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D = {z ∈ C : |z| < 1}

H ⊆ Hol(D)

M(H) = {ϕ ∈ Hol(D) : ϕf ∈ H for all f ∈ H}
(the multiplier algebra)

Assumptions:

1. z ∈ M(H), so Mz : H → H.

2. σ(Mz) = D, σe(Mz) = ∂D

3. dimH/zH = 1

Then by 2. ran(Mz − λ) is closed ∀λ ∈ D, hence

||(Mz − λ)f || ≥ cλ||f || for all f ∈ H, λ ∈ D.

If 1 ∈ B, then 2. and 3. hold, if and only if

f ∈ H, λ ∈ D, f(λ) = 0 =⇒
f

z − λ
∈ H.



M ∈ Lat(Mz,H)

ind M = dimM/zM

Why consider ind M ?

it is a unitary invariant for Mz|M

σe(Mz|M) = ∂D if and only if indM < ∞

σe(Mz|M) = D if and only if indM = ∞.

It is related to the Fredholm index of Mz|M:

indM = −indMz|M = −ind(Mz − λ)|M

= dimM/(z − λ)M for all λ ∈ D



Easy fact: If M 6= (0) and if

M = [f ]

or

M = zero set based,

then indM = 1.

Thm 1. (Beurling’s Thm)

If H = H2(D), then indM = 1 for all M 6= (0)

and if ϕ ∈M	 zM, ||ϕ|| = 1, then

M = ϕH2(D).

Thm 2. (a) (ABFP) If H is a Hilbert space as

above and such that

||zf || ≤ ||f || and ||znf || → 0 for all f ∈ H,

then for each n = 1,2, ..∞ there is an M with

indM = n.

(b) (Abakumov-Borichev) p > 2

B = lp = {f ∈ Hol(D) :
∑
|f̂(n)|p < ∞}, then for

each n = 1,2, ..∞ there is an M with indM = n.



Bergman space

L2
a = {f ∈ Hol(D) :

∫
D
|f |2

dA

π
< ∞}

Thm 3. (ARS) If M ∈ Lat (Mz, L2
a), if

D = M	 zM,

then there is a space K of D-valued analytic func-

tions such that

H2 ⊗D = H2
D ⊆ K ⊆ L2

aD = L2
a ⊗D

and the D-valued polynomials are dense in K and

Mz|M u.e. Mz|K.

(HJS) (McCullough-R) In fact, K has an operator-

valued reproducing kernel of the type

kλ(z) =
ID − zλV (z)V (λ)∗

(1− zλ)2

for some contractive analytic V (z) : D → D.



Thm 4. (a) If M(H) ⊆ H dense, then

whenever M∩M(H) 6= (0), then indM = 1.

This applies to many spaces H ⊆ H2(D) and all

M 6= (0) (Dirichlet-type spaces).

(b) (ARS) Let µ > 0, supp µ ⊆ D, 1 ≤ t < ∞,

H = P t(µ) = closure of polys in Lt(µ).

If P t(µ) is irreducible and abpe P t(µ) = D, then

TFAE:

(1) every M 6= (0) has indM = 1,

(2) µ|∂D 6= 0, i.e. ∃f ||znf || 9 0,

(3) ∃E ⊆ ∂D, |E| > 0: all f ∈ H have nontangen-

tial limits a.e. on E.



The majorization function

kM(λ) =
||PMkλ||
||kλ||

,

where kλ is the reproducing kernel for H, < f, kλ >=
f(λ), and PM = projection onto M.

For M = ϕH2 ∈ Lat(Mz, H2) one checks that
kM(λ) = |ϕ(λ)|.

Thm 5. (ARS, 2002) If M ∈ Lat(Mz, L2
a) with

indM = 1, then

TFAE:

(1) every N with M⊆ N has indM = 1,

(2) ∃E ⊆ ∂D, |E| > 0:

nt-limλ→zkM(λ) > 0 ∀z ∈ E,

(3) ∃E ⊆ ∂D, |E| > 0:

nt- lim
λ→z

kM(λ) = 1 ∀z ∈ E.

(1) ⇔ (2) holds for many other H.



d > 1, Bd = {z ∈ Cd : |z| < 1}

H ⊆ Hol(Bd)

Examples: < z, w >=
∑d

i=1 ziwi.

(1) H = H2(∂Bd), M(H2(∂Bd)) = H∞(Bd)

reproducing kernel kw(z) = 1
(1−<z,w>)d.

(2) H = L2
a(Bd), M(L2

a(Bd)) = H∞(Bd)

reproducing kernel kw(z) = 1
(1−<z,w>)d+1.

(3) H = H2
d , M(H2

d ) ( H∞(Bd)

reproducing kernel kw(z) = 1
1−<z,w>.



