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Abstract

We introduce a simple extensive-form algorithm for finding equilibria of two-
player, zero-sum games. The algorithm is realization equivalent to a generalized
form of Fictitious Play. We compare its performance to that of a similar
extensive-form fictitious play algorithm and a counter-factual regret minimiza-
tion algorithm. All three algorithms share the same advantages over normal-form
fictitious play in terms of reducing storage requirements and computational com-
plexity. The new algorithm is intuitive and straightforward to implement, making
use of a locally optimized best decision update instead of the best response update
of traditional fictitious play.
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1 Introduction

In recent years there has been a great deal of progress in computational methods for
solving large games. Interest in the subject stems from both practical applications
where AIs, such as self-driving vehicles, interact with each other and humans, and
from a handful recreational games, such as chess, poker and Go, that are seen as
challenging surrogates for real-world applications while simultaneously appealing to a
large population of devoted enthusiasts. In particular, work on the popular variant of
poker known as Texas Hold’em has seen many years of progress culminate in a number
of high-profile success stories. Poker and other card games are especially challenging,
as they are games with imperfect information and a large number of game states.
The development of the Counter-Factual Regret Minimization (CFR) algorithm [1]
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marked a significant advance in solving large extensive-form games, eventually leading
to the numerical solution of the two-player, limit version of Texas Hold’em [2]. This
was followed by other successful AIs that defeated top professional poker players in
heads-up no-limit [3] and multi-player no-limit [4] Texas Hold’em.

It has been recognized from the earliest days of game theory that using behavior
strategies is often preferable tomixed strategies for analyzing large games. For example,
while the term had not yet been introduced, von Neumann and Morgenstern use
behavior strategies to analyze the poker poker model we review in Section 4.1 [5].
Despite this, many computational methods use mixtures, σi(s), of pure strategies, s,
that specify a specific action to be taken by player i at every game state that player
may encounter. The mixtures represent the probability with which that particular
pure strategy will be played, so that

∑
s∈Si σi(s) = 1, with Si being the set of all

pure strategies for player i. Fictitious Play (FP), for example, is one of the oldest
computational methods for solving games [6, 7]. In its original formulation, it is a
method for finding a Nash Equilibrium (NE) in two-player, zero-sum, normal form
games. In this method, the average of the prior play is iteratively updated to

σi
n+1 =

(
1− 1

n+ 1

)
σi
n +

1

n+ 1
βi(σ−i

n ), ∀i ∈ {1, 2}, (1)

where n indicates the time-step, −i indicates player i’s opponent (not i), βi(σ−i
n ) is a

best response to the opponent’s play on the previous time-step:

βi(σ−i
n ) ∈ argmax

σi
ui(σi, σ−i

n ), (2)

and ui(σi, σ−i) is expected utility from player i’s perspective, accounting for the mixed
strategies of both players and the role of chance. In other words, each player is simul-
taneously updating their strategy to be a best response to their opponent’s average
strategy over the history of their play. One can also implement this by alternating the
updates, so that the best response accounts for the opponent’s freshly updated aver-
age play. For the most part, we will focus on algorithms with simultaneous updates,
but alternating updates will be briefly addressed later in the paper.

While the normal form of a game is often preferable for analyzing games in gen-
eral, it balloons the computational cost and amount of storage required for games. In
the end, the extensive form of a game provides a more compact way of representing
strategies despite its more cumbersome notation. To define a game in extensive form,
we begin with a game tree, which consists of a set of vertices {x} (also referred to as
nodes), including the root, denoted x0, of the tree, and a set of directed edges {e} that
correspond to the moves players can make in the game. To qualify as a game tree,
we require that each vertex x can be reached by following a unique path from the
root. In this paper, we will be exclusively interested in two-player games, with players
i ∈ {1, 2}. To account for chance moves, we expand this set to include a chance player,
denoted as {0}. The terminal vertices are referred to as leaves ℓ ∈ L, and the non-leaf
vertices are partitioned among the players according to who will act at a given ver-
tex. We are interested in games with imperfect information, where the players may
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not know which vertex they are at. This possible uncertainty partitions the subset
of vertices associated with the non-chance players into subsets I ∈ I referred to as
information sets. Similarly, the edges emerging from the nodes in information sets are
partitioned into equivalence classes referred to as actions a ∈ A(I). We will find it
convenient to include the chance nodes in I as subsets containing a single vertex, and
we will let {Ii} be a partition of I over i ∈ {0, 1, 2}. Finally, the leaves represent the
outcome of the game, which we express in terms of utility functions for the non-chance
players U i(ℓ). We will consider only zero-sum games where U i(ℓ) = U−i(ℓ).

While mixed strategies can also be defined in the extensive form as probability
mixtures of pure strategies, where a specific action is specified at every information set,
behavior strategies provide a more compact way of representing a strategy by assigning
a distribution, b(I, a) ≥ 0, over the actions a ∈ A(I) available at each information set
I ∈ I: ∑

a∈A(I)

b(I, a) = 1,

including those controlled by the chance player, who plays a fixed strategy. When
players have perfect recall—they do not forget any information they knew in the past—
there exists a strategy of either type equivalent to a given strategy of the other type
[8, 9].

The use of behavior strategies was one of the features that allowed the CFR algo-
rithm and its derivatives, like CFR+ [10], to achieve the successes mentioned above.
A key advantage of the behavior strategy description lies in being able to easily com-
pute the expected utility, U(I, a; b), of a specific action, a ∈ A(I), within the set of
actions available at a given information set I, where the utility is measured from the
perspective of the player who controls I, and b represents the collection of behavior
strategies for all players at all information sets. In what follows, we refer to U(I, a; b)
as the action-utility, and suppress b when the strategies are clear from context, writ-
ing U(I, a) ≡ U(I, a; b). Similarly, we will use U(I, b(I)) ≡ U(I, b(I); b) to indicate the
utility of playing a specific mixture of actions b(I) ∈ R|A(I)| at I that may or may not
be consistent with that dictated by b.

