A model for two-isometric operator tuples with finite defect.

Stefan Richter
joint work with Carl Sundberg

Department of Mathematics
The University of Tennessee, Knoxville

September, 2011

$$
d \in \mathbb{N}, \mathbb{B}_{d}=\left\{z \in \mathbb{C}^{d}:|z|<1\right\} \quad\left(\text { If } d=1, \text { then } \mathbb{D}=\mathbb{B}_{1}\right)
$$

$$
\begin{aligned}
& \left.d \in \mathbb{N}, \mathbb{B}_{d}=\left\{z \in \mathbb{C}^{d}:|z|<1\right\} \quad \text { (If } d=1 \text {, then } \mathbb{D}=\mathbb{B}_{1}\right) \\
& T=\left(T_{1}, \ldots, T_{d}\right) \text { always assumed to be commuting } T_{i} \in \mathcal{B}(\mathcal{H})
\end{aligned}
$$

$$
d \in \mathbb{N}, \mathbb{B}_{d}=\left\{z \in \mathbb{C}^{d}:|z|<1\right\} \quad\left(\text { If } d=1, \text { then } \mathbb{D}=\mathbb{B}_{1}\right)
$$

$T=\left(T_{1}, \ldots, T_{d}\right)$ always assumed to be commuting $T_{i} \in \mathcal{B}(\mathcal{H})$
$T=\left(T_{1}, \ldots, T_{d}\right)$ is called a spherical isometry if

$$
\sum_{i=1}^{d}\left\|T_{i} x\right\|^{2}=\|x\|^{2} \text { for all } x \in \mathcal{H}
$$

$d \in \mathbb{N}, \mathbb{B}_{d}=\left\{z \in \mathbb{C}^{d}:|z|<1\right\} \quad\left(\right.$ If $d=1$, then $\left.\mathbb{D}=\mathbb{B}_{1}\right)$
$T=\left(T_{1}, \ldots, T_{d}\right)$ always assumed to be commuting $T_{i} \in \mathcal{B}(\mathcal{H})$
$T=\left(T_{1}, \ldots, T_{d}\right)$ is called a spherical isometry if

$$
\begin{aligned}
& \sum_{i=1}^{d}\left\|T_{i} x\right\|^{2}=\|x\|^{2} \text { for all } x \in \mathcal{H} . \\
& \quad \Leftrightarrow \Delta_{1}=\left(\sum_{i=1}^{d} T_{i}^{*} T_{i}\right)-I=0
\end{aligned}
$$

$d \in \mathbb{N}, \mathbb{B}_{d}=\left\{z \in \mathbb{C}^{d}:|z|<1\right\} \quad\left(\right.$ If $d=1$, then $\left.\mathbb{D}=\mathbb{B}_{1}\right)$
$T=\left(T_{1}, \ldots, T_{d}\right)$ always assumed to be commuting $T_{i} \in \mathcal{B}(\mathcal{H})$
$T=\left(T_{1}, \ldots, T_{d}\right)$ is called a spherical isometry if

$$
\begin{aligned}
& \sum_{i=1}^{d}\left\|T_{i} x\right\|^{2}=\|x\|^{2} \text { for all } x \in \mathcal{H} . \\
& \Leftrightarrow \Delta_{1}=\left(\sum_{i=1}^{d} T_{i}^{*} T_{i}\right)-I=0
\end{aligned}
$$

Example
$\left(M_{z}, H^{2}\left(\partial B_{d}\right)\right)$ is a spherical isometry.
$\Delta_{1}=\left(\sum_{i=1}^{d} T_{i}^{*} T_{i}\right)-I$
$\Delta_{n+1}=\left(\sum_{i=1}^{d} T_{i}^{*} \Delta_{n} T_{i}\right)-\Delta_{n}$

Defn
T is an n-isometric operator tuple, if $\Delta_{n}=0$.
$\Delta_{1}=\left(\sum_{i=1}^{d} T_{i}^{*} T_{i}\right)-I$
$\Delta_{n+1}=\left(\sum_{i=1}^{d} T_{i}^{*} \Delta_{n} T_{i}\right)-\Delta_{n}$

Defn
T is an n-isometric operator tuple, if $\Delta_{n}=0$.
Facts:
If T is an n -iso \Rightarrow

- $\Delta_{k}=0$ for all $k \geqslant n$
- $\Delta_{n-1} \geqslant 0$,
- but for $n \geqslant 3$ it is possible that $\Delta_{k} \nsupseteq 0$ for some $1 \leqslant k \leqslant n-2$

