The index of invariant subspaces in spaces of
analytic functions.

1. The unit disc: A quick overview.

2. The unit ball in C¢
( joint work by:

Jim Gleason, Stefan Richter, and
Carl Sundberg, University of Tennessee )



D={zeC:|z| <1}
H C Hol(D)

M(H) = {p € Hol(D) : of € H for all f € H}
(the multiplier algebra)

Assumptions:

1. z€¢ M(H), so M, : H — H.
2. 0(M;) =D, 0e(M;) = 0D
3. dmH/zH =1

Then by 2. ran(M, — \) is closed VA € D, hence
(M2 = M) fI] = exllfl] for all feH,AeD.

If 1 € B, then 2. and 3. hold, if and only if
J

Z_

feH, xeD, f(A) =0 = c H.




M € Lat(M.,H)

ind M =dimM/zM

Why consider ind M 7
it is a unitary invariant for M,|M
ge(Mz|M) = 0D if and only if indM < oo

ge(M,M) =D if and only if indM = oo.

It is related to the Fredholm index of M,|M:
indM = —indM M = —ind(M, — \)|M

=dmM/(z— XM forall AeD



Easy fact: If M %= (0) and if
M = [f]

or
M = zero set based,

then indM = 1.

Thm 1. (Beurling’s Thm)

If H = H2(D), then indM = 1 for all M # (0)
and if p e Mo zM, ||p|| =1, then

M = oH?(D).

Thm 2. (a) (ABFP) If H is a Hilbert space as
above and such that

|zl < (IfIl and [|z"f[| — O for all f €R,

then for each n = 1,2,..00 there is an M with
indM = n.

(b) (Abakumov-Borichev) p > 2
B=1I"={f¢c Hol):Y|f(n)P < oo}, then for
eachn=1,2,..0o there is an M with ind M = n.



Bergman space

|2dA

2= {fe¢ HoI(]DD):/D|f < oo}

Thm 3. (ARS) If M € Lat (M., L2), if

D= M©o6SzM,

then there is a space K of D-valued analytic func-
tions such that

H°®@D= H3 C K C L2y =L2®D

and the D-valued polynomials are dense in K and
MM u.e. M;|K.

(HJS) (McCullough-R) In fact, IC has an operator-
valued reproducing kernel of the type
Ip — 22V (2)V(\)*
(1 —2))2
for some contractive analytic V(z) : D — D.

kx(z) =



Thm 4. (a) If M(H) C 'H dense, then
whenever M N M(H) # (0), then indM = 1.

This applies to many spaces H C H2(D) and all
M #= (0) (Dirichlet-type spaces).

(b) (ARS) Let > 0, supp pn C D, 1 <t < oo,
H = P'(u) = closure of polys in L*(u).

If Pt(w) is irreducible and abpe P'(u) = D, then
TFAE:

(1) every M # (0) has indM =1,

(2) ploD # O, i.e. 3f [[2"f]] » O,

(3) dE C oD, |E| > 0: all f € H have nontangen-
tial limits a.e. on L.



The majorization function

1Pkl
kg(N) = |
M=

where k) is the reproducing kernel for H, < f,ky >=
f(M\), and Ppq = projection onto M.

For M = ©oH? € Lat(M,, H?) one checks that
kpm(A) = |e(M)].

Thm 5. (ARS, 2002) If M € Lat(M,,L2) with
indM =1, then

TFAE:

(1) every N with M CN has indM =1,
(2) 3E C 8D, |E| > 0:

nt-limy ., kyp(A) >0 Vz € E,

(3) dE C oD, |E| > 0:
nt- lim kxpy(A\) =1 Vz € E.

A—z

(1) & (2) holds for many other H.



d>1, Bj={ze€C%:|z| <1}
H C HO|(Bd>
Examples: < z,w >= Y4, zm;.