More recently, a version of FP (Extensive-Form Fictitious Play or XFP) that takes
advantage of the efficiency of behavior strategies and is realization equivalent to FP
has also been been developed [11]. In this paper we introduce an alternative extensive
form algorithm that is realization equivalent to a perturbed FP. We refer to this as
Best Decision Fictitious Play (BDFP). In close analogy to FP (1), BDFP consists of
a sequence of behavior strategies,

bn+1 =

(
1− 1

n+ 1

)
bn +

1

n+ 1
d(bn), (3)

where d(bn) is the collection of what we refer to as best decisions that are locally
optimized with respect to both the opponent’s current strategy and a player’s own
current strategy following actions a ∈ A(I):

d(I; bn) ∈ argmax
b(I)

U(I, b(I); bn). (4)
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Note that, unlike the best response (2) defined above, the best decisions are defined
using the action-utility at a particular information set rather than the expected util-
ity of entire strategies. We will see that BDFP enjoys the same advantages as CFR
and XFP in terms of how computational cost and storage scale with the size of the
game, but with a simpler and more intuitive implementation. In practice (4) can be
computed by simply selecting the best action, and this mimics the way humans think.
In particular, expected value computations for what we have called action utilities are
routinely discussed in the recreational poker literature, but to the extent humans can
really make these calculations they focus on their immediate decision using their own
current strategy and their beliefs about how their opponents play.

In the next section, we briefly review the CFR and XFP algorithms, and further
introduce BDFP. In section 3, we show that BDFP is equivalent to a generalized FP,
and therefore inherits its convergence properties. In section 4, we discuss a benchmark
game that generalizes a classic model of poker put forward by von Neumann and
Morgenstern (vN&M). In section 5, we use this game, along with another poker model,
to compare the performance of the three algorithms. We summarize and conclude in
the final section.

2 Algorithms

We start with a description of elements common to all three algorithms considered in
this paper, and follow this with a discussion of each algorithm separately.

As previously mentioned, in games with imperfect information, a player may not
know which node he/she is at, and must analyze their decisions based on the probabil-
ity that their opponent’s prior play has brought them to a particular node within the
information set. In comparing the expected value of actions, a player need not con-
sider the probability that their own prior actions will bring them to that information
set. Thus the play of a player in any such calculation is assumed to have been consis-
tent with the need to make the decision. For this reason, U(I, a) is often referred to
as counter-factual utility [1]. This “play-to-reach” assumption is common to all of the
algorithms we consider in this paper.

The action-utility is thus the conditional expectation of utility, E[U i(ℓ)|I, a], given
we are at a specified information set, the player controlling that information set takes
a specified action, and U i(ℓ) a basic utility function defined on the set of leaves in
the game tree. This can be computed using the conditional probability P−i(x|I) of i’s
opponent’s, including the chance player, playing so as to reach a node x ∈ I controlled
by i, and the conditional probability P (ℓ|x, a) of all players playing so as to reach leaf
ℓ starting from I with action a:

E[U i(ℓ)|I, a] ≡ U(I, a) =
∑
ℓ∈L

P (ℓ|I, a)U i(ℓ), I ∈ Ii, (5)

=
∑
x∈I

P−i(x|I)
∑

ℓ∈Lx,a

P (ℓ|x, a)U i(ℓ) (6)
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=
∑
x∈I

P−i(x)

P−i(I)

∑
ℓ∈Lx,a

P (ℓ|x, a)U i(ℓ), P−i(I) > 0,

=
1

P−i(I)

∑
x∈I

∑
ℓ∈Lx,a

P−i(ℓ)P i(ℓ|x, a)U i(ℓ), (7)

where the inner sum is over leaves, Lx,a, that can be reached using action a at node x.
The various “reach” probabilities can be computed from the behavior strategies

b(I, a) and the unique sequence of actions starting at the root of the game tree and
terminating at a node x: ax1 , a

x
2 , . . . , a

x
Jx
, where there are Jx actions along the path

leading to x. Letting Î(a) indicate the information set at which action a is taken, we
have

P−i(x) =

Jx∏
j=1,Î(ax

j )/∈Ii

b(Î(axj ), a
x
j ), (8)

P−i(I) =
∑
x∈I

P−i(x), (9)

P (ℓ|x, a) =

Jℓ∏
j=Jx+2

b(Î(aℓj), a
ℓ
j), (10)

where the behavior coefficient for a, action Jx + 1, is omitted in the last product, as
the probability is conditioned on that choice.

In the rest of this section, we describe the three algorithms considered in this paper.

2.1 Counter-factual Regret Minimization

The basic version of CFR [1] is now sometimes referred to as “vanilla” CFR, and is a
popular entry point for those getting started with reinforcement learning (RL). While
the authors go beyond this version, adapting it to specific features of Texas Hold’em,
and there have been subsequent developments, most notably CFR+ [10], we will be
considering only this basic version.

CFR is based on the notion of regret for having played the game according to the
current strategy b(I) rather than taking a specific action a at information set I:

U(I, a)− U(I, b(I)),

where
U(I, b(I)) =

∑
a∈A(I)

b(I, a)U(I, a). (11)

More specifically, CFR maintains the average regret, weighted by the opponent’s reach
probabilities P−i(I; bn):

Rn(I, a) =
1

n

n∑
k=1

P−i(I; bk) (U(I, a; bk)− U(I, bk(I); bk)) , I ∈ Ii. (12)
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Notice that the opponent’s reach probability appears as the normalization factor in the
computation of the action-utilities (7), canceling the weighting factor and eliminating
the need to compute these quantities unless one actually wishes to compute the utility.
At the same time, this removes the possibility of division by zero should P−i(I) = 0.

