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Abstract

We introduce a new kinetic Monte Carlo (KMC) algorithm for off-lattice simulation.

In off-lattice KMC one needs to calculate the rates for all possible moves from the

current state by searching the energy landscape for index-1 saddle points surrounding

the current basin of attraction. We introduce a rejection scheme where the true rates

are replaced by rate estimates. This is done by first associating each saddle point

with the atom that would move the most if that transition were to take place, then

constructing an estimate for the total rate associated with each atom by using a nearest-

neighbor bond count. These estimates allow one to select a set of possible transitions,

one of which is accepted or rejected based on a localized saddle point search focused

on a particular atom. In principle, this allows a performance boost that scales with

the number of particles in the system. We test the method on a growing two-species

nano-cluster, and find we can reduce computation time by ninety percent for clusters

that contain around fifty-five particles, and ninety-six percent for clusters that contain

around sixty-five particles.
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1 Introduction

While most Kinetic Monte Carlo (KMC) simulations are lattice based, many important

technological applications involve multi-component systems where lattice mismatch leads

to elastic strain and crystal defects,1 neither of which can be accurately modeled with a

lattice based approach. Off-lattice Kinetic Monte Carlo (OLKMC), initially developed by

Henkelman and Jónsson,2 is aimed at overcoming these limitations. Fully general off-lattice

simulations make use of either an empirical potential or an even more costly density func-

tional theory calculation, seeking to exhaustively calculate the transition path to all of the

neighboring states within the multi-particle configuration space.

A fully implemented off-lattice simulation is an enormously complex task when compared

to lattice based simulations, where rates can be precomputed and stored. So much so that

KMC simulation loses much of its utility and applications of these methods are limited to

systems with only a few hundred atoms, simulated for much shorter times, and at much

greater computational cost. Even sophisticated approaches that maintain catalogs of previ-

ously seen environments3–5 suffer from these limitations when compared to the simple bond

counting schemes.

The severe limitations of OLKMC has lead to the development of simplified approaches

that combine some aspects of lattice- and off-lattice models.6–9 The rigid lattice of traditional

KMC is replaced by a network of linear springs that are allowed to deform so as to minimize

the system’s potential energy. An important technique for accelerating these weakly off-

lattice simulations was the development of a rejection-based algorithm that makes use of

rate approximations that are similar to the models used in lattice-based simulation.10 These

weakly off-lattice approaches have been used to study the effect of lattice mismatch during

heteroepitaxial film growth.11–13 However, this particular approach cannot capture effects

due to large displacements, like the formation of dislocations and other lattice defects, nor

effects due to the concerted movement of multiple atoms. These are limitations that we seek

to overcome by implementing a similar strategy for OLKMC.
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The main idea is to partition the set of all transitions out of the current state into Np

categories, where Np is the number of particles in the system, and to do this in a way that

allows the rates to be found using localized searches centered on a particular particle. This

is accomplished by first associating each transition with the particle that moves the largest

distance when the system is moved from the initial state to the transition state. This retains

the essential simplification of lattice-based KMC models based on single-particle moves while

allowing for more complicated, multi-particle moves. Rate estimates for all moves associated

with a given atom are then constructed based on local environments in a way that also mimics

the bond-counting approach in a typical lattice-based model. These rate estimates reflect

the intuition that loosely coordinated atoms are much more likely to reconfigure than fully

coordinated atoms in the interior of a crystal. Together, the partitioning and rate estimates

allow one to select a candidate event without doing the costly saddle point search for each

atom in the system. In principle, this allows for an O(Np) improvement in performance.

In the next section we review the basic OLKMC procedures. In section 3, we introduce

the rejection scheme. In section 4, we demonstrate the method by simulating the growth

of two-species nanoclusters with core shell structures. This is a rather challenging system

compared to that typically studied using OLKMC. Indeed, the fully implemented algorithm

that is used for comparison purposes has to be abandoned once the system contains around

seventy particles. In the final section we give some brief concluding remarks and point toward

further improvements that may be possible in the future.

