Math 537 - Mathematical Principles of Continuum Mechanics - Fall 2024 Tu/Th 16:05–17:20 in Ayres 112,

Instructor: Dr. Tim Schulze, 224C Ayres Hall, 974-4162, tschulze@utk.edu Office Hours: Tu/Th after class.

Recommended Reading:

- A Mathematical Introduction to Fluid Mechanics by A. J. Chorin & J. E. Marsden.
- An Introduction to Fluid Dynamics by G.K. Batchelor.
- Fluid Mechanics: Volume 6 (Course of Theoretical Physics) by L.D. Landau & E.M. Lifshitz.
- Incompressible Flow by R. L. Panton.
- Elementary Fluid Dynamics by D. J. Acheson.
- Vorticity and Incompressible Flow by A. J. Majda & A. L. Bertozzi.
- Album of Fluid Motion by M. Van Dyke.
- Perturbation Methods in Fluid Mechanics by M. Van Dyke.
- Applied Analysis of the Navier-Stokes Equations by Charles R. Doering & J. D. Gibbon.

Course Prerequisites: Vector calculus, experience solving partial differential equations.

Course Description: This course will provide a broad introduction to fluid mechanics and the mathematics associated with it. We will begin by discussing the equations for inviscid fluid flows (the Euler equations) and follow this by a discussion of the case of irrotational flows, where special mathematical techniques can be applied. We will then move on to viscous flows and the Navier-Stokes equations. Emphasis will be placed on exact solutions, asymptotic techniques and an analysis of energy dissipation.

Grading will be based on attendance/participation. There will be some suggested homework, but no exams in this course.

Dates to note:

- Sept. 5 Householder Lecture 4th floor
- Oct. 8 Fall break, no class
- Nov. 5 Election Day, no class
- Nov. 28 Thanksgiving break, no class
- Dec. 3 Last day of class

OUTLINE

- 1. Mathematical description of fluid flow
- 2. Flows that conserve energy
 - (a) The Euler Equations
 - (b) Elementary examples
 - i. Rotating flows
 - ii. Sources and sinks
 - (c) General results
 - i. Energy conservation
 - ii. Kelvin's Circulation Theorem
 - (d) Advanced solution techniques
 - i. Irrotational flow
 - ii. Conformal mapping
- 3. Flows that dissipate energy
 - (a) The Navier-Stokes Equations
 - (b) Elementary examples
 - i. Parallel flows
 - ii. Stagnation point flow
 - (c) General results
 - i. Energy dissipation
 - ii. Vorticity equation
 - (d) Advanced solution techniques
 - i. Similarity solutions
 - ii. Fourier-Laplace transforms
 - iii. Asymptotic methods