Examples

- $\left(M_{z}, D\right)$ the Dirichlet shift is a two-isometric operator

Examples

- $\left(M_{z}, D\right)$ the Dirichlet shift is a two-isometric operator
- $\left(M_{z}, H_{d}^{2}\right)$ is a d-isometric tuple, and $\Delta_{1}, \ldots, \Delta_{d-1} \geqslant 0$. Drury-Arveson space

Examples

- $\left(M_{z}, D\right)$ the Dirichlet shift is a two-isometric operator
- $\left(M_{z}, H_{d}^{2}\right)$ is a d-isometric tuple, and $\Delta_{1}, \ldots, \Delta_{d-1} \geqslant 0$. Drury-Arveson space
- $\mathcal{H}(k) \subseteq \operatorname{Hol}\left(\mathbb{B}_{d}\right)$ with reproducing kernel,

$$
k_{\lambda}(z)=\frac{1}{(1-\langle z, \lambda\rangle)^{j}},
$$

$j=1, \ldots, d$, then $\left(M_{z}, \mathcal{H}(k)\right)$ is a $(d-j+1)$-isometry.

Examples

- $\left(M_{z}, D\right)$ the Dirichlet shift is a two-isometric operator
- $\left(M_{z}, H_{d}^{2}\right)$ is a d-isometric tuple, and $\Delta_{1}, \ldots, \Delta_{d-1} \geqslant 0$. Drury-Arveson space
- $\mathcal{H}(k) \subseteq \operatorname{Hol}\left(\mathbb{B}_{d}\right)$ with reproducing kernel,

$$
k_{\lambda}(z)=\frac{1}{(1-\langle z, \lambda\rangle)^{j}},
$$

$j=1, \ldots, d$, then $\left(M_{z}, \mathcal{H}(k)\right)$ is a $(d-j+1)$-isometry.

- If T is an n-isometric tuple, $\mathcal{M} \in \operatorname{Lat} T_{i} \quad \forall i$, then $T \mid \mathcal{M}$ is an n -isometric tuple.

$$
\left\langle\Delta_{n} x, x\right\rangle=\sum_{j=1}^{n}(-1)^{j}\binom{n}{j} \sum_{|\alpha|=j} \frac{|\alpha|!}{\alpha!}\left\|T^{\alpha} x\right\|^{2}=0 \quad \forall x
$$

More Examples of two-isometric tuples

- If $d=1$, then two-isometric operators on finite dimensional spaces must be unitary.
- $d=2$

$$
T_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I, \quad T_{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), T_{2}^{2}=0
$$

is a two-isometric pair on a finite dimensional space:

More Examples of two-isometric tuples

- If $d=1$, then two-isometric operators on finite dimensional spaces must be unitary.
- $d=2$

$$
T_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I
$$

$$
T_{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), T_{2}^{2}=0
$$

is a two-isometric pair on a finite dimensional space:

$$
\Delta_{1}=T_{1}^{*} T_{1}+T_{2}^{*} T_{2}-I=T_{2}^{*} T_{2}
$$

More Examples of two-isometric tuples

- If $d=1$, then two-isometric operators on finite dimensional spaces must be unitary.
- $d=2$

$$
T_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I
$$

$$
T_{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), T_{2}^{2}=0
$$

is a two-isometric pair on a finite dimensional space:

$$
\begin{gathered}
\Delta_{1}=T_{1}^{*} T_{1}+T_{2}^{*} T_{2}-I=T_{2}^{*} T_{2} \\
\Delta_{2}=T_{1}^{*} \Delta_{1} T_{1}+T_{2}^{*} \Delta_{1} T_{2}-\Delta_{1}=T_{2}^{* 2} T_{2}^{2}=0
\end{gathered}
$$

More generally

If $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \partial \mathbb{B}_{d}, V_{i}: \mathbb{C}^{m} \rightarrow \mathbb{C}^{n}, \sum_{i=1}^{d} \overline{\alpha_{i}} V_{i}=0$, then
$S=\left(S_{1}, \ldots, S_{d}\right)$,

$$
S_{i}=\left(\begin{array}{cc}
\alpha_{i} I_{n} & V_{i} \\
0 & \alpha_{i} I_{m}
\end{array}\right)
$$

defines a two-isometric d-tuple.

More generally

If $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \partial \mathbb{B}_{d}, V_{i}: \mathbb{C}^{m} \rightarrow \mathbb{C}^{n}, \sum_{i=1}^{d} \overline{\alpha_{i}} V_{i}=0$, then $S=\left(S_{1}, \ldots, S_{d}\right)$,

$$
S_{i}=\left(\begin{array}{cc}
\alpha_{i} I_{n} & V_{i} \\
0 & \alpha_{i} I_{m}
\end{array}\right)
$$

defines a two-isometric d-tuple.
Thm
If T is a two-isometric d-tuple on a finite dimensional space, then

$$
T=U \oplus S
$$

where U is spherical unitary and S is a direct sum of operator tuples as above.