Mz = (Mz1, ..., Mzd)

If λ = (λ1, ..., λd) ∈ Bd, then

Mz − λ = (Mz1 − λ1I, ..., Mzd − λdI)

M ∈ LatMz i.e. ziM⊆M for i = 1, ..., d

Facts:

(1) If M ∈ Lat(Mz, H2(∂Bd)), M 6= (0), then

nt- lim
λ→z

kM(λ) = 1 a.e. z ∈ ∂Bd.

(follows easily from the existence of nontangen-

tial limits of functions in H2(∂Bd) and the form

of the norm ||f ||2 =
∫
∂Bd

|f |2dσ.)

(2) If M ∈ Lat(Mz, L2
a(Bd)), then ?

(Expect all hell to break loose in general.)



(3) If M ∈ Lat(Mz, H2
d ), M 6= (0), then

(a) (Arveson, McCullough-Trent)

∃ϕn ∈M∩M(H2
d ) such that

PM =
∑
n

MϕnM∗
ϕn

,

and in fact

M = Φ(H2
d ⊗ E),

Φ = (Mϕ1, Mϕ2, ...) : H2
d ⊗ E → H2

d .

(b) (Greene-R-S) If ϕn are as in (a) , then∑
n
|ϕn(z)|2 = 1 a.e. z ∈ ∂Bd.

Note:

k2
M(λ) = <PMkλ,kλ>

||kλ||2
=

∑
n ||ϕn(λ)kλ||2
||kλ||2

=
∑

n |ϕn(λ)|2



Want to consider

M/(z1M+ .. + zdM)

or

M/((z1 − λ1)M+ .. + (zd − λd)M)

Problem 1:

If z1H+ ..+zdH is closed in H, is z1M+ .. + zdM
closed in M for all M?

Open even for all spaces as above.



Problem 2:

Is

dimM/((z1 − λ1)M+ .. + (zd − λd)M)

independent of λ?

NO!

H as above, M = {f ∈ H : f(0) = 0}

Then z1, ..., zd ∈M	 (z1M+ .. + zdM),

In fact,

dimM/(z1M+ .. + zdM) = d,

but

dimM/((z1 − λ1)M+ .. + (zd − λd)M) = 1

for all λ 6= 0 (easy, but also follows from main

theorem)



Note:

0 ∈ Z(M) = {λ ∈ Bd : f(λ) = 0 for all f ∈M}.

In d = 1 the index on Z(M) is finessed with the

Fredholm index.

In d > 1 the definition of fredholmness and Fred-

holm index involves the Koszul complex.



The Koszul complex for (Mz − λ)|M:

0 → Λ0(M)
∂0,λ−→ Λ1(M)

∂1,λ−→ · · ·
∂d−1,λ−→ Λd(M) → 0,

where Λp(M) is a Hilbert space and

∂p,λ is a bounded linear operator dependent on
(Mz − λ)|M.

λ /∈ σe(Mz|M) or (Mz − λ)|M is Fredholm, if
ran ∂p,λ is closed for all p and

dim
ker ∂p,λ

ran∂p−1,λ
< ∞ for all p

ind(Mz − λ)|M =
d∑

p=1

(−1)p dim
ker ∂p,λ

ran∂p−1,λ

If p = d then
ker ∂d,λ

ran∂d−1,λ
= M/((z1 − λ1)M+ .. + (zd − λd)M).

Continuity property of Fredholm index =⇒

ind(Mz − λ)|M = constant

for λ ∈ connected component of Cd \ σe(Mz|M)



Thm 6. (Gleason-R-S) Let H be the Hardy or

Bergman space of the ball or polydisc of Cd, or

let H = H2
d .

M ∈ LatMz and if ∃ ϕ ∈ M ∩ M(H), ϕ 6= 0.

Then

∂Bd ⊆ σe(Mz|M) ⊆ ∂Bd ∪ Z(ϕ)

and for all λ ∈ Bd \ σe(Mz|M)

ind(Mz − λ)|M = (−1)d.

In fact, for all λ ∈ Bd \ Z(ϕ) we have

dimM/((z1 − λ1)M+ .. + (zd − λd)M) = 1

Cor 7. In H = H2
d the Theorem applies to all

M 6= (0) and with Z(M) instead of Z(ϕ).

The Corollary follows from the theorem and the

Arveson/McCullough-Trent theorem.



The Exclusion of Z(M) is necessary!

∃M ⊆ H2
d such that Z(M) 6= ∅ and σe(Mz|M) =

∂Bd ∪ Z(M).

Reason: d = 2

1
1−(x+y) = 1

(1−x)(1− y
1−x)

= 1
1−x + y

(1−x)2
+ y2

(1−x)3
+

kw(z) = 1
1−(w1z1+w2z2)

= 1
1−w1z1

+ w2z2
(1−w1z1)2

+ ...