2 Off Lattice KMC

Before discussing the rejection algorithm in the next section, we briefly review the compo-

nents of a fully implemented, rejection-free OLKMC. KMC simulation of crystal growth is

motivated by observations of molecular dynamics simulations, relying on transition state

theory (TST) to provide an approximate model.2,13–15 The essential observation is that the
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system spends most of its time randomly oscillating within the Np-particle, dNp-dimensional

configuration space about a local minimizer Xi ∈ RdNp of the system potential energy, U(X),

with rare transitions between basins of attraction. For the system to move from basin i to

basin j, it has to overcome a minimum energy barrier ∆Uij. If kBT is the energy scale defined

by the temperature of the system, then the harmonic approximation to TST16,17 estimates

the rate Rij at which the transition occurs as

Rij = K exp(−∆Uij/kBT ), (1)

where K is a prefactor,18 that we take to be a constant scaled to one.

These observations give rise to an alternative model where the Newtonian dynamics is

replaced by a Markov-chain, with the system making relatively rare, random transitions

between states, represented by local minimizers Xi in the system’s configuration space, at

rates Rij calculated from (1). More specifically the energy barrier

∆Uij = U(Xij)− U(Xi), (2)

requires locating both the initial local minimum, Xi, and the index-1 saddle point, Xij (where

∇U = 0 and all but one of the principal curvatures are positive), separating the basins of

attraction. Note that these local minima and saddle points are, in principle, determined by

the motion of all of the particles simultaneously within the configuration space.

After enumerating the full set of transition rates and relabeling them using a single index:

{rn ≡ Rn
ij}, a single iteration of an OLKMC simulation is described by:

Algorithm 1

1. Calculate rates ri for each transition accessible from the current configuration.

2. Calculate partial sums Pn =
∑n

i=1 ri, n = 1, 2, . . . , N .

3. Generate a uniformly distributed random number r ∈ [0, PN).
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4. Locate interval I such that PI−1 ≤ r < PI .

5. Update the physical time t ← t + ∆t with ∆t = − ln r′/PN , where r′ is a uniformly

distributed random number in (0, 1].

6. Move the system to the designated transition state, perturb away from the current

local minimum, and relax to the new configuration.

Note that in Step 5 since the average value of lnx over the interval (0, 1] is
∫ 1

0
lnx dx = −1,

the same average time scale can be obtained with ∆t = 1/PN . Steps 1 and 6 are tremendously

costly compared to lattice-based simulations. So much so that KMC loses much of its utility

in that the system size and the number of iterations that can be simulated are greatly

reduced. This is particularly so with the first step, as the number of saddle points grows

rapidly with the number of particles in the system. Saddle point searches are typically

done with some sort of eigenvector climbing algorithm, with a computational cost similar to

minimization using nonlinear conjugate gradient. In this paper we implement a version of

the Dimer method introduced by Henkelman and Jónsson.19–22

In principle, the model requires locating all saddle points connected to the current basin

of attraction. In practice, there is no way of knowing for certain when this has been achieved.

This error is, in some sense, controllable, in that one can increase the number of attempts

at finding new saddle points until a point of diminishing returns is acheived. Some recent

work23 seeks to make a more exhaustive exploration of the local potential energy surface,

but, as with so much of the work on OLKMC, seems to be limited to very small systems for

the time being. Here, we follow a practice similar to that of Henkelman and Jónsson2 and

initiate a large number of searches by randomly perturbing the system about the current

state. More specifically, let X = {xi ∈ R3}Np

i=1. For each atom j, we perturb the entire

system with a magnitude that decays with increasing distance:

xk
i = xi +

kσ

Ng

n̂k
i exp (−∥xi − xj∥2) for all i = 1, · · · , Np, (3)
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where Ng is the number of initial guesses, k = 1, · · · , Ng is the guess number, n̂k
i is a

random unit vector in R3 and σ is a length scale parameter that will be discussed later. This

reflects the fact that most configuration changes are localized about a single particle or a

small group of particles.

This procedure will find some saddle points that do not connect to the system’s initial

basin of attraction. Thus, upon finding a saddle point, one must requench the system starting

from the newly found saddle point to ensure that the resulting saddle point is connected. One

must also scan the list of previously acquired connected saddle points to prevent duplicates.

