt{\varepsilon} \rightarrow v$ in BV meak

- $v \in B V$ (Boueded Variation) $v \in L^{\perp}(\Omega)$

Drs (distributional derivelito)
i.e, $\forall i \in\left\{I_{1 . \ldots, N\}} \forall \varphi \in C_{c}^{\infty}(\Omega)\right.$ is a iadon meabue

$$
\begin{aligned}
& \int_{\Omega} v \cdot \frac{\partial \varphi}{\partial x_{i}} d x \quad\left(=-\int_{\Omega} \frac{\partial v}{\partial x_{i}} \varphi \text { (if) } r \text { suooth }\right) \\
& =-\int \varphi d \mu_{i}, \quad \mu_{i} \text { Radon reasue } \\
& \quad{ }^{"} \frac{\partial v}{\partial y_{i}} \equiv \mu_{i} ", \operatorname{Pr}=\left(\frac{\partial v}{\partial x_{1}}, \cdots, \frac{\partial \sigma}{\partial x_{w}}\right)
\end{aligned}
$$

BV meak conneface • $V_{\varepsilon} \rightarrow \delta$ in L'stroy, wlog,
$v \varepsilon(x) \rightarrow V(x)$ pointwite conrefuce

$$
\mathcal{L}_{0}^{N} \text { a.e. } x \in \Omega_{1}
$$

- $\nabla_{r} f_{0}^{N} L R \xrightarrow{*}$ Do weaken * in the tence of vespuces
Remind que that $d(t):=\int_{0}^{t} \sqrt{w(s)} d s$
$\phi:$ [0w $\rightarrow[0,+\infty)$ strittlen increariing

$$
v_{\varepsilon}:=\phi\left(u_{\varepsilon}\right) \Rightarrow u_{\varepsilon}=\phi^{-1}\left(v_{\varepsilon}\right) \rightarrow \phi^{-1}(v)=: u
$$

pointuise are.

CORRECT PROOF Suppose that $\varepsilon_{n} \rightarrow 0^{+}$

$$
M_{i}=\sup _{n} I_{\varepsilon_{n}}\left(u_{n}\right)<+\infty \text {, }
$$

daicu F subsequence $\left\{u_{n_{k}}\right\}_{k \in \mathbb{N}} \subset\left\{u_{n}\right\}_{n \in \mathbb{N}}$ \& $u_{n_{k}} \xrightarrow{L 1} u_{1}$ some $u \in L^{1}(\Omega)$ (achiatin,

$$
\in B K(\Omega ; 20,14)
$$

Assume $(H) W: \mathbb{R} \rightarrow C_{0,+\infty}$ continuous
(HL) $W(t) \leqq c|t|$ for all $t, H \mid \geqslant L$, some $L>0$ Some cav

Nest time. * finish this proof

$$
\text { * } I_{\varepsilon} \xrightarrow{\Gamma} \quad \Gamma_{-\lim }^{\Gamma-\overline{\lim }}
$$

