The index of invariant subspaces in spaces of analytic functions.

1. The unit disc: A quick overview.

2. The unit ball in \mathbb{C}^d

(joint work by:

Jim Gleason, Stefan Richter, and Carl Sundberg, University of Tennessee) $\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \}$

 $\mathcal{H} \subseteq \operatorname{Hol}(\mathbb{D})$

 $M(\mathcal{H}) = \{ \varphi \in \operatorname{Hol}(\mathbb{D}) : \varphi f \in \mathcal{H} \text{ for all } f \in \mathcal{H} \}$ (the multiplier algebra)

Assumptions:

- **1.** $z \in M(\mathcal{H})$, so $M_z : \mathcal{H} \to \mathcal{H}$.
- **2.** $\sigma(M_z) = \overline{\mathbb{D}}, \ \sigma_e(M_z) = \partial \mathbb{D}$
- **3.** dim $\mathcal{H}/z\mathcal{H} = 1$

Then by **2.** ran $(M_z - \lambda)$ is closed $\forall \lambda \in \mathbb{D}$, hence $||(M_z - \lambda)f|| \ge c_{\lambda}||f||$ for all $f \in \mathcal{H}, \lambda \in \mathbb{D}$.

If $1 \in \mathcal{B}$, then **2.** and **3.** hold, if and only if

$$f \in \mathcal{H}, \ \lambda \in \mathbb{D}, \ f(\lambda) = 0 \implies \frac{f}{z - \lambda} \in \mathcal{H}.$$

 $\mathcal{M} \in Lat(M_z, \mathcal{H})$

ind
$$\mathcal{M} = \dim \mathcal{M} / z \mathcal{M}$$

Why consider ind ${\mathcal M}$?

it is a unitary invariant for $M_z|\mathcal{M}$

 $\sigma_e(M_z|\mathcal{M}) = \partial \mathbb{D}$ if and only if $\operatorname{ind} \mathcal{M} < \infty$

 $\sigma_e(M_z|\mathcal{M}) = \overline{\mathbb{D}}$ if and only if $\operatorname{ind}\mathcal{M} = \infty$.

It is related to the Fredholm index of $M_z|\mathcal{M}$: ind $\mathcal{M} = -indM_z|\mathcal{M} = -ind(M_z - \lambda)|\mathcal{M}$ = dim $\mathcal{M}/(z - \lambda)\mathcal{M}$ for all $\lambda \in \mathbb{D}$ Easy fact: If $\mathcal{M} \neq (0)$ and if $\mathcal{M} = [f]$

or

$$\mathcal{M}=$$
 zero set based,

then ind $\mathcal{M} = 1$.

Thm 1. (Beurling's Thm)

If $\mathcal{H} = H^2(\mathbb{D})$, then $\operatorname{ind} \mathcal{M} = 1$ for all $\mathcal{M} \neq (0)$ and if $\varphi \in \mathcal{M} \ominus z\mathcal{M}$, $||\varphi|| = 1$, then

$$\mathcal{M} = \varphi H^2(\mathbb{D}).$$

Thm 2. (a) (ABFP) If \mathcal{H} is a Hilbert space as above and such that

 $||zf|| \leq ||f||$ and $||z^n f|| \rightarrow 0$ for all $f \in \mathcal{H}$, then for each $n = 1, 2, ..\infty$ there is an \mathcal{M} with ind $\mathcal{M} = n$.

(b) (Abakumov-Borichev) p > 2 $\mathcal{B} = l^p = \{f \in Hol(\mathbb{D}) : \sum |\widehat{f}(n)|^p < \infty\}$, then for each $n = 1, 2, ..\infty$ there is an \mathcal{M} with $ind\mathcal{M} = n$. Bergman space

$$L_a^2 = \{f \in \operatorname{Hol}(\mathbb{D}) : \int_{\mathbb{D}} |f|^2 \frac{dA}{\pi} < \infty\}$$

Thm 3. (ARS) If $\mathcal{M} \in Lat(M_z, L_a^2)$, if

 $\mathcal{D}=\mathcal{M}\ominus z\mathcal{M},$

then there is a space \mathcal{K} of \mathcal{D} -valued analytic functions such that

$$H^2 \otimes \mathcal{D} = H^2_{\mathcal{D}} \subseteq \mathcal{K} \subseteq L^2_{a\mathcal{D}} = L^2_a \otimes \mathcal{D}$$

and the \mathcal{D} -valued polynomials are dense in \mathcal{K} and $M_z|\mathcal{M}$ u.e. $M_z|\mathcal{K}$.