From now on let $T=\left(T_{1}, \ldots, T_{d}\right)$ be a two-isometric tuple without nontrivial finite dimensional reducing subspace. $\Delta_{2}=0, \Delta_{1}=\sum_{i=1}^{d} T_{i}^{*} T_{i}-I \geqslant 0$

From now on let $T=\left(T_{1}, \ldots, T_{d}\right)$ be a two-isometric tuple without nontrivial finite dimensional reducing subspace. $\Delta_{2}=0, \Delta_{1}=\sum_{i=1}^{d} T_{i}^{*} T_{i}-I \geqslant 0$
$D=\Delta_{1}^{1 / 2}=\left(\sum_{i=1}^{d} T_{i}^{*} T_{i}-I\right)^{1 / 2}$ the defect operator

From now on let $T=\left(T_{1}, \ldots, T_{d}\right)$ be a two-isometric tuple without nontrivial finite dimensional reducing subspace. $\Delta_{2}=0, \Delta_{1}=\sum_{i=1}^{d} T_{i}^{*} T_{i}-I \geqslant 0$
$D=\Delta_{1}^{1 / 2}=\left(\sum_{i=1}^{d} T_{i}^{*} T_{i}-I\right)^{1 / 2}$ the defect operator
Thus $\sum_{i=1}^{d} T_{i}^{*} \Delta_{1} T_{i}-\Delta_{1}=0 \Leftrightarrow$

$$
\sum_{i=1}^{d}\left\|D T_{i} x\right\|^{2}=\|D x\|^{2} \forall x
$$

From now on let $T=\left(T_{1}, \ldots, T_{d}\right)$ be a two-isometric tuple without nontrivial finite dimensional reducing subspace. $\Delta_{2}=0, \Delta_{1}=\sum_{i=1}^{d} T_{i}^{*} T_{i}-I \geqslant 0$
$D=\Delta_{1}^{1 / 2}=\left(\sum_{i=1}^{d} T_{i}^{*} T_{i}-I\right)^{1 / 2}$ the defect operator
Thus $\sum_{i=1}^{d} T_{i}^{*} \Delta_{1} T_{i}-\Delta_{1}=0 \Leftrightarrow$

$$
\sum_{i=1}^{d}\left\|D T_{i} x\right\|^{2}=\|D x\|^{2} \forall x
$$

" T induces a spherical isometry w.r.t. $\|x\|_{*}=\|D x\|^{\prime \prime}$

Spherical isometries are jointly subnormal (Athavale), hence for all $x_{0} \in \mathcal{H}$ there is $\mu \in M_{+}\left(\partial B_{d}\right)$ with

$$
\left\|D p(T) x_{0}\right\|^{2}=\int_{\partial B_{d}}|p|^{2} d \mu \forall p \in \mathbb{C}[z]
$$

Spherical isometries are jointly subnormal (Athavale), hence for all $x_{0} \in \mathcal{H}$ there is $\mu \in M_{+}\left(\partial B_{d}\right)$ with

$$
\left\|D p(T) x_{0}\right\|^{2}=\int_{\partial B_{d}}|p|^{2} d \mu \forall p \in \mathbb{C}[z]
$$

For $d=1$ one can often recover $\left\|p(T) x_{0}\right\|$ by use of this μ. For $d>1$ this is not the case.

$d=1$ Model theorem, Agler-Stankus version

If $T \in \mathcal{B}(\mathcal{H})$ is a 2-isometry with $D \neq 0$, if $x_{0} \in \operatorname{ker}(\|D\|-D),\left\|x_{0}\right\|=1$,
if

$$
\left\|D p(T) x_{0}\right\|^{2}=\int|p|^{2} d \mu
$$

then

$$
\begin{aligned}
& \quad\left\|p(T) x_{0}\right\|^{2}=\|p\|_{A S}^{2}=\int_{\partial \mathrm{D}}|p|^{2} \frac{d \mu}{\|\mu\|}+\int_{\partial \mathrm{D}} D_{\alpha}(p) d \mu(\alpha) \\
& \|\mu\|=\|D\|^{2} \\
& D_{\alpha}(f)=\int_{\partial \mathrm{D}} \frac{|f(z)-f(\alpha)|^{2}}{|z-\alpha|^{2}} \frac{|d z|}{2 \pi} \text { (local Dirichlet integral) }
\end{aligned}
$$