The strategy at the next iteration is proportional to the amount of positive regret

bn+1(I, a) =


max(Rn(I,a),0)∑

ã∈A(I)

max(Rn(I,ã),0)
, if

∑
ã∈A(I)

max(Rn(I, ã), 0) > 0,

1
|A(I)| , otherwise.

(13)

Finally, it is the average of the sequence of strategies bn(I, a), weighted by the reach
probability of the player who controls I, that converges to a NE:

b̄n(I, a) =

∑n
k=1 P

i(I; bk)bk(I, a)∑n
k=1 P

i(I; bk)
, I ∈ Ii (14)

P i(x) =

Jx∏
j=1,Î(ax

j )∈Ii

b(Î(axj ), a
x
j ), (15)

P i(I) =
∑
x∈I

P i(x). (16)

2.2 Extensive-Form Fictitious Play

The key advantage of CFR over (normal form) FP is the ability to efficiently store
and compute with behavior strategies rather than mixed strategies. XFP also has this
feature Heinrich et. al. [11] construct [11] XFP as a sequence of behavior strategies
that is realization equivalent to the sequence of mixed strategies

σi
n+1 = (1− αn+1)σ

i
n + αn+1β

i(σ−i
n ), (17)

where βi is a best response to the opponent’s current strategy σ−i
n . This is a generalized

FP with weights αn that decay to zero with a diverging sum
∑

αn = ∞, and reduces
to the classic FP algorithm when αn = 1

n .
The proof that BDFP converges, presented in Section 3 below, shares some common

features with the proof that XFP converges, so we review this result here. In particular,
the Heinrich et. al. result relies on a result of Leslie and Collins [12], who define the
following class of generalized fictitious play algorithms, and then proceed to show that
any such algorithm converges to a NE of a zero-sum game. In what follows, σ without
the superscript indicates a vector of mixed strategies, (σ1, σ2), one for each player,
and Σ is the set of all such strategy vectors.
Definition 1. A generalized weakened fictitious play process is any process {σn}n≥0,
with σn ∈ Σ, such that

σn+1 ∈ {(1− αn+1)σn + αn+1(βϵn(σn) +Mn+1)}βϵn
, (18)
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where βϵn = (β1
ϵn , β

2
ϵn) is in the set of ϵn-best response vectors, αn → 0, ϵn → 0 as

n → ∞, ∑
n≥1

αn = ∞,

and {Mn}n≥1 is a sequence of perturbations such that, for any T > 0,

lim
n→∞

sup
k
{||

k−1∑
j=n

αj+1Mj+1|| :
k−1∑
j=1

αj+1 ≤ T} = 0.

Note that in (17), ϵ = 0 and βi is a best response. Neither XFP nor BDFP make
use of ϵ-best responses, and we will later use the ϵ subscript to indicate a strategy in
a perturbed game where actions must be taken with finite probability.

The Leslie & Collins theorem relies on a result of Benäım, Hofbauer & Sorin, (2006)
[? ] that we will need in the following section. We present the theorem in the form
given by Leslie & Collins.
Theorem 1 (Benäım, et. al.). Assume F : Rm → Rm is a closed set-valued map such
that F (σ) is a non-empty compact convex subset of Rm with

sup
z∈F (σ)

||z|| ≤ c(1 + ||σ||) ∀σ.

Let {σn}n≥0 be the process satisfying

σn+1 − σn − αn+1Mn+1 ∈ αn+1F (σn),

with αn → 0 as n → ∞, ∑
n≥1

αn = ∞,

and {Mn}n≥1 be a sequence of perturbations such that, for any T > 0,

lim
n→∞

sup
k
{||

k−1∑
j=n

αj+1Mj+1|| :
k−1∑
j=1

αj+1 ≤ T} = 0.

The set of limit points of {σn} is a connected internally chain-recurrent set of the
differential inclusion

d

dt
σ(t) ∈ F (σ(t)). (19)

To apply Theorem 1 in the context of game theory, Benaim, Hofbauer & Sorin,
(2006) extend the domain of the best response function β(σ) to all of Rm by associating
points outside the simplex of mixed strategies Σm with the unique closest point within
the simplex. With this understanding, Leslie and Collins first show that any GFP (18)
satisfies the requirements of this theorem with

d

dt
σ(t) ∈ F (σ(t)) = {β(σ(t))− σ(t)}β , (20)
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and then show that the set of limit points is the set of NE.
Theorem 2 (Leslie and Collins). Any generalized weakened fictitious play process will
converge to the set of NE in two-player zero-sum games, potential games, and generic
2 × 2 games.

Finally, Heinrich et. al. show that the mapping from mixed strategies (17) to
behavior strategies requires

bn+1(I, a) = bn(I, a) +
αn+1P

i(I;Bi
n+1)(B

i(I, a; b−i
n )− bn(I, a))

(1− αn+1)P i(I; bin) + αn+1P i(I;Bi)
, I ∈ Ii, (21)

where Bi is a best response behavior strategy to b−i
n :

Bi
n+1 ∈ argmax

bi
ui(bi, b−i

n ), (22)

and P i is player i’s reach probability for either the current strategy or the current
best response.

The calculation of the best response Bi is similar to the calculation of the best
decisions. In either case the action-utility must be computed at every information set,
and those utilities are used to make a best decision at each node. In the case of best
responses, we work backward through the game tree from the leaves toward the root,
using the previously computed best decisions to calculate the utility at the next level.
Thus, at each level we are choosing a best option that will be followed by best options
at every subsequent information set, so that we end up with a best response.