(HJS) (McCullough-R) In fact, K has an operatorvalued reproducing kernel of the type

$$k_{\lambda}(z) = \frac{I_{\mathcal{D}} - z\overline{\lambda}V(z)V(\lambda)^{*}}{(1 - z\overline{\lambda})^{2}}$$

for some contractive analytic $V(z) : \mathcal{D} \to \mathcal{D}$.

Thm 4. (a) If $M(\mathcal{H}) \subseteq \mathcal{H}$ dense, then

whenever $\mathcal{M} \cap M(\mathcal{H}) \neq (0)$, then ind $\mathcal{M} = 1$.

This applies to many spaces $\mathcal{H} \subseteq H^2(\mathbb{D})$ and all $\mathcal{M} \neq (0)$ (Dirichlet-type spaces).

(b) (ARS) Let $\mu > 0$, supp $\mu \subseteq \overline{\mathbb{D}}$, $1 \leq t < \infty$, $\mathcal{H} = P^t(\mu) = closure of polys in <math>L^t(\mu)$.

If $P^t(\mu)$ is irreducible and abpe $P^t(\mu) = \mathbb{D}$, then

TFAE:

(1) every $\mathcal{M} \neq (0)$ has ind $\mathcal{M} = 1$,

(2) $\mu |\partial \mathbb{D} \neq 0$, *i.e.* $\exists f ||z^n f|| \not\rightarrow 0$,

(3) $\exists E \subseteq \partial \mathbb{D}$, |E| > 0: all $f \in \mathcal{H}$ have nontangential limits a.e. on E. The majorization function

$$k_{\mathcal{M}}(\lambda) = \frac{||P_{\mathcal{M}}k_{\lambda}||}{||k_{\lambda}||},$$

where k_{λ} is the reproducing kernel for $\mathcal{H}_{,} < f, k_{\lambda} > = f(\lambda)$, and $P_{\mathcal{M}} =$ projection onto \mathcal{M} .

For $\mathcal{M} = \varphi H^2 \in \operatorname{Lat}(M_z, H^2)$ one checks that $k_{\mathcal{M}}(\lambda) = |\varphi(\lambda)|.$

Thm 5. (ARS, 2002) If $\mathcal{M} \in Lat(M_z, L_a^2)$ with ind $\mathcal{M} = 1$, then

TFAE:

(1) every \mathcal{N} with $\mathcal{M} \subseteq \mathcal{N}$ has ind $\mathcal{M} = 1$,

(2) $\exists E \subseteq \partial \mathbb{D}, |E| > 0$:

$$nt-\underline{\lim}_{\lambda\to z}k_{\mathcal{M}}(\lambda)>0 \quad \forall z\in E,$$

(3) $\exists E \subseteq \partial \mathbb{D}, |E| > 0$:

$$nt-\lim_{\lambda\to z}k_{\mathcal{M}}(\lambda)=1 \,\,\forall z\in E.$$

(1) \Leftrightarrow (2) holds for many other \mathcal{H} .

d > 1, $\mathcal{B}_d = \{z \in \mathbb{C}^d : |z| < 1\}$ $\mathcal{H} \subseteq \operatorname{Hol}(\mathcal{B}_d)$ Examples: $\langle z, w \rangle = \sum_{i=1}^{d} z_i \overline{w}_i$. (1) $\mathcal{H} = H^2(\partial \mathcal{B}_d), \quad M(H^2(\partial \mathcal{B}_d)) = H^\infty(\mathcal{B}_d)$ reproducing kernel $k_w(z) = \frac{1}{(1-\langle z,w \rangle)^d}$. (2) $\mathcal{H} = L^2_a(\mathcal{B}_d), \quad M(L^2_a(\mathcal{B}_d)) = H^\infty(\mathcal{B}_d)$ reproducing kernel $k_w(z) = \frac{1}{(1-\langle z,w \rangle)^{d+1}}$. (3) $\mathcal{H} = H_d^2$, $M(H_d^2) \subsetneq H^\infty(\mathcal{B}_d)$

reproducing kernel $k_w(z) = \frac{1}{1 - \langle z, w \rangle}$.