For the final step, we initialize a nonlinear conjugate-gradient minimization scheme near

the chosen saddle point. We perturb this initial condition slightly in the direction away from

the initial configuration and monitor the progress with a strict descent requirement and

maximum displacement threshold, with the aim of guiding the system into the neighboring

basin of attraction.

Another difficulty with general OLKMC procedures is what is known as the “small barrier

problem”.24 Occasionally the system will reside in a basin of attraction with one or more

extremely shallow minima, the crossing of which has little impact on the configuration. The

small barrier means that the rate will be extremely high, and it is highly probable for the

events associated with shallow barriers to be selected. When the reverse process also has a

shallow barrier, this can lead to many wasted iterations as the system makes insignificant

oscillations before a transition that fundamentally changes the configuration finally occurs.

For this reason, we implement our OLKMC with a minimum barrier size chosen to reflect

barriers that are typical for the surface motion of a single, loosely bonded atom, e.g. what

one would refer to as an “adatom” in the context of epitaxial growth.
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3 Rejection Algorithm

In a rejection algorithm, one samples a rate distribution formed from upper bounds on the

actual rates, r̂n ≥ rn, and rejects the selected move with the appropriate frequency so that

a stochastic process with the original rate distribution is formed. The simplest examples of

this use a single global upper bound r̂ ≥ rn,∀n. One can then select a candidate event using

a randomly selected integer 1 ≤ n ≤ N , where N is the total number of events. This avoids

all but one of the rate calculations in Step 1 of Algorithm 1, but at the expense of additional

random number generation when events are rejected.

The overall efficiency of a rejection scheme,

E =
accepted trials

attempts
,

can be very low when the rate distribution has a wide range, as is often the case for KMC

simulations due to the exponential dependence of rates on the energy barrier ∆U . For

lattice-based simulations, rejection-free KMC is therefore often superior because the cost

of random number generation is high compared to calculating rates. The expense of rate

calculations in OLKMC suggests that even an inefficient rejection scheme may be superior to

the rejection-free scheme outlined in Algorithm 1. There is, however, a fundamental difficulty

in implementing rejection for OLKMC in that determining the number and description of the

events to be sampled relies on the same costly saddle-point searches required for the rejection-

free algorithm. Below, we introduce a means of circumventing this need by partitioning the

set of possible transitions so that each transition is associated with a uniquely defined key

atom. In addition to making a rejection scheme viable, we will see that this also makes

it more efficient by tailoring rate estimates to local environments. To this end, we will

borrow the notion of a bond-counting formula from lattice based simulation, with an eye

toward using this as a rate estimate rather than a rate model. This same strategy was used

effectively in the weakly off-lattice models for strain mentioned earlier.10–12
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Unlike lattice-based models with predefined event catalogs, neither the number nor the

nature of transitions at a given time step is known a priori in OLKMC. Acquiring this in-

formation requires an exhaustive saddle point search like that in Step 1 of Algorithm 1, a

calculation that would defeat the purpose of the rejection algorithm. In order to extend the

rejection scheme to OLKMC, we partition the set of connected saddle points into localized

subsets by associating moves with their key atom. We define this as the atom whose position

changes by the greatest magnitude when it is moved from the configuration of the current

local minimum to the saddle point configuration, and refer to the associated set of saddle

points as connected key saddles. For a system with Np particles this has the effect of parti-

tioning the entire set of transitions into Np subsets, each of which represents all of the moves

for which one particular atom is the key atom. For moves that are essentially single atom

hops, this will correctly associate the event with the hopping atom, while providing a natural

generalization for more complicated, multi-atom moves. One now needs to over-estimate the

sum of the rates for all configuration changes associated with a given key atom. If this can

be done reliably, one can then choose a candidate event based on the estimated rates. After

a candidate is chosen, one then calculates the total transition rate for that particular atom,

accepting or rejecting the move with probability:

P (acceptance) =
true rate

approximate rate
.

This avoids the tremendously more costly need to calculate all of the rates for the entire

system before selecting a move, and it does so with zero error as long as the estimates are

upper bounds for the true rates.