(1) H = H?(0By), M(H?(8By)) = H>®(B,)

1
(1—<z,w>)e"

reproducing kernel ky(z) =

(2) H = L2(By), M(L2(By)) = H*(By)

1
(1-<zw>)d+1"

reproducing kernel ky(z) =

(3) H=H2, M(H?)C H®(By)

1

reproducing kernel ky(z) = 1—— <




M, = (M, ..., M)
If A= (\1,...,\g) € By, then

My —X= (Myy — A 1,..., My, — \gI)
Me LatM; i.e. zMC M fori=1,...,d
Facts:

(1) If M € Lat(M,, H2(8B,)), M # (0), then

nt- J\im kpm(AN) =1 a.e. z € 0By
—Z
(follows easily from the existence of nontangen-
tial limits of functions in H2(8B;) and the form
of the norm [|f||2 = Jyp, |f[?do.)
(2) If M € Lat(M., L2(By)), then ?

(Expect all hell to break loose in general.)



(3) If M € Lat(M.,H?), M # (0), then

(a) (Arveson, McCullough-Trent)
Jpn € M N M(HZ) such that

Py =) My, My,
n
and in fact
M=>(HI®E),
P = (Mpy, Mp,,...) : HH @ & — H2.
(b) (Greene-R-S) If ¢, are as in (a) , then

> on(2)2=1 a.e. z€ 9By
n

Note:

2 (\) = <Pmbaka> — XpllenkAIP 2
M) = = T e len(Y)



Want to consider

M/(zAM + .. + zgM)
or

M/((z1 = A)M + ..+ (20 — AgOM)

Problem 1:

If 217H+..4+24H is closed in 'H, is 21 M 4+ .. + zgM
closed in M for all M7

Open even for all spaces as above.



Problem 2:

Is

dimM/((21 — A)M + .. + (24 — A\ M)

independent of A7

NO!

H as above, M ={f e H: f(0) =0}
Then z1,...,20 E M (21 M + .. + zgM),

In fact,
dim M/(ziM + .. 4+ 2gM) = d,
but
dimM/((z1 =AM+ .+ (zg —A)DM) =1

for all A #= 0 (easy, but also follows from main
theorem)



Note:

OcZ(M)={xeB;: f(A\) =0 for all fe M}.

In d =1 the index on Z(M) is finessed with the
Fredholm index.

In d > 1 the definition of fredholmness and Fred-
holm index involves the Koszul complex.



The Koszul complex for (MZ — \)|M:

Oy
0 — AO(M) 2 AL ) 22 Ad vy o,
where AP(M) is a Hilbert space and

Op.) 1S @ bounded linear operator dependent on
(My — X\)|M.

A ¢ oe(M|M) or (M, — X\)|M is Fredholm, if
ran 9,y is closed for all p and
ker 9, »

dim P < oo for all p
rand,_1

d ker O
ind(M, — )M = 3 (=1)Pdim 2
p=1 rand,_1

Ifkgra: d then
angg s = M/((21 =AM + .+ (za = A M),

Continuity property of Fredholm index —

ind(M; — A)|M = constant
for A € connected component of C%\ ge(M.|M)



Thm 6. (Gleason-R-S) Let ‘H be the Hardy or
Bergman space of the ball or polydisc of (Cd, or
let H = H2.

M e LatM, and if 3 p € MNM(H), ¢ = O.
T hen

OBy C oe(M:|M) C 0B;U Z(p)
and for all A € By \ ge(Mz|M)
ind(M, — \)|M = (=1)<.
In fact, for all A € B\ Z(p) we have

dimM/((z1 =AM+ .+ (zg = APM) =1

Cor 7.In 'H = Hg the Theorem applies to all
M #£= (0) and with Z(M) instead of Z(p).

The Corollary follows from the theorem and the
Arveson/McCullough-Trent theorem.



The Exclusion of Z(M) is necessary!

IM C HZ? such that Z(M) # 0 and oe(M:|M) =
oB,; U Z(M).

Reason: d =2

1 — 1 _ 1 y y?
1—(z+y)  (1-2)Q-1%) 1—:1:+ (1—:1:)2—'_ (1_x)3‘|‘

. 1 . ’11)222
kw(z) = 1—(wiz1+wozo) ~ 1-wiz1 w121 + (1-wy21)?