2.3 Best Decision Fictitious Play

In practice, best decisions (4) can be computed by simply choosing any optimal action:

a ∈ arg max
ã∈A(I)

U(I, ã; bn). (23)

Like XFP, BDFP can be implemented with a more general weight αn, but we chose
to implement this with αn = 1

n , the weight used in classical FP. This is equivalent to
a simple average of best decisions that can be computed by counting the number of
times each action is best at a given information set:

cn+1(I, a) = cn(I, a) + 1. (24)

One can then replace the update (3) with a non recursive formula

bn(I, a) =
cn(I, a)

n
. (25)

Table 1 compares the key steps required for BDFP to those required for CFR and
XFP. All three algorithms start by computing the action utilities at every information
set, with XFP simultaneously calculating a best response for each player to the other
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Table 1 Schematic outline for each of the three algorithms under consideration.

CFR XFP BDFP
For i ∈ {1, 2} For i ∈ {1, 2} For i ∈ {1, 2}

For I ∈ Ii & a ∈ A(I) For I ∈ Ii & a ∈ A(I) For I ∈ Ii & a ∈ A(I)
Update U(I, a) using (7) Update B using (22) Update U(I, a) using (7)

For i ∈ {1, 2} For i ∈ {1, 2} For i ∈ {1, 2}
For I ∈ Ii For I ∈ Ii For I ∈ Ii

Update U(I, b) using (11) Update P i(I; b) using (16) Choose a using (23)
For a ∈ A(I) Update P i(I;B) using (16) Update cn using (24)

Update regrets using (12) For a ∈ A(I) For a ∈ A(I)
Update bn using (13) Update bn using (21) Update bn using (25)
Update b̄n using (14)

player’s entire current strategy. This is the most costly part of all three algorithms,
requiring on the order of N̄(|I1| + |I2|) operations, where N̄ is the average number
vertices per information set. The remaining steps scale with the number of information
sets |I1|+ |I2|. For CFR, this includes calculating the expected values for the current
strategy profiles bn(I) using (11), calculating the regrets (12), updating bn using (13),
and updating b̄n using (14). For XFP we must calculate two sets of reach probabilities
(16) and update bn using (21). For BDFP, we select a best option (23), update the
appropriate counter at each information set (24), and update bn using (25).

Finally, we note that the regret calculation (12) used in CFR is similar to the best
decision calculation (4) in that it is updated using the behavior strategies bn at the
previous time-step, and depends on both the opponent’s strategy and a player’s own
strategy at information sets that are encountered after the one that is being updated.
As a result, the BDFP and CFR updates can be done by visiting the information sets
in any order, a feature that may be useful in learning algorithms that sample nodes
randomly. This is in contrast to the XFP update, which makes use of the freshly
updated behavior coefficients as it works its way from the leaves to the root of the
game tree.

3 Convergence of Best Decision Fictitious Play

To prove that BDFP converges, we first expand Definition 1 to include an alternative
“better” response. We then show that BDFP is equivalent to one of these expanded
GFPs. Next, we use Theorem 1 to adapt Theorem 2 to establish convergence. Finally
we adapt a theorem due to Hofbauer and Sorin [13] to prove that the attractive set is
the set of NE.

We will need the mapping from behavior strategies to mixed strategies:

σi(s; b) =
∏
I∈Ii

b(I, a(s, I)), (26)
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where where a(s, I) is the action a ∈ A(I) consistent with the pure strategy s ∈ Si.
The better response required to show that (3) converges takes the form

δi(s; b) =
1

|Ii|
∑
Ī∈Ii

d(Ī , a(s, Ī); b)
∏

I ̸=Ī,I∈Ii

b(I, a(s, I))

=
1

|Ii|
∑
I∈Ii

σi(s; b)d(I, a(s, I); b)

b(I, a(s, I))
, (27)

where d is the best decision (4) introduced earlier. Note that δi is a mixed strategy,
whereas d is a behavior strategy, and that these depend on the strategies of both
opponents. As we did with σ, we will use δ without a superscript to indicate the vector
of better responses, one for each player.
Theorem 3. BDFP is realization equivalent to a generalized weakened FP with best
responses βϵ(σ) replaced by weakened better decisions δ.

Proof. Inserting (4) into the mapping from behavior strategies to mixed strategies
gives

σi
n+1(s; bn+1) =

∏
I∈Ii

bn+1(I, a(s, I))

=
∏
I∈Ii

[(
1− 1

n+ 1

)
bn(I, a(s, I)) +

1

n+ 1
d(I, a(s, I); bn)

]
.

Next, we isolate terms of O( 1n ) and larger from the product

σi
n+1(s; bn+1) =

(
1− |Ii|

n+ 1

) ∏
I∈Ii

bn(I, a(s, I))

+
1

|Ii|
∑
Ī∈Ii

|Ii|
n+ 1

d(Ī , a(s, Ī); bn)
∏

I ̸=Ī,I∈Ii

bn(I, a(s, I))

+
1

n+ 1
M i

n+1(s; bn), (28)

where we have grouped the finite number of higher order terms into the perturbation
M i

n+1. Letting

αn =
1

n
,

and rearranging (28) gives

σi
n+1 ∈ {

(
1− αn+1|Ii|

)
σi
n + αn+1

(
|Ii|δi +M i

n+1

)
}δi .

The weights αn are the same as those in standard FP and satisfy the requirements in
Definition 1, while the perturbations M i

n = O
(
1
n

)
decay sufficiently fast to ensure the
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requirement

lim
n→∞

sup
k
{||

k−1∑
j=n

αj+1Mj+1|| :
k−1∑
j=1

αj+1 ≤ T} = 0.