$$M_z = (M_{z_1}, ..., M_{z_d})$$

If $\lambda = (\lambda_1, ..., \lambda_d) \in \mathcal{B}_d$, then $M_z - \lambda = (M_{z_1} - \lambda_1 I, ..., M_{z_d} - \lambda_d I)$

 $\mathcal{M} \in Lat M_z$ i.e. $z_i \mathcal{M} \subseteq \mathcal{M}$ for i = 1, ..., d

Facts:

(1) If $\mathcal{M} \in \text{Lat}(M_z, H^2(\partial \mathcal{B}_d))$, $\mathcal{M} \neq (0)$, then $\operatorname{nt-} \lim_{\lambda \to z} k_{\mathcal{M}}(\lambda) = 1$ a.e. $z \in \partial \mathcal{B}_d$.

(follows easily from the existence of nontangential limits of functions in $H^2(\partial \mathcal{B}_d)$ and the form of the norm $||f||^2 = \int_{\partial B_d} |f|^2 d\sigma$.)

(2) If
$$\mathcal{M} \in Lat(M_z, L^2_a(\mathcal{B}_d))$$
, then ?

(Expect all hell to break loose in general.)

(3) If $\mathcal{M} \in Lat(M_z, H_d^2)$, $\mathcal{M} \neq (0)$, then

(a) (Arveson, McCullough-Trent) $\exists \varphi_n \in \mathcal{M} \cap M(H_d^2)$ such that

$$P_{\mathcal{M}} = \sum_{n} M_{\varphi_n} M_{\varphi_n}^*,$$

and in fact

$$\mathcal{M} = \Phi(H_d^2 \otimes \mathcal{E}),$$
$$\Phi = (M_{\varphi_1}, M_{\varphi_2}, \dots) : H_d^2 \otimes \mathcal{E} \to H_d^2.$$

(b) (Greene-R-S) If φ_n are as in (a) , then $\sum_n |\varphi_n(z)|^2 = 1$ a.e. $z \in \partial \mathcal{B}_d$.

Note:

$$k_{\mathcal{M}}^{2}(\lambda) = \frac{\langle P_{\mathcal{M}}k_{\lambda}, k_{\lambda} \rangle}{||k_{\lambda}||^{2}} = \frac{\sum_{n} ||\overline{\varphi_{n}(\lambda)}k_{\lambda}||^{2}}{||k_{\lambda}||^{2}} = \sum_{n} |\varphi_{n}(\lambda)|^{2}$$

Want to consider

$$\mathcal{M}/(z_1\mathcal{M}+..+z_d\mathcal{M})$$

or

$$\mathcal{M}/((z_1 - \lambda_1)\mathcal{M} + .. + (z_d - \lambda_d)\mathcal{M})$$

Problem 1:

If $z_1 \mathcal{H} + .. + z_d \mathcal{H}$ is closed in \mathcal{H} , is $z_1 \mathcal{M} + .. + z_d \mathcal{M}$ closed in \mathcal{M} for all \mathcal{M} ?

Open even for all spaces as above.

Problem 2:

Is

$$\dim \mathcal{M}/((z_1-\lambda_1)\mathcal{M}+..+(z_d-\lambda_d)\mathcal{M})$$
 independent of $\lambda?$

<u>NO!</u>

 \mathcal{H} as above, $\mathcal{M} = \{f \in \mathcal{H} : f(0) = 0\}$

Then $z_1,...,z_d \in \mathcal{M} \ominus (z_1\mathcal{M}+..+z_d\mathcal{M})$,

In fact,

$$\dim \mathcal{M}/(z_1\mathcal{M} + .. + z_d\mathcal{M}) = d,$$

but

$$\dim \mathcal{M}/((z_1 - \lambda_1)\mathcal{M} + .. + (z_d - \lambda_d)\mathcal{M}) = 1$$

for all $\lambda \neq 0$ (easy, but also follows from main theorem)

Note:

 $0 \in Z(\mathcal{M}) = \{\lambda \in \mathcal{B}_d : f(\lambda) = 0 \text{ for all } f \in \mathcal{M}\}.$

In d = 1 the index on $Z(\mathcal{M})$ is finessed with the Fredholm index.