The rate estimates we use attempt to model a lower bound for the smallest significant

barrier (i.e. attempting to avoid the small barrier problem discussed above) Ǔ and an upper

bound N̂ for the number of transitions that have this energy scale. To allow for greater

flexibility in protecting against the estimate being lower than the true rate, we also include
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an additive constant Ĉ in the estimate:

r̂j = KN̂j exp (−Ǔj/kBT ) + Ĉ, j = 1, · · · , Np. (4)

The energy barrier bound is based on a generalized notion of a nearest neighbor. For

our off-lattice model, we define a nearest neighbor as an atom lying within a distance, d1,

slightly larger than the lattice spacing of a perfect crystal. Similarly, we define second and

third neighbor distances d2 and d3. We use an estimate where Ǔj is linear in the number of

first, second and third nearest neighbors for each species.

Next, we provide an outline of the rejection algorithm. We assume that the system is

initialized at time t to an arbitrary local minimum.

Algorithm 2

1. Calculate rate estimates r̂j, j = 1, · · · , Np, using Eq. (4)

2. Calculate partial sums Pn =
∑n

j=1 r̂j, n = 1, 2, . . . , Np.

3. Generate a uniformly distributed random number r ∈ [0, PNp).

4. Locate interval J such that PJ−1 ≤ r < PJ .

5. Update the physical time t ← t + ∆t with ∆t = − ln r′/PNp , where r′ is a uniformly

distributed random number in (0, 1].

6. Perform local saddle point searches centered on atom J as follows:

(a) For k = 1, · · · , Ng initiate dimer searches with initial guesses as in Eq. (3).

(b) Sort through the resulting saddle points so that {X1
J ,X

2
J , · · · ,XM

J } is the set of

distinct connected key saddles.

7. Calculate the true rates riJ = K exp (−∆U i
J/kBT ), i = 1, 2, . . . ,M for moves in which

atom J is the key atom.
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8. Calculate partial sums pi =
∑i

n=1 r
n
J , i = 1, 2, . . . ,M .

9. If r − PJ−1 > pM , reject the event; set r̂J = pM ; return to Step 2.

10. Otherwise, locate the interval I such that pI−1 ≤ r − PJ−1 < pI .

11. Move the system to saddle-point configuration XI
J , perturb away from the current local

minimum, and relax to the new local minimum.

The success of the method hinges on Steps 1 and 6. If the rate estimates in Step 1 are lower

than the actual sum of rates, the algorithm is no longer equivalent to a fully implemented

OLKMC, as the corresponding events will be undersampled. While this is undesirable, it

has an effect similar to other sources of error inherent to OLKMC. This undersampling error

can be monitored and controlled to some extent in that it will be detected a certain fraction

of the time. If R̂E is the sum of the rate estimates for the atoms with rate estimates that are

too small, then the probability that one of these atoms is selected for a saddle search is R̂E

PNp
.

These instances can be counted and used as a metric for upwardly adjusting rate estimates.

Note, however, that the selection of an undersampled event is not an error—the error is a

failure to select such events sufficiently often. The error can be more accurately measured

by calculating

E =

Np∑
i=1

max(0, ri − r̂i).

When events are undersampled we introduce an error with probability E
PNp+E

relative to a

simulation with the minimal correction applied to the errant rates, i.e. r̂i ← ri whenever

r̂i < ri. The error cannot be computed on every iteration without losing the advantages of

the rejection scheme, as one has to loop through the atom list and calculate the true rate

for each atom and its rate estimate. However, it can be monitored for some small fraction of

the time steps. While undersampling can be reduced or even eliminated by using sufficiently

generous rate estimates, this comes at the expense of increased rejection due to oversampling.

Specifically, we will reject an event with probability 1 − E = 1 − R
PNp

, where R is the sum
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of the actual rates. In our simulations, we monitor both our undersampling error and the

efficiency.

In Step 6, we wish to calculate the sum of all the rates for which atom J is the key atom.

We do this by perturbing the system about atom J as in Eq. (3) to create a list of initial

configurations for the dimer search. It is possible that this will miss some moves which will

introduce an error similar to that discussed above in the context of the rejection-free scheme.

