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D = {z ∈ C : |z| < 1}, T = ∂D,

(0) 6= H ⊆ Hol(D), (Mzf)(z) = zf(z)

M ∈ Lat(Mz,H), if M is an invariant subspace
for Mz.

Examples: Hardy space

H2(D) = {f(z) =
∞∑

n=0

f̂(n)zn :
∞∑

n=0

|f̂(n)|2 < ∞}

||f ||2
H2 =

∞∑
n=0

|f̂(n)|2 =
∫
T
|f(z)|2

|dz|
2π

Then:

• ||znf || = ||f || for all f ∈ H2(D),

• every f ∈ H2(D) has nontangential limits a.e.
on T,

• ∀M ∈ Lat(Mz, H2),M 6= (0) we have

M = ϕH2(D) for ϕ inner, and so

dimM/zM = 1.



Bergman space

L2
a = {f ∈ Hol(D) :

∫
D
|f(z)|2

dA(z)

π
< ∞}

||f ||2 =
∫
D |f(z)|2dA(z)

π ,

dA = dxdy = area measure.

Then:

• ||znf || → 0 for all f ∈ L2
a,

• ∃f ∈ L2
a such that f has no nontangential limits

on any set E ⊆ T of positive Lebesgue measure,

• ∀n ∈ {1,2, ...} ∪ {∞} ∃M ∈ Lat(Mz, L2
a) such

that

dimM/zM = n.



Assume: (0) 6= H ⊆ Hol(D), reprod. kernel kλ

(1) ‖zf‖ ≤ ‖f‖ for all f ∈ H,

(2) σe(Mz) = ∂D &

(3) dimH/zH = 1

Def: If M ∈ Lat(Mz,H), then

ind M = dimM/zM

indM = −indMz|M = −ind(Mz − λ)|M

= dimM/(z − λ)M for all λ ∈ D



Nontangential limits:

z ∈ T, 0 < α < 1

Γα(z) =

If f is meromorphic in D and A ∈ C, then

nt- lim
λ→z

f(λ) = A,

if, whenever {λn} → z, {λn} ⊆ Γα(z) for some α,

then {f(λn)} → A.

Def: Let E ⊆ T be measurable, we say that

H admits nontangential limits on E, if the mero-

morphic function

g/f has nontangential limits a.e. on E

for all g ∈ H and some f ∈ H, f 6= 0.



Remark The definition is independent of f .

g/h = g/f
h/f

, h/f 6= 0 for h 6= 0 follows from

Luzin-Privalov uniqueness theorem:

If k is a meromorphic function on D that has 0

nontangential limit on E ⊆ T with |E| > 0, then

k = 0.

Hence:

If 1 ∈ H, then H admits nontangential limits on

E, iff every function in H has nontangential limits

a.e. on E.

Example: If H1 = H2(D) and H2 = fH2(D),

||fg||2 = ||g||H2 for some analytic function f , then

(Mz,H1) and (Mz,H2) are unitarily equivalent,

so they both satisfy (1), (2), and (3), and both

admit nontangential limits on T, no matter what

f is.



Thm 1. Assume H satisfies only (1), (2), (3)

A. ∀f ∈ H ‖znf‖ → 0 as n →∞.

(trivial) ⇓ not ⇑ (ARS)

B. ∃f ∈ H, f 6= 0 ‖znf‖ → 0 as n →∞.

(Khin.-Kol.) ⇓ not ⇑ (ARS)

C. H does not admit nt-limits on any ∆ ⊆ T,
|∆| > 0.

(ARS) ⇓ ? ⇑ ?

D. ∃M such that ind M > 1.

B ⇒ D follows from ABFP: A1∩C00 = Aℵ0
∩C00.

Thm 2. We have A ⇔ B ⇔ C ⇔ D, whenever H
satisfies (1), (2), (3) and either

• Mz is cyclic subnormal, i.e. H = P2(µ) for
some µ, suppµ ⊆ D, or

• ∃c > 0 ‖ z−λ
1−λz

f‖ ≥ c‖f‖ for all f ∈ H, λ ∈ D.



Theorem (Khinchin-Kolmogorov)

If
∑

n≥0 |an|2 = ∞, then for some choice of εn ∈
{−1,1} the function

g(z) =
∑
n≥0

εnanzn

has no nontangential limits on any ∆ ⊆ T, |∆| >
0.

B ⇒ C:

If ||znf || → 0 for f ∈ H, f 6= 0, then choose {nk}
such that

∑
k≥0 ||znkf || < ∞. Then

g(z) =
∑
k≥0

εnkz
nkf(z) ∈ H

and g/f has no nontangential limits.



C ⇒ D:

Case 1: The polynomials are dense in H.

Use the hypothesis to show that there is a domi-
nating sequence {λn}n∈N ⊆ D that is interpolating
for H.

Then M = {f ∈ H : f(λn) = 0 for all n} satisfies
that M∗

z |M⊥ is similar to a diagonal normal op-
erator with λn on the diagonal. Now use a result
of Wermer from 1950 to finish it off.

Case 2: General H.

