AN ELEMENTARY INTRODUCTION
TO WHAT I DO FOR MY RESEARCH.

STEFAN RICHTER

My research falls into the category of foundations research. While there are
general applications looming in the background, in my day to day work a typi-
cal "application” of a theorem would be to answer other mathematical questions.
Specifically, I work in an area called function theoretic operator theory. The basic
goal is to use methods and concepts from Complex Analysis to answer questions
from Functional Analysis. Functional Analysis is a fancy (and shorter) name for
Linear Algebra on infinite dimensional vector spaces with a little topology thrown
in.

I will now try to motivate and present some of the highlights of an early success
story of this theory and then tell you that I work on related questions .

One of the main theorems in linear algebra on finite dimensional vector spaces
is the Jordan decomposition theorem for linear transformations

T:C"— C".

Here C denotes the complex numbers. Rough spoken it is a decomposition of the
space C™ into subspaces M;, i = 1,..,p such that each M, corresponds to an
eigenvalue \; of T. The subspaces M; correspond to the Jordan blocks of the
Jordan canonical form of 7. Recall that A € C is an eigenvalue for T' if there is a
nonzero vector x € C" such that Tx = Ax, and that the Jordan canonical form for
T looks something like
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In this example M; and My correspond to the eigenvalue A\; and are 3- and 2-
dimensional subspaces respectively. Mgz corresponds to Ao and is 2-dimensional,
etc.

The subspaces M; in this decomposition are invariant subspaces for T, i.e.
Tx € M, for every x € M;.

Now let H = 12 = {(ag, a1, a2, ...) : a; € C, Y la,|? < oo}, the space of square
summable sequences, and let

T:H—H
be linear and continuous. 7' is called a linear operator.

Open Question. (The invariant subspace problem)
If T : H — 'H is a linear operator, does T have nontrivial invariant subspaces?

That is, is there a closed subspace M C H, M # {0} and M # H, and such that
Tx € M for every x € M.

Of course, if T has an eigenvalue, then the corresponding eigenspace is an in-
variant subspace. Since every linear transformation 7' : C" — C" has eigenvalues
it follows that such 7" has nontrivial invariant subspaces whenever n > 2. How-
ever, on ‘H there are many linear operators that do not have any eigenvalues. An
example is given by the unilateral shift operator S : H — H. It is defined by

S(ao,al,ag, ) = (O,CLo,al,ag, )

Exercise. Show that the unilateral shift S is a linear operator that has no eigen-
values.

It is easy to see that the unilateral shift S has nontrivial invariant subspaces.
For example, we can let M,, be the subspace of square summable sequences such
that the first n components are 0. Then it is clear that for each z € M,, we have
Sx € Mpuy1 € M,,. Does S have any other invariant subspaces? Plenty! Many
more will become apparent once we reformulate the question by use of the Fourier
transform. We define the Hardy space H? to be a space of complex-valued analytic
functions on the open unit disc D = {z € C: |z| < 1} C C. More precisely, we set

H*={f:D—C: f(z) = Zanz” for ZGD,Z|CLn|2 < oo},
n=0 n=0

and define the Fourier transform from H to H? by
(ag,a1,as,...) — f, where f(z) = Zanz”.
n=0

Note that H? contains all the polynomials. On the space H? we can define the
operator of multiplication by z, i.e.

(M. f)(2) = 2f(2) for f e H.
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Then M, (307 qanz™) = > 0  janz" ™ =377 a,_12", and it is easy to see that
the Fourier transform provides a unitary equivalence between S and M, .

Now let {c1,ca,...,c,} be a finite subset of . Then we can set
M={fecH?: f(c;) =0,i=1,....,n}.

It is easy to see that M is a closed subspace of H? and it is clear that M is
invariant for M,. It is also easy to see that M is a nontrivial subspace of H2. In
fact, since 1 ¢ M we have M # H?, and we also note that p(z) = [, (c; — 2)
is a polynomial in M, p # 0, hence M # {0}. Thus, we have already found new
invariant subspaces of S, and one can go one step further. Let {c1,c2,...} be an
infinite subset of D, and set

M={fecH*: f(c;)=0,i=1,..}.

As before, it is easily seen that M C H? is an invariant subspace of M, and that
M # H?. But it is not clear that M # {0}! The first temptation would be to try
to set f(z) = [[;=;(ci — z). But such an infinite product never defines a function
in H?, there is a problem with the convergence here. On the other hand, if the
sequence {ci,ca, ...} is dense in D, then every continuous function f that is zero
at each point z = ¢; must be zero at every z € D. It is a good advanced calculus
exercise to verify this. The following precise description of when M # {0} is due
to F. Riesz and goes back to the 1920s.

Theorem. M # {0} if and only if > .~ ;1 —|c,| < .
Furthermore, if 37,7 1 1 — |ea| < o0, then B(z) = [[;Z, di{*z% converges and

defines a function in H?. Here d; = 1, if ¢; = 0 and d; = % otherwise. The
function B is called a Blaschke product.

It turns out that there are even more invariant subspaces for M,. One can show
that functions f € H? have "boundary values” f(w) that are defined for a.e. w € oD
(with respect to Lebesgue measure on D). One then needs an interpretation what
one means by a zero of a function f in 0D. The function theoretic description of
all invariant subspaces of S was given by A. Beurling in 1949.

Theorem. There is a 1-1 correspondence between the nonzero invariant subspaces
M of the unilateral shift and the 7inner” functions ¢. An inner function is a func-
tion that can be written as ¢ = BS, where B is a Blaschke product as in the previous
theorem and S is a singular inner function of the form S(z) = e~ Jop w5 do(w) for
some measure o on 0D that is singular with respect to Lebesgue measure on OD.

The singular inner functions S can been seen to exponentially decay near the
(small) set in 0D where the measure o lives.
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Much of my research here at UT I do with my colleague Carl Sundberg. Moti-
vated by a set-up similar to what was outlined above, we investigate similar ques-
tions for other linear operators. Often linear operators can be seen to be unitarily
equivalent to M, on spaces of analytic functions other than H?, or they may be
unitarily equivalent to M, (M, f = ¢f for some function ¢). For example, in the
paper A. Aleman, S. Richter, C. Sundberg, Beurling’s Theorem for the Bergman
space, Acta Math. 177 (1996), 275-310, MR 98a:46034 we prove an analogue of the
above theorem of Beurling for the Bergman space L2. L2 consists of all analytic
functions f in D that are square area integrable, i.e. [ |f(2)|*dzdy < oo, z = z+iy.
An overview about some results about the Bergman space (through about 2001)
can be obtained by reading a book review I wrote: S. Richter (reviewer), Theory of
Bergman spaces, by Haakan Hedenmalm, Boris Korenblum, and Kehe Zhu, Bull.
Amer. Math. Soc. 39 (2002), 121-127.

Recently, we also got interested in trying to understand certain properties of
tuples of linear operators (71,75, ...,T,,). In that case one can transform questions
about the operator tuple into questions about analytic functions of several complex
variables, see e.g. D. Greene, S. Richter, C. Sundberg, The structure of inner
multipliers on spaces with complete Nevanlinna-Pick kernels, J. Funct. Anal. 194
(2002), 311-331, and J. Gleason, S. Richter, C. Sundberg, On the index of invariant
subspaces in spaces of analytic functions of several complex variables, preprint.