In the Leslie & Collins (2006) result, the relevant differential inclusion is (??). In
view of Theorem 3, we must consider instead the weakened better response defined
above. Since Theorem 1 is cast in terms of mixed strategies, we re-express the better
responses δi(s; b) as functions of σ rather than b. One can do this by using the mapping
from from mixed strategies to behavior strategies:

b(I, a;σ) =

∑
s∈Si

I(a)
σi(s)∑

s∈Si
I
σi(s)

=

∑
s∈Si

I(a)
σi(s)

P i(I)
, I ∈ Ii,∀a ∈ A(I), P i(I) > 0, (29)

where Si
I is the set of all pure strategies for player i that reach information set I

(controlled by i), and Si
I(a) is the subset of these where i plays action a. If player

i reaches I with zero probability, we can assign arbitrary values to b(I, a), as it will
make no difference.
Theorem 4. The set of limit points of a generalized weakened fictitious play pro-
cess with best responses βϵ(σ) replaced by weakened better decisions δ is a connected
internally chain-recurrent set of the differential inclusion

d

dt
σ(t) ∈ {(|I1|, |I2|)⊙ (δ(b(σ(t)))− σ(t))}δ ≡ F (σ(t)), (30)

where ⊙ indicates the element-wise product of two vectors.

Proof. When the domain of the best decision function is extended to all of R2 in
the same way discussed earlier for the best response function, F (σ) satisfies the
requirement of Theorem 1:

sup
z∈F (σ)

||z|| ≤ c(1 + ||σ||) ∀σ.

The requirements on the perturbation Mn in Definition 1 are the same as in Theorem
1, and were already shown to be satisfied in the proof of Theorem 3.

Finally, we must show that the attractors of the differential inclusion (30) are the
set of NE. We will follow the proof of Hofbauer & Sorin (2006), who show this for
(20). They do this by considering the total exploitability,

v(t) = V (σ1(t), σ2(t)) = max
σ1

u(σ1, σ2)−min
σ2

u(σ1, σ2)

= u(β1(σ2), σ2)− u(σ1, β2(σ1)) ≥ 0, (31)
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where we have expressed the utilities u(σ1, σ2) from player 1’s perspective. They show
that v(t) evolving under the best response differential inclusion (20) satisfies

d

dt
v(t) ≤ −v(t),

implying
v(t) ≤ e−tv(0),

so that v(t) decays to zero. They also show how to adapt this to the discrete dynamics
of a FP process. An unexploitable strategy pair is a NE by definition.

Arguments similar to that of Hofbauer & Sorin apply to (30) if we replace the best
responses with the weakened better response δi. To this end, let δ̃i(t) = δi(b(σ(t)))
and then define a similarly weakened measure of exploitability:

ṽ(t) = Ṽ (σ(t)) = u(δ̃1(t), σ2)− u(σ1, δ̃2(t)) ≥ 0,

where the inequality follows from the linearity of utility in mixed strategies and each
player having improved, or left unchanged, the utility of each term in (27) from their
own perspective.
Theorem 5. Any generalized weakened fictitious play process with best responses βϵ(σ)
replaced by weakened better decisions δ(b) will converge to the set of NE in two-player
zero-sum games.

Proof. The function δ̃i(t) is piecewise constant for almost every t, hence its deriva-
tive vanishes whenever it exists, giving us the following result (compare Lemma 4 in
Hofbauer & Sorin (2006)):

d

dt
ṽ(t) = ∇σ2u(δ̃1(t), σ2(t)) · d

dt
σ2(t)−∇σ1u(σ1(t), δ̃2(t)) · d

dt
σ1(t) (32)

= |I1|
(
u(δ̃1(t), σ2(t))− u(σ1(t), σ2(t))

)
+

|I2|
(
u(δ̃1(t), σ2(t))− u(δ̃1(t), δ̃2(t))

)
−

|I1|
(
u(σ1(t), δ̃2(t))− u(δ̃1(t), δ̃2(t))

)
−

|I2|
(
u(σ1(t), δ̃2(t))− u(σ1(t), σ2(t))

)
(33)

≤ −max(|I1|, |I2|)
(
u(δ̃1(t), σ2(t))− u(σ1(t), δ̃2(t))

)
= −max(|I1|, |I2|)ṽ(t), (34)

where (33) follows from (30) and the linearity of the utility function in mixed strategies.
The above inequality implies

ṽ(t) ≤ e−max(|I1|,|I2|)tṽ(0),

with ṽ(t) decaying to zero. When this alternative measure of exploitability ṽ(t) reaches
zero, there is no information set at which either player can exploit the other. Working
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backward through the game tree, we can then see that the overall strategy is also a
best response. In other words, if we compute a best response in the manner described
in Section 2.2, we can do so without changing any of the best decisions, a result that
does not hold when ṽ > 0. This means we converge to strategies where both players
are playing a best response, hence we are at a NE.

4 Some Exactly Solvable Poker Models

In this section, we present an exact solution for one of the two poker models we will
use for comparing BDFP to CFR and XFP in the next section. While we will also
present numerical solutions for a game (Leduc poker) for which we do not have an
exact solution, having the solution is helpful in a couple of ways. First, we can use
the value for the game and the equilibrium strategy to verify that we have made no
coding mistakes, including mistakes where the exploitability may be decaying to zero,
but is doing so spuriously, or we are converging to the solution of the wrong game.
Second, these games can often exhibit a continuum of solutions, in which case the
algorithms endlessly drift among an infinite number of possible NE. The analysis in
this section will explain why this happens, and motivate our later consideration of
numerical solutions in perturbed strategy spaces.

Perhaps the best known exactly solvable poker model within the game theory and
RL community is Kuhn Poker [14]. Kuhn poker is played with just a three-card deck,
and the solution to this game can easily be worked out by hand. Nevertheless, we will
see that it is closely related to the both of the games we end up using for our numerical
experiments in the next section.

The analysis of larger games is often absent from books on game theory, which
tend to focus on extremely simple games, e.g. rock-paper-scissors or the Prisoner’s
Dilemma. A notable exception to this occurs in The theory of games and economics
behavior [5], which features an in depth analysis of two models for the game of poker.
The text refers to these as the symmetric and asymmetric games. A footnote at the
opening of this discussion reveals that these models were largely responsible for von
Neumann’s original exploration of game theory in the 1920’s.