$d \geqslant 1$

Defn

Let $\alpha \in \partial \mathbb{B}_{d}, \sigma \in M_{+}\left(\partial \mathbb{B}_{d}\right)$, then

$$
\sigma \in \mathcal{M}_{\alpha}
$$

$$
\Leftrightarrow
$$

- $\sigma\left(\partial \mathbb{B}_{d}\right)=1$,
- $\sigma(\{\alpha\})=0$, and

$$
\int_{\partial \mathbb{B}_{d}} p(z) \frac{(1-\langle z, \alpha\rangle)^{2}}{\|z-\alpha\|_{\mathbb{C}^{d}}^{2}} d \sigma(z)=0 \forall p \in \mathbb{C}[z] .
$$

- If $d=1, \alpha \in \partial \mathbb{D}$, then

$$
\mathcal{M}_{\alpha}=\{\text { normalized Lebesgue measure }\} .
$$

- If $d=1, \alpha \in \partial \mathbb{D}$, then

$$
\mathcal{M}_{\alpha}=\{\text { normalized Lebesgue measure }\} .
$$

- $d>1 \Rightarrow \exists$ many measures $\in \mathcal{M}_{\alpha}$.
- If $d=1, \alpha \in \partial \mathbb{D}$, then

$$
\mathcal{M}_{\alpha}=\{\text { normalized Lebesgue measure }\} .
$$

- $d>1 \Rightarrow \exists$ many measures $\in \mathcal{M}_{\alpha}$.

Defn

Let $\alpha \in \partial \mathbb{B}_{d}, \sigma \in \mathcal{M}_{\alpha}$, then define the local Dirichlet integral

$$
D_{\alpha}(p)=D_{\alpha}(p, \sigma)=\int_{\partial \mathbb{B}_{d}} \frac{|p(z)-p(\alpha)|^{2}}{\|z-\alpha\|_{\mathbb{C}^{d}}^{2}} d \sigma(z)
$$

For $\sigma \in \mathcal{M}_{\alpha}$ we have

$$
\sum_{i=1}^{d} D_{\alpha}\left(z_{i} p, \sigma\right)=D_{\alpha}(p, \sigma)+|p(\alpha)|^{2} \quad \forall p \in \mathbb{C}[z]
$$

Thus:

Let $\mu \in M_{+}\left(\partial \mathbb{B}_{d}\right), \mu \neq 0$, let $\sigma_{\alpha} \in \mathcal{M}_{\alpha}$, continuously depending on $\alpha \in \partial \mathbb{B}_{d}$, then define

$$
\|p\|_{A S}^{2}=\int_{\partial \mathbb{B}_{d}}|p|^{2} \frac{d \mu}{\|\mu\|}+\int_{\partial \mathbb{B}_{d}} D_{\alpha}\left(p, \sigma_{\alpha}\right) d \mu(\alpha) .
$$

Let $\mathcal{H}_{A S}=\mathcal{H}_{A S}\left(\mu, \sigma_{\alpha}\right)$ be the completion of the polys w.r.t. $\|\cdot\|_{A S}$.

Then $\left(M_{z}, \mathcal{H}_{A S}\right)$ is a 2-isometric d-tuple with

- $\|D p\|_{A S}^{2}=\int_{\partial \mathbb{B}_{d}}|p|^{2} d \mu \quad \forall p \in \mathbb{C}[z]$
- $1 \in \operatorname{ker}(\|D\|-D),\|1\|_{A S}=1$.

Theorem

Let T be a two-isometric d-tuple with

- rank $D<\infty$,
- T has no nontrivial finite dimensional reducing subspace.

Let $x_{0} \in \operatorname{ker}(\|D\|-D),\left\|x_{0}\right\|=1$. Then

$$
\left\|p(T) x_{0}\right\|^{2}=\|p\|_{A S}^{2}+\langle E p, p\rangle_{A S} \quad \forall p \in \mathbb{C}[z] .
$$

Here

- $\left\|D p(T) x_{0}\right\|^{2}=\int|p|^{2} d \mu=\sum_{j=1}^{N} \mu_{j}\left|p\left(\alpha_{j}\right)\right|^{2}$
- $\exists \sigma_{j} \in \mathcal{M}_{\alpha_{j}} j=1, \ldots, N$
- $\mathcal{H}_{A S}=\mathcal{H}_{A S}\left(\mu,\left\{\sigma_{j}\right\}\right)$
- $E \in \mathcal{B}\left(\mathcal{H}_{A S}\right)$ with
- E is s.a. with $I+E \geqslant 0$
- $E 1=0$
- $\sum_{i=1}^{d}\left\langle E z_{i} p, z_{i} p\right\rangle=\langle E p, p\rangle \quad \forall p \in \mathbb{C}[z]$