Hence
H3 = H?(D) ® 2,L2(D) @ 25K isometrically
Take M = (0) ® 2N @ 23K

for N € Lat(My, L2), indN = oo, then
dimM/((z1 = M)M + 2o0M) = o for all |A] < 1.

Similarly for H2(8B,). Actually, even worse:
M such that ge(M M) N (Bg\ Z(M)) # 0.



Tool needed for the proof of Theorem 6:

One can solve Gleason’s problem for M(H), i.e.
€ M(H) = 3d¢1,...,04 € M(H) such that

d
p(2) —p(N) = > (2i = N)wi(2).
i=1

Suppose p € MNM(H), let A € B; with o(\) = 1.
Let f € M, then

fF=FNe+e(f—fA) —(e—-1)f

If one can solve Gleason’s problem for both the
space ‘H and M(H), then 3 f1,...,f; € H and
©1,...,p0q € M(H) such that

d
F=rNe+ D> (z—X)(efi —oif).
=1

1=

Thus, dim /\/l/((zl—)\1)./\/1—|—...—|—(zd—)\d)/\/l) = 1.



Gleason’'s problem for 'H = Hardy or Bergman
space, or ‘H = H?Z, easy.

Gleason’s problem for M(H) = H*°(B,;) known.

For M (H?2) we use a theorem of Eschmeier-Putinar
which involves the representation of an M(Hﬁ)—
function as the transfer function corresponding
to a certain unitary colligation.



The vector-valued version of Theorem 6 holds.

D separable Hilbert space

Hp={f:Bg—D: f(A) = an()\)en}

fn € H,{en} 0.n. basis for D, ||f||? =, || fall?.

M € Lat(M., Hp), \ € By

My={f(QN) :feM;CD

Defn 8. The fiber dimension of M is

m = sup{dim M, : X € By},
Z(M) ={X € B;:dimM, < m}.

Fact: If m < oo, then Z(M) C Z(h) for some
h #= 0 analytic on B;. In fact, then the collection

{MahreB)\Z(M)
forms a vectorbundle.



Thm 9. (GRS) M € Lat(M., H2(D)), M # (0)
fiber dimension of M = m < oo.

T hen

OBy C oe(M:|M) C 0By U Z(M)
and for all A € B\ oe(Mz| M)

ind(M, — \)|M = (=1)%m.
In fact, for all A € B\ Z(M) we have

dim M/((z1 — A)DM + .. + (24 — \)M) = m.

Note:

If N C M, then fiber dim N < fiber dim M.



Application - we can answer a question of Arve-
son’s

Let T'= (14,15, ...,Ty) be a tuple of commuting

operators on a Hilbert space K.
Defn 10.7T = (11,715, ...,1,) is called a d-contraction,

if

d d
1S Tiagl|? < S ||agl|? for all 1, ..,24 € K

=1

d
<<:> Y TTF < I)

The defect operator is D = (I — Y%, T;T¥)1/2.

Let d(A) =S¢ | T,AT¥, then T is called pure, if
d™"(I) — 0 (SOT).

Thm 11. (7, maybe from 70’'s)

If T is a pure d-contraction, if D = ranD, then
IM € Lat(M., H2(D)) such that

T; u.e. PMLMZZ.M/H, same unitary Yo =1, ..,d.



Cor 12. (Drury, 78) If T is a d-contraction, then

|p(T)]] < ||p||M(H§) for every poly p(z1,..,24).

Cor 13. (GRS) If T is a pure d-contraction of
finite rank (i.e. rankD < o), then
AF = Z(h),h € H>*®(By),h #= 0 such that
oe(T) COB;UE
and
k(T) =ind(T — X)) VA € By \ oe(T).

But 4 such d-contractions 'I' that are not Fred-
holm and not essentially normal.

Curvature invariant (Arveson) :
k(T) =Ilim,_1_ Jop, trace F(rz)do(z),

F(A) = (1 —|A\2DUI — T\t —T(\) 1D,
T\ =S4 N

F'()) is related to the unitary from Theorem 11.