Of the two models considered by vN&M, the asymmetric one is more similar to
the actual game of poker. Further, it is more challenging from a computational per-
spective, as it possesses an infinite number of NE. While this is a useful starting point
for benchmarking, the game tree is not deep enough for the play-to-reach feature to
matter, as neither player has any control over which of their own informative sets are
reached. The game of poker, however, suggests many ways of generalizing this game
into a broad family of potential benchmark games that are still relatively easy to
implement.

In this section, we first review the results from vN&M for their asymmetric game,
and then introduce a generalized version that features a somewhat deeper game tree.
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4.1 Von Neumann and Morgenstern’s asymmetric game

The solutions to large games can be bewildering from a human perspective. A further
advantage of simplified models is that one can gain some intuitive understanding
of how more complicated games work. Starting with vN&M’s asymmetric game will
help us understand what is happening in the extended game we consider in the next
subsection.

In these two-player zero-sum games players are ‘dealt’ hands (private information)
that take the form of random numbers, and wager on who has the higher number.
Unlike Kuhn poker, the von Neumann model uses sampling with replacement, so that
the cards are dealt from separate decks. The discrete version of the game, where the
players are dealt random integers, 1 ≤ i ≤ N from an N -card deck is mentioned
in vN&M, but the text principally focuses on the continuous version of the game,
with hands x ∈ [0, 1]. We will refer to these as Neumann(N) and Neumann(∞),
respectively. The continuous version is more readily solved exactly, and the solutions
for the asymmetric game closely track that of the discrete game for large N . This will
be useful for understanding our numerical solutions.

In the asymmetric game1, each of the players ante an amount A, forming a pot
P = 2A, and then take turns deciding whether or not to place an additional bet B.
The players are betting on their private information—the value of a random number
dealt to them after placing their antes, but before making the additional bets. The
first player to act may either check (i.e. bet zero) or place a bet of fixed size B > 0. In
the vN&M model, the second player only acts if this bet is placed, and then has the
option to fold or call. If the second player folds, the first player receives the antes. If
the fist player checks or the second player calls, the pot is distributed according to the
highest hand. In their text, vN&M introduce what would later be called a behavior-
strategy description of these games, where bi(x, a) describes the fraction of time player
i takes action a at each information set. They find this game to have a continuum
of optimal solutions (equivalent to NE, which had not yet been invented). The first
player plays the same strategy in all of these, having two thresholds between which
they never bet, and outside of which they always bet:

x1 =
AB

4A2 + 5AB +B2
,

x2 =
2A2 + 4AB +B2

4A2 + 5AB +B2
.

The lower region corresponds to a bluff. In the modern recreational poker literature,
betting one’s weakest and strongest hands is referred to as betting a polarized range.
Despite its simplicity, the model captures this significant insight into poker strategy.
The second player has an infinite number of choices that achieve NE. If we let b2(y, call)

1We have adopted a more modern poker parlance, but the game is equivalent to the version described by
von Neumann and Morgenstern with the “low bid” and “high bid” options.
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Fig. 1 The discrete version of vN&M’s asymmetric game with P = 1, B = 1 and N = 100 hands.
The purple curves correspond to no perturbation, ϵ = 0; the green curves are the perturbed game with
ϵ = 0.01. Top row: the fractions with which player 1 bets (left panel) and player 2 calls (right panel),
along with the thresholds for the continuous game (blue vertical lines). Bottom row: the difference
in the expected value of player 1’s options (left panel) and player 2’s options (right panel).

be the fraction of time the second player calls a bet when facing one, vN&M show that

1

x2 − z0

∫ x2

z0

b2(y, call)dy

{
= A

A+B if z0 = x1

≥ A
A+B if x1 < z0 < x2

are both necessary and sufficient conditions for equilibrium. Among these choices,
there is a single, weakly-dominant strategy where the second player always folds/calls
below/above a threshold

y1 =
3AB + 2B2

4A2 + 5AB +B2
.

Numerical solutions using any of the algorithms described above reveal an anal-
ogous result, where player 2’s strategy endlessly drifts among weakly dominated
strategies. For this reason, we consider both the perturbed game, where each option
at a given information set is played with a minimum probability, b(I, a) ≥ ϵ, and the
non-perturbed game. This is straightforward with BDFP, as we simply constrain the
best decision:

dϵ(I, a) = ϵ+ (1− ϵ)δaã, where ã ∈ argmax
a∈I

U(I, a; bn). (35)

A similar calculation can be made when computing best responses with XFP, while
CFR requires a somewhat more complicated adjustment [15]. In Figure 1, we present

15



results for the game with N = 100 uniformly distributed hands. These results are
consistent with those shown in vN&M.

The graphs in the top row are the fractions with which player 1 bets (left panel)
and player 2 calls (right panel). For player 1, the unperturbed result (shown in purple)
and the perturbed result with ϵ = 0.01 (shown in green) are nearly indistinguishable,
indicative of there being a unique strategy for player 1 at equilibrium. For comparison,
the thresholds given above for the continuous version of the game are shown as blue
vertical lines. For player 2, the perturbed result is unique and approximates the solu-
tion with pure-strategy thresholds given above, while the unperturbed result endlessly
drifts among the set of NE that employ a weakly-dominated strategy for player 2.

In the bottom row of Figure 1, we graph the difference in the expected value of
player 1’s options (left panel) and player 2’s options (right panel), with a positive
difference corresponding to the betting and calling options, respectively. From the
left panel, we see that player 2’s weakly dominated strategy is outperformed by the
dominant one if player 1 is forced to bet with probability ϵ in the region where the
unperturbed strategy is to check. Examining the lower-right panel, we see that there
is no significant difference in player 2’s perturbed and unperturbed payoff, as player 1
plays a nearly equal strategy in each case. We also see that the ambivalence in player
2’s strategy is due to being indifferent between calling and folding throughout the
region where mixed equilibria exist.