In d > 1 the definition of fredholmness and Fredholm index involves the <u>Koszul</u> complex.

The Koszul complex for $(M_z - \lambda)|\mathcal{M}$:

$$0 \to \Lambda^{0}(\mathcal{M}) \xrightarrow{\partial_{0,\lambda}} \Lambda^{1}(\mathcal{M}) \xrightarrow{\partial_{1,\lambda}} \cdots \xrightarrow{\partial_{d-1,\lambda}} \Lambda^{d}(\mathcal{M}) \to 0,$$

where $\Lambda^p(\mathcal{M})$ is a Hilbert space and

 $\partial_{p,\lambda}$ is a bounded linear operator dependent on $(M_z - \lambda)|\mathcal{M}.$

 $\lambda \notin \sigma_e(M_z|\mathcal{M})$ or $(M_z - \lambda)|\mathcal{M}$ is Fredholm, if ran $\partial_{p,\lambda}$ is closed for all p and

$$\dim \frac{\ker \partial_{p,\lambda}}{\operatorname{ran} \partial_{p-1,\lambda}} < \infty \text{ for all } p$$

$$\operatorname{ind}(M_z - \lambda) | \mathcal{M} = \sum_{p=1}^d (-1)^p \dim \frac{\ker \partial_{p,\lambda}}{\operatorname{ran}\partial_{p-1,\lambda}}$$

$$\begin{split} & \underset{\mathsf{ker}\,\partial_{d,\lambda}}{\mathsf{ran}\partial_{d-1,\lambda}} = \mathcal{M}/((z_1 - \lambda_1)\mathcal{M} + .. + (z_d - \lambda_d)\mathcal{M}). \end{split}$$

Continuity property of Fredholm index \Longrightarrow

$$\operatorname{ind}(M_z - \lambda) | \mathcal{M} = constant$$

for $\lambda \in$ connected component of $\mathbb{C}^d \setminus \sigma_e(M_z | \mathcal{M})$

Thm 6. (Gleason-R-S) Let \mathcal{H} be the Hardy or Bergman space of the ball or polydisc of \mathbb{C}^d , or let $\mathcal{H} = H_d^2$.

 $\mathcal{M} \in LatM_z$ and if $\exists \varphi \in \mathcal{M} \cap M(\mathcal{H}), \varphi \neq 0$. Then

 $\partial \mathcal{B}_d \subseteq \sigma_e(M_z | \mathcal{M}) \subseteq \partial \mathcal{B}_d \cup Z(\varphi)$

and for all $\lambda \in \mathcal{B}_d \setminus \sigma_e(M_z|\mathcal{M})$

 $\operatorname{ind}(M_z - \lambda) | \mathcal{M} = (-1)^d.$

In fact, for all $\lambda \in \mathcal{B}_d \setminus Z(\varphi)$ we have

 $\dim \mathcal{M}/((z_1 - \lambda_1)\mathcal{M} + .. + (z_d - \lambda_d)\mathcal{M}) = 1$

Cor 7. In $\mathcal{H} = H_d^2$ the Theorem applies to all $\mathcal{M} \neq (0)$ and with $Z(\mathcal{M})$ instead of $Z(\varphi)$.

The Corollary follows from the theorem and the Arveson/McCullough-Trent theorem.

The Exclusion of $Z(\mathcal{M})$ is necessary!

 $\exists \mathcal{M} \subseteq H_d^2$ such that $Z(\mathcal{M}) \neq \emptyset$ and $\sigma_e(M_z|\mathcal{M}) = \partial \mathcal{B}_d \cup Z(\mathcal{M})$.