This error can be decreased by creating another list of initial configurations by perturbing

the system about a neighboring atom. This will reduce the efficiency: As we make our

search for connected key saddle points more exhaustive, we will produce costly duplicates

and saddles associated with atoms other than the candidate atom.

In Step 9, pM is the sum of the true transition rates for which the candidate atom is the

key atom. When we reject a move where this atom is key we can set the estimated rate r̂J

to this sum, so that transitions associated with this atom will not be rejected on the next

trial. This normally does not save a significant amount of computation, as it is likely that a

different key atom will be selected on the next iteration, but it will occur more often when

there is a single loosely-bonded atom at the surface. In the cases where the same key atom

is chosen on a subsequent trial, we can also re-use saddle point information obtained for the

rejected trial. Similarly, on any rejected trial, we can retain the information about saddle

points associated with atoms other than the candidate atom, although this will only have a

slight impact on performance.

When parallel resources are available, we suggest performing both the full OLKMC and

the rejection scheme by distributing the Ng dimer searches for each atom over the available

processors, keeping in mind that one has to remove the duplicates before calculating the true

rates. However, the boost in performance will still be O(Np). Suppose the computational

cost to perform the rejection scheme on one processor is O(Ng), then it is O(NpNg) for the

full scheme. When n processors are available, the cost for the rejection scheme is O(Ng/n)

and O(NpNg/n) for the full scheme.
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4 Results

In this section we demonstrate the new algorithm by simulating the growth and evolution of

a two-species cluster with an emerging core-shell structure. For this, we use a Lennard-Jones

potential, modified for two interacting species, type A and type B.25–27 The total energy of

a system of Np particles interacting by the Lennard-Jones potential is given by

U(X) =

Np∑
i<j

ϕ(rij), where ϕ(rij) = 4ϵij

[(
σij

rij

)12

−
(
σij

rij

)6
]
,

X ∈ R3Np is the current configuration in three dimensions, rij is the distance between atoms

i and j, ϕ(rij) is the interaction potential, σij is the distance at which ϕ(rij) is zero and ϵij

is the chemical bond energy. We will use the Lorentz-Berthelot mixing rules25,26 and take

σij =


σA

σB

1
2
(σA + σB),

ϵij =


ϵA if both atoms are type A,

ϵB if both atoms are type B,
√
ϵAϵB, if the atoms are different.

We omit any truncation of the potential, but for larger systems we could employ the

standard practice of introducing a cutoff radius that is often chosen to be three or four

times a typical bond-spacing. To remove translational and rotational degrees of freedom,

one particle is constrained to the origin, a second to a line passing through the origin, and

a third to a plane containing this line. This is equivalent to adjusting the frame of reference

to satisfy these constraints.

For a particle of type A or B, we denote its nearest neighbors of species α by n
(α)
k

where k = 1, 2, 3 correspond to the first, second and third nearest neighbors, respectively.

In Eq. (4), we take N̂i = 4
∑3

i=1

∑
α∈{A,B} n

(α)
i , Ĉ = 1.955 and the energy barrier bound
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Ǔi = −1.2(B1 +B2), where

B1 = ϵα(λ1n
(α)
1 + λ2n

(α)
2 + λ3n

(α)
3 ),

B2 =
√
ϵαϵβ(λ1n

(β)
1 + λ2n

(β)
2 + λ3n

(β)
3 + λ4),

with α = species(i), β ̸= α, λ1 = λ2 = 0.5, λ3 = 0.8 and λ4 = −5.9.

Deposition is modeled by adding an additional rate, rdep, to the rate table in Steps 1 and

2. When a deposition occurs, the species is selected so that the ratio is three A-particles

for every B particle, and the appropriate particle is placed at a randomly selected solid

angle a distance d from the origin. The coordinates of this particle are relaxed toward a

local minimum by steepest descent while constraining the remaining particles. After the

constrained minimum is reached, the full system is relaxed by a conjugate gradient search,

with care taken to monitor for descent or large moves, so that the particle settles into a local

minimum without significantly disturbing the prior configuration.