4.2 Expanded Neumann Poker

We will consider a more computationally demanding version of the asymmetric game
that allows for a bet and a single raise, including the possibility of a check-raise. This
game has been briefly addressed in a book aimed at recreational poker players, but
the discussion omits the details given below [16].

For the continuous version of the game, a NE using pure-action choices containing
12 thresholds exists, but the strategy for player 1 is weakly dominated by an infinite
number of other strategies, including pure-action strategies that feature two additional
thresholds. This differs from what happens in the vN&M game, where there is a
unique pure-action NE with the smallest number of thresholds and weakly dominant
strategies. For the expanded game just described, the linear system of equations that
determines the full set of thresholds is singular, leading to a degeneracy of pure action
equilibria. The numerical results presented in the next section reveal that the discrete
version of this game also features an infinite number of mixed strategy NE, with this
occurring for both players.

When the pot P = 2A = 1, bet B = 1 and raise R = 1, the eight thresholds for
player 1 are {x1 = 64/1083, x2 = 369/722, x3 = 10/19, x4 = x5 − 32/1083, x5, x6 =
307/361, x7 = x8 − 22/361, x8}, where x5 and x8 can be chosen arbitrarily so long as
all of the thresholds remain in ascending order. These correspond to nine intervals of
hands where player 1 takes a specific sequence of actions: {bet-fold < check-fold <
check-raise < check-call < bet-fold < check-call < bet-call < check-raise < bet-call}.
The six thresholds for the second player divide into two sets of three: {y11 = 8/57, y12 =
41/57, y13 = 15/19}, corresponding to four intervals where player 2 responds to a
check with the actions {bet-fold < check < bet-fold < bet-call} and {y21 = 1/2, y22 =
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10/19, y23 = 17/19} where player 2 responds to a bet with the actions {fold < raise <
fold < call}.

5 Numerical experiments

In this section we compare numerical solutions using all three of the algorithms dis-
cussed earlier. Our first set of experiments use an expanded form of Leduc poker [17],
a model game that incorporates some additional aspects of real poker variants. We
then explore numerical solutions of the expanded version of Neumann poker discussed
in Section 4.2. These games can be considered with an arbitrary number of card ranks
Nr and allowed bets Nb per betting round. We will indicate these as Leduc(Nr,Nb)
and Neumann(Nr,Nb). Table 3 summarizes the essential differences between these and
Kuhn poker. Below, we present results for Leduc(10,2) and Neumann(100,2), with the
former having a deeper and the latter a wider game tree. These variants were chosen
to have a similar computational complexity.

Table 2 Characteristic features of the poker models.

replacement duplicates betting rounds
Neumann Y 0 1
Kuhn N 0 1
Leduc N 1 2

5.1 Leduc Poker

Standard Leduc, or Leduc(3,2), uses a deck of six cards—two copies for each of three
ranks. Like Kuhn poker, Leduc poker is played without replacement. Players initially
ante and are allowed a bet and up to one raise as in Neumann(Nr,2), discussed in the
previous section. If neither player folds, a card that is shared by both players is dealt,
so that each player has a two-card hand. When comparing hands, a pair beats any
non-paired hand. Unlike Kuhn and Neumann poker, there is a second betting round
after the community card is dealt. Leduc(10,2) is played the same way, but with a
deck consisting of two copies for each of ten ranks.

To make comparisons between the three algorithms discussed earlier, we examine
plots of the utility of the current strategy pair u1(b1n, b

2
n) and the total exploitability

v(t) ≥ 0, defined in equation (31). In principle, the former should converge to the
value of the game, but in practice there is some numerical error due to finite precision
arithmetic. The total exploitability serves as a measure of this error.

In the top panel of Figure 2 we plot the expected value of the current strategy pair
returned by the three algorithms at intervals of 1, 000 iterations. A sample for each of
the three algorithms is shown for random initial data: BDFP in purple, CFR in blue
and XFP in green. The algorithms all converge to a value around −0.0165 in favor of
player 2. As mentioned earlier, the cost per iterations is similar for the three methods,
with BDFP only slightly faster.
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While getting the correct value of the game is desirable, a better measure of error
is the total exploitability. In the middle panel, we plot this quantity at every 1, 000
iterations for the same samples presented in the top panel. The BDFP exploitabil-
ity fluctuates somewhat. While the scale of the fluctuations tends to decrease as the
computation proceeds, one can achieve significantly better results sooner by moni-
toring the exploitability. For example, in these calculations BDFP would have met a
v(t) ≤ 10−3 stopping criteria at just 111, 000 iterations. If desired, one can avoid these
fluctuations by including an additional averaging step, like that in CFR. We plot the
simple running average in Figure 2, where we see it is nearly coincident with the XFP
data in the middle panel. There is a small disadvantage to this approach in that it
requires slightly more memory. Also, despite the monotone decrease in exploitability,
it took 21,000 more iterations to meet the same stopping criteria. Finally, we note that
the averaging is not necessary for convergence. As further evidence of this, the lower
panel includes the unaveraged CFR data, which does not converge. On this scale the
BDFP fluctuations are barely noticeable, as the exploitability of all three methods is
already near zero after 1,000 iterations.

5.2 Neumann(100,2)

As with the vN&M’s asymmetric game, the degeneracy of the Neumann(100,2) solu-
tions means that the numerical solution will drift among the possible equilibria. This
makes direct comparison of the strategy profiles generated by the methods difficult.
Thus in our first figure in this section we present only a single realization generated by
BDFP. The CFR and XFP algorithms give qualitatively similar results, as do other
initial conditions. In the rest of the section we will be able to make direct comparisons.