Hence

H2
2 = H2(D)⊕ z2L2

a(D)⊕ z2
2K isometrically

Take M = (0)⊕ z2N ⊕ z2
2K

for N ∈ Lat(Mz, L2
a), indN = ∞, then

dimM/((z1 − λ)M+ z2M) = ∞ for all |λ| < 1.

Similarly for H2(∂Bd). Actually, even worse:

∃M such that σe(Mz|M) ∩ (Bd \ Z(M)) 6= ∅.



Tool needed for the proof of Theorem 6:

One can solve Gleason’s problem for M(H), i.e.

ϕ ∈ M(H) =⇒ ∃ϕ1, ..., ϕd ∈ M(H) such that

ϕ(z)− ϕ(λ) =
d∑

i=1

(zi − λi)ϕi(z).

Suppose ϕ ∈M∩M(H), let λ ∈ Bd with ϕ(λ) = 1.

Let f ∈M, then

f = f(λ)ϕ + ϕ(f − f(λ))− (ϕ− 1)f.

If one can solve Gleason’s problem for both the

space H and M(H), then ∃ f1, . . . , fd ∈ H and

ϕ1, . . . , ϕd ∈ M(H) such that

f = f(λ)ϕ +
d∑

i=1

(zi − λi)(ϕfi − ϕif).

Thus, dimM/((z1−λ1)M+ ...+(zd−λd)M) = 1.



Gleason’s problem for H = Hardy or Bergman

space, or H = H2
d , easy.

Gleason’s problem for M(H) = H∞(Bd) known.

For M(H2
d) we use a theorem of Eschmeier-Putinar

which involves the representation of an M(H2
d)-

function as the transfer function corresponding

to a certain unitary colligation.



The vector-valued version of Theorem 6 holds.

D separable Hilbert space

HD = {f : Bd → D : f(λ) =
∑
n

fn(λ)en}

fn ∈ H, {en} o.n. basis for D, ||f ||2 =
∑

n ||fn||2.

M ∈ Lat(Mz,HD), λ ∈ Bd

Mλ = {f(λ) : f ∈M} ⊆ D

Defn 8. The fiber dimension of M is

m = sup{dimMλ : λ ∈ Bd},
Z(M) = {λ ∈ Bd : dimMλ < m}.

Fact: If m < ∞, then Z(M) ⊆ Z(h) for some
h 6= 0 analytic on Bd. In fact, then the collection

{Mλ}λ∈Bd\Z(M)

forms a vectorbundle.



Thm 9. (GRS) M ∈ Lat(Mz, H2
d (D)), M 6= (0)

fiber dimension of M = m < ∞.

Then

∂Bd ⊆ σe(Mz|M) ⊆ ∂Bd ∪ Z(M)

and for all λ ∈ Bd \ σe(Mz|M)

ind(Mz − λ)|M = (−1)dm.

In fact, for all λ ∈ Bd \ Z(M) we have

dimM/((z1 − λ1)M+ .. + (zd − λd)M) = m.

Note:

If N ⊆M, then fiber dim N ≤ fiber dim M.



Application - we can answer a question of Arve-

son’s

Let T = (T1, T2, ..., Td) be a tuple of commuting

operators on a Hilbert space K.

Defn 10. T = (T1, T2, ..., Td) is called a d-contraction,

if

||
d∑

i=1

Tixi||2 ≤
d∑

i=1

||xi||2 for all x1, .., xd ∈ K

⇔ d∑
i=1

TiT
∗
i ≤ I



The defect operator is D = (I −
∑d

i=1 TiT
∗
i )1/2.

Let Φ(A) =
∑d

i=1 TiAT ∗i , then T is called pure, if

Φn(I) → 0 (SOT).

Thm 11. (?, maybe from 70’s)

If T is a pure d-contraction, if D = ranD, then

∃M ∈ Lat(Mz, H2
d (D)) such that

Ti u.e. PM⊥Mzi|M
⊥, same unitary ∀i = 1, .., d.



Cor 12. (Drury, 78) If T is a d-contraction, then

||p(T )|| ≤ ||p||M(H2
d ) for every poly p(z1, .., zd).

Cor 13. (GRS) If T is a pure d-contraction of

finite rank (i.e. rankD < ∞), then

∃E = Z(h), h ∈ H∞(Bd), h 6= 0 such that

σe(T ) ⊆ ∂Bd ∪ E

and

κ(T ) = ind(T − λ) ∀λ ∈ Bd \ σe(T ).

But ∃ such d-contractions T that are not Fred-

holm and not essentially normal.

Curvature invariant (Arveson) :

κ(T ) = limr→1−
∫
∂Bd

trace F (rz)dσ(z),

F (λ) = (1 − |λ|2)D(I − T (λ)∗)−1(I − T (λ))−1D,

T (λ) =
∑d

i=1 λiTi.

F (λ) is related to the unitary from Theorem 11.