Reason: d = 2

$$\frac{1}{1-(x+y)} = \frac{1}{(1-x)(1-\frac{y}{1-x})} = \frac{1}{1-x} + \frac{y}{(1-x)^2} + \frac{y^2}{(1-x)^3} + \frac{y^2}{(1-x$$

$$k_w(z) = \frac{1}{1 - (\overline{w_1}z_1 + \overline{w_2}z_2)} = \frac{1}{1 - \overline{w_1}z_1} + \frac{\overline{w_2}z_2}{(1 - \overline{w_1}z_1)^2} + \dots$$

Hence

 $H_2^2 = H^2(\mathbb{D}) \oplus z_2 L_a^2(\mathbb{D}) \oplus z_2^2 \mathcal{K}$ isometrically

Take $\mathcal{M} = (0) \oplus z_2 \mathcal{N} \oplus z_2^2 \mathcal{K}$

for $\mathcal{N} \in \text{Lat}(M_z, L_a^2)$, $ind\mathcal{N} = \infty$, then $\dim \mathcal{M}/((z_1 - \lambda)\mathcal{M} + z_2\mathcal{M}) = \infty$ for all $|\lambda| < 1$.

Similarly for $H^2(\partial \mathcal{B}_d)$. Actually, even worse: $\exists \mathcal{M} \text{ such that } \sigma_e(M_z|\mathcal{M}) \cap (\mathcal{B}_d \setminus Z(\mathcal{M})) \neq \emptyset.$ Tool needed for the proof of Theorem 6:

One can solve Gleason's problem for $M(\mathcal{H})$, i.e. $\varphi \in M(\mathcal{H}) \implies \exists \varphi_1, ..., \varphi_d \in M(\mathcal{H})$ such that

$$\varphi(z) - \varphi(\lambda) = \sum_{i=1}^d (z_i - \lambda_i)\varphi_i(z).$$

Suppose $\varphi \in \mathcal{M} \cap M(\mathcal{H})$, let $\lambda \in \mathcal{B}_d$ with $\varphi(\lambda) = 1$.

Let $f \in \mathcal{M}$, then

$$f = f(\lambda)\varphi + \varphi(f - f(\lambda)) - (\varphi - 1)f.$$

If one can solve Gleason's problem for both the space \mathcal{H} and $M(\mathcal{H})$, then $\exists f_1, \ldots, f_d \in \mathcal{H}$ and $\varphi_1, \ldots, \varphi_d \in M(\mathcal{H})$ such that

$$f = f(\lambda)\varphi + \sum_{i=1}^{d} (z_i - \lambda_i)(\varphi f_i - \varphi_i f).$$

Thus, dim $\mathcal{M}/((z_1-\lambda_1)\mathcal{M}+...+(z_d-\lambda_d)\mathcal{M})=1.$

Gleason's problem for $\mathcal{H} =$ Hardy or Bergman space, or $\mathcal{H} = H_d^2$, easy.

Gleason's problem for $M(\mathcal{H}) = H^{\infty}(\mathcal{B}_d)$ known.

For $M(\mathcal{H}_d^2)$ we use a theorem of Eschmeier-Putinar which involves the representation of an $M(\mathcal{H}_d^2)$ function as the transfer function corresponding to a certain unitary colligation. The vector-valued version of Theorem 6 holds. \mathcal{D} separable Hilbert space

$$\mathcal{H}_{\mathcal{D}} = \{ f : \mathcal{B}_d \to \mathcal{D} : f(\lambda) = \sum_n f_n(\lambda) e_n \}$$

 $f_n \in \mathcal{H}, \{e_n\}$ o.n. basis for $\mathcal{D}, ||f||^2 = \sum_n ||f_n||^2$. $\mathcal{M} \in \operatorname{Lat}(M_z, \mathcal{H}_{\mathcal{D}}), \lambda \in \mathcal{B}_d$

$$\mathcal{M}_{\lambda} = \overline{\{f(\lambda) : f \in \mathcal{M}\}} \subseteq \mathcal{D}$$

Defn 8. The <u>fiber dimension</u> of \mathcal{M} is

$$m = \sup\{\dim \mathcal{M}_{\lambda} : \lambda \in \mathcal{B}_d\},\$$

 $Z(\mathcal{M}) = \{ \lambda \in \mathcal{B}_d : \dim \mathcal{M}_\lambda < m \}.$

<u>Fact:</u> If $m < \infty$, then $Z(\mathcal{M}) \subseteq Z(h)$ for some $h \neq 0$ analytic on \mathcal{B}_d . In fact, then the collection

$$\{\mathcal{M}_{\lambda}\}_{\lambda\in\mathcal{B}_d\setminus Z(\mathcal{M})}$$

forms a vectorbundle.