In Figure 3 we plot the strategies returned by the BDFP algorithm as a function
of the hand strength, 1 ≤ i ≤ 100. In the top panel, the purple curve is the probability
of checking, followed by folding to a bet; the green curve is the probability of checking,
followed by calling a bet, and the light blue curve is the probability of checking,
followed by raising, these three quantities adding to one. The remaining two strategy
sequences, bet-call (dark blue) and bet-fold (gold) also add to one. The middle panel
is player 2’s response to an initial check from player 1: either another check (green),
a bet followed by a fold if raised (purple), or a bet followed by a call if raised (light
blue), these three quantities adding to one. The bottom panel is player 2’s response
to an initial bet from player 1: either fold (gold), call (red), or a raise (dark blue),
with these three quantities again adding to one. The main thing to notice here is that
there is a mixture of strategies being used for most hands, indicative of the type of
degeneracy we saw in the asymmetric game, only this time it occurs for both players.

As with the asymmetric game, we find that we can again remove the weakly domi-
nated strategies by approximating the equilibria subject to a small perturbation. The
results for doing this with all three algorithms are shown in Figure 4, along with the
unperturbed solution from Figure 2 and the thresholds for the continuous version of
the game. The two arbitrary thresholds (x5 and x8) were roughly fit to these graphs,
but the fit of all other thresholds provides a useful way of detecting coding errors. The
mixing near the thresholds is due to boundary effects inherent to the discrete game
and diminishes as the number of possible hands increases. Some of these regions are
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Fig. 2 Numerical solution of Leduc(10,2) with P = 1, B1 = 1, B2 = 2. Top panel: the expected value
of the current strategy pair (from player 1’s perspective) returned at intervals of 1, 000 iterations.
A sample for each algorithm is shown for random initial data: BDFP in purple, CFR in blue and
XFP in green. Middle panel: the corresponding plots for total exploitability, along with the running
average of the BDFP data in purple. Bottom panel: the same exploitability plots compared to the
unaveraged CFR data in blue. On this scale, the exploitability curves for all three methods are barely
distinguishable.

very narrow, so the discretization affects the result more strongly. The results for the
three algorithms are nearly identical, as expected.

In the top panel of Figure 4 we plot the expected value of the current strategy pair
(from player 1’s perspective) returned by the three algorithms at intervals of 10, 000
iterations, along with the the exact value of − 44

1083 ≈ 0.406 for the continuous ver-
sion of the game, shown in gold. A sample for each of the three algorithms is shown
for random initial data. We omitted the running average of the BDFP data, as the
fluctuations were less significant in this case. Results vary with initial conditions, but
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Fig. 3 Numerical solution of the benchmark game with P = 1, B = 1, R = 1 and N = 100 hands.
Top panel: the probability with which player 1 takes the action sequences check-fold (purple), check-
call (green), check-raise (light blue), bet-call (dark blue), and bet-fold (gold). Middle panel: player
2’s response to an initial check from player 1: either check (green), bet-fold (purple), or bet-call (light
blue). Bottom panel: player 2’s response to an initial bet from player 1: either fold (gold), call (dark
blue), or raise (red).

are qualitatively similar. The numerical solutions will get closer to the solution for
the continuous version of the game as N → ∞, but round off error will prevent them
from achieving this solution exactly. In the lower panel, we plot the total exploitabil-
ity at every 10, 000 iterations for the same samples presented in the top panel. The
exploitability and the rate at which it decays is similar for all three methods.

In Figure 5, we compare the performance of all three algorithms for the generalized
NE with ϵ = 0.01. In the top panel, the curves are once again the utility of the
current strategy pair from player 1’s perspective returned by BDFP (purple), CFR
(light blue) and XFP (green) at intervals of 10, 000 iterations. The bottom panel is the
exploitability using the same color scheme. Note that convergence for the perturbed
game is much faster than for the unperturbed one, a result of the degenerate NE
making convergence much more difficult to achieve.

6 Summary

In this work we have introduced a new algorithm, BDFP, that is realization equivalent
to a generalized form of Fictitious Play, thus inheriting the convergence properties of
that class of algorithms. We then compared the computational performance of BDFP
to that of two additional algorithms, CFR and XFP, using both a well-known poker
benchmark and an expanded version of a simple poker model first introduced by von
Neumann and Morgenstern. We also presented an exact solution for the continuous
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Fig. 4 Probability with which Player 1 (top) and Player 2 (middle and bottom) play the action
sequences described in the text as a function of hand strength for the numerical solution of perturbed
(ϵ = 0.01) Neumann(100,2) using all three algorithms. The solutions are nearly identical, so that these
curves overlap. The color scheme is the same as that described in the last figure. We also plot the
solution for the unperturbed (ϵ = 0.0) game using BDFP (all blue, thin line) for P = 1, B = 1, R = 1,
and N = 100, along with the thresholds (black vertical lines) for the continuous version of the game.

version of this game that is useful for testing the algorithms. Like vN&M’s original
game, this game features an infinite number of NE. As a result, a variation of the
game with a perturbed strategy space and a unique equilibrium was also considered.
This generalized NE is computed more quickly and is easier to interpret.

The computational cost per iteration is comparable for all three algorithms.
BDFP’s simple update formula relies on a best decision calculation that is intuitive
and, at least in some approximate sense, routinely used to make decisions in recre-
ational games. This makes it an ideal choice for anyone looking for a quick and easy
game solving tool.

Finally, all three algorithms converged much more quickly when using updates
that alternate between the two players, using the opponent’s most recently updated
strategy rather than the strategy from the previous iteration. This is a well-known
feature of algorithms of this type, and is, for example, largely responsible for CFR+’s
faster convergence [10, 18].
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Fig. 6 Perturbed (ϵ = 0.01) Neumann(100,2) with P = 1, B = 1, and R = 1. Top panel: the
expected value of the current strategy pair (from player 1’s perspective) returned at intervals of
10, 000 iterations. A sample of each algorithm is shown for random initial data: BDFP in purple,
CFR in light blue and XFP in green. Bottom panel: the corresponding plots for total exploitability.
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