(a) A9B3 (b) A18B6 (c) A27B9 (d) A36B12 (e) A45B15
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(f) A54B18 (g) A63B21 (h) A72B24 (i) A75B25

Figure 1: Snapshots at different times during the growth of a two species cluster, A75B25,
with random deposition at rate = 0.85. The Lennard-Jones parameters are taken to be
ϵA = ϵB = 0.25 and σA = 1.3 & σB = 1. Both the dimer and the conjugate gradient
algorithms are terminated once the L2 norm of the gradient is less than 10−3 or the maximum
number of iterations is achieved. The view in these snapshots is chosen so that B atoms
appear clearly.

Figure 1 shows nine snapshots of the growth process, with a new snapshot selected after

12 particles have been added to the system. The larger particles are shown in gold and tend

to evolve toward the outer shell. This tendency is increased if we slow the deposition rate,

allowing more diffusive transitions between deposition events. These simulations represent

a significant challenge for OLKMC. When the cluster is small, moves are highly concerted,

with the transitions often resulting in all of the particles moving a significant distance as

shown in Figure 2.

In Table 1, we record the efficiency E and the error E of Algorithm 2, as defined in the

previous section, for clusters in Figure 1, along with the scaled physical time, CPU time

in hours, and the number of hops at which these clusters are obtained. We see that the

efficiency is close to 1/2 for the larger clusters, meaning that, on average, we reject about

every other candidate event. The error, as defined above, is around 4% for the larger clusters.

As described earlier, this can be improved upon, but at the cost of increased rejection, by

providing larger rate estimates.
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(a) Minimum 1 (b) Saddle Point (c) Minimum 2

Figure 2: Example of a concerted move that includes the movement of all atoms except the
constrained atom at the origin.

Table 1: The first two columns show the efficiency and error of Algorithm 2 for clusters in
Figure 1, calculated via the rate estimate formula in Eq. (4) with Ng = 200 per atom. The
last three columns are the scaled physical time, CPU time, and the number of hops at which
these clusters were formed, respectively.

Subfig. Efficiency E Error E Scaled Phys. time CPU time (hrs) No. of hops
(a) 0.065 0.000 9.433 0.0985 139
(b) 0.25 0.007 23.680 2.436 872
(c) 0.32 0.000 42.796 13.812 2073
(d) 0.44 0.016 54.611 25.739 3081
(e) 0.44 0.011 71.050 63.756 4715
(f) 0.40 0.009 82.940 86.683 6153
(g) 0.45 0.028 94.000 142.453 7463
(h) 0.53 0.036 110.726 257.608 9796
(i) 0.54 0.041 114.679 309.312 10359

In Figure 3, we plot the number of events executed as a function of the scaled physical

time for three realizations of the full OLKMC and the rejection-based algorithm as a means

of demonstrating their near equivalence. Again, if one could achieve exhaustive saddle-

point searches and strict bounds for the rate estimates, the two algorithms are stochastically

equivalent. In Figure 4, we plot the CPU time as a function of the scaled physical time for

this same set of realizations as a way of demonstrating the increased speed of the rejection

scheme. For cluster sizes around fifty-five particles, the rejection algorithm is about ten

times faster, and when they are around sixty-five particles, it is thirty times faster. This

factor will continue to increase with larger cluster sizes, as the local search regions become

a smaller fraction of the entire domain.
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5 Conclusion

In this paper we have demonstrated the viability and potential for using a rejection scheme

to accelerate OLKMC. The main idea is to partition the set of rates that must be found in

a way that allows for a local search procedure. If this can be achieved, one can expect an

O(Np) boost in performance. In this paper, the partitioning is accomplished by identifying

moves with the atom that moves the furthest in the transition, and rate estimates rely on a

notion of bond-counting similar to what one finds in the lattice-based KMC literature. There

remain many unexplored variations on both of these approaches. For example, one could

partition moves based on energy changes rather than distance moved, and rate estimates

could incorporate prior information similar to the way saddle-point reconvergence/recycling

has been used in other OLKMC work,2,5,28 especially when the size of the system is large.
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