Thm 9. (GRS) $\mathcal{M} \in Lat(M_z, H^2_d(\mathcal{D})), \ \mathcal{M} \neq (0)$

fiber dimension of $\mathcal{M} = m < \infty$.

Then

 $\partial \mathcal{B}_d \subseteq \sigma_e(M_z | \mathcal{M}) \subseteq \partial \mathcal{B}_d \cup Z(\mathcal{M})$ and for all $\lambda \in \mathcal{B}_d \setminus \sigma_e(M_z | \mathcal{M})$ $\operatorname{ind}(M_z - \lambda) | \mathcal{M} = (-1)^d m.$ In fact, for all $\lambda \in \mathcal{B}_d \setminus Z(\mathcal{M})$ we have $\dim \mathcal{M}/((z_1 - \lambda_1)\mathcal{M} + .. + (z_d - \lambda_d)\mathcal{M}) = m.$

Note:

If $\mathcal{N} \subseteq \mathcal{M}$, then fiber dim $\mathcal{N} \leq$ fiber dim \mathcal{M} .

Application - we can answer a question of Arveson's

Let $T = (T_1, T_2, ..., T_d)$ be a tuple of commuting operators on a Hilbert space \mathcal{K} . **Defn 10.** $T = (T_1, T_2, ..., T_d)$ is called a <u>d-contraction</u>, if

$$||\sum_{i=1}^{d} T_{i}x_{i}||^{2} \le \sum_{i=1}^{d} ||x_{i}||^{2}$$
 for all $x_{1}, ..., x_{d} \in \mathcal{K}$

$$\left(\Leftrightarrow \sum_{i=1}^{d} T_i T_i^* \le I\right)$$

The defect operator is $D = (I - \sum_{i=1}^{d} T_i T_i^*)^{1/2}$.

Let $\Phi(A) = \sum_{i=1}^{d} T_i A T_i^*$, then T is called <u>pure</u>, if $\Phi^n(I) \to 0$ (SOT).

Thm 11. (?, maybe from 70's) If T is a pure d-contraction, if $\mathcal{D} = \overline{\operatorname{ran}D}$, then $\exists \mathcal{M} \in Lat(M_z, H_d^2(\mathcal{D}))$ such that

 T_i u.e. $P_{\mathcal{M}^{\perp}}M_{z_i}|\mathcal{M}^{\perp}$, same unitary $\forall i = 1, .., d$.

Cor 12. (Drury, 78) If T is a d-contraction, then $||p(T)|| \leq ||p||_{M(H^2_d)}$ for every poly $p(z_1, ..., z_d)$.

Cor 13. (GRS) If T is a pure d-contraction of finite rank (i.e. rank $D < \infty$), then

$$\exists E = Z(h), h \in H^{\infty}(\mathcal{B}_d), h \neq 0$$
 such that $\sigma_e(T) \subseteq \partial \mathcal{B}_d \cup E$

and

$$\kappa(T) = \operatorname{ind}(T - \lambda) \ \forall \lambda \in B_d \setminus \sigma_e(T).$$

But \exists such d-contractions T that are <u>not</u> Fredholm and <u>not</u> essentially normal.

Curvature invariant (Arveson) : $\kappa(T) = \lim_{r \to 1^{-}} \int_{\partial B_d} \text{trace } F(rz) d\sigma(z),$

$$F(\lambda) = (1 - |\lambda|^2)D(I - T(\lambda)^*)^{-1}(I - T(\lambda))^{-1}D,$$

$$T(\lambda) = \sum_{i=1}^d \overline{\lambda}_i T_i.$$

 $F(\lambda)$ is related to the unitary from Theorem 11.