Use case 1 and then apply the Bercovici-Chevreau
Theorem (A = A1) to M∗

z |M⊥ for appropriate M.

For the construction of the interpolating sequence
{λn} and the rest of Theorem 1 one needs to
know more about the relationship of when H will
admit nontangential limits on a set ∆ and the
asymptotic size of the reproducing kernel ||kλ||.



|f(λ)| = (1−|λ|2)|
f

1− λz
(λ)| ≤ (1−|λ|2)||

f

1− λz
|| ||kλ||

∣∣∣∣∣fg(λ)

∣∣∣∣∣
2

≤
(
(1− |λ|2)‖

f

1− λz
‖2
)

︸ ︷︷ ︸
(
(1− |λ|2)

||kλ||2

|g(λ)|2

)
︸ ︷︷ ︸

Iλ IIλ

(a) Mz = PU |H, U unitary dilation with spectral
measure E:

Iλ = (1− |λ|2)||P (1− λU)−1f ||2

≤
∫
T

1− |λ|2

|1− λz|2
d < E(z)f, f >

= vf(λ) = harmonic function

(b) E ⊆ T closed, ΩE =
⋃

z∈E Γα(z)

If IIλ ≤ M in ΩE, then∣∣∣∣∣fg(λ)

∣∣∣∣∣
2

≤ Mvf(λ) in ΩE, i.e. f/g ∈ H2(ΩE),

hence H admits nontangential limits on E.



Def:

∆(H) =

{
z ∈ T : nt- lim

λ→z
(1− |λ|2)

||kλ||2

|g(λ)|2
< ∞

}

Fact: Up to a.e. this definition is independent of

g ∈ H, g 6= 0.

Thm 3. (a) H admits nt-limits on ∆(H).

(b) If H admits nt-limits on E, then E ⊆ ∆(H)

a.e.



If H ⊆ Hol(D) satisfies (1),(2),(3) and if

H = P2(µ), suppµ ⊆ D, then dµ|T = h
|dz|
2π , h ∈ L1

and

Iλ =
∫
D

1− |λ|2

|1− λz|2
|f |2dµ +

∫
T

1− |λ|2

|1− λz|2
|f |2h

|dz|
2π

↓ ↓

0 a.e. wf = |f |2h a.e.

=⇒ Iλ → wf(z) a.e. as λ → z nontangentially.

Claim: If f 6= 0, then a.e.

∆(H) ⊆ {z : wf(z) > 0} ⊆ {z : h(z) > 0} =: Σ(H).

Proof: For a.e z, if Iλ → wf(z) = 0 and z ∈ ∆(H),

then

nt-limλ→z(
f
g)(λ) = 0.

Hence if f 6= 0 by Luzin-Privalov this happens on

a set of measure 0.



Note: H = P2(µ)

||znf || → 0 ∀f ⇐⇒ h = 0 ⇐⇒ |Σ(H)| = 0

Thm 4. If H ⊆ Hol(D) satisfies (1),(2),(3) and if

H = P2(µ), suppµ ⊆ D, then

∆(H) = Σ(H) a.e.

and ∀f ∈ H and a.e. z ∈ T

nt- lim
λ→z

|f(λ)|2

(1− |λ|2)||kλ||2

= wf(z) = (|f |2h)(z)

= nt- lim
λ→z

(1− |λ|2)||
f

1− λz
||2

Works for P t(µ), 1 ≤ t < ∞.

Proof: Rework the proof of Thomson’s Theorem

and use Tolsa’s results on analytic capacity.



If H 6= P2(µ) use minimal co-isometric extension

of Mz:

Mz =
(
S∗ ⊕R

)
|H on K1 ⊕K2 ⊇ H

S∗ = backward shift, R unitary, E = spectral

measure for R

Facts: (a) Iλ → wf(z) = 2π d<E(z)P2f,P2f>
|dz| a.e.

as λ → z nontangentially.

(b) ∃w ∈ L1(T) such that

||E(F )|| = 0 ⇔
∫
F w(z)|dz| = 0.

(c) If H = P2(µ) as above, then

{z ∈ T : w(z) > 0} = {z ∈ T : h(z) > 0} a.e.

Def.: Σ(H) = {z ∈ T : w(z) > 0}

Facts:(a) ||znf || → 0 for all f ∈ H, iff |Σ(H)| = 0.

(b) ∆(H) ⊆ Σ(H) a.e.

(c) In general, ∆(H) 6= Σ(H).



Thm 5. If H satisfies (1),(2),(3) and if ∃c > 0
such that

‖
z − λ

1− λz
f‖ ≥ c‖f‖

for all f ∈ H, λ ∈ D, then

∆(H) = Σ(H) a.e.

and ∀f ∈ H and a.e. z ∈ T

nt- lim
λ→z

|f(λ)|2

(1− |λ|2)||kλ||2
= wf(z)

= nt- lim
λ→z

(1− |λ|2)||
f

1− λz
||2

Thm 6. Suppose kλ(z) = lλ(z)
1−λz

, where

lλ(z) =
∑
k≥0

ϕk(λ)ϕk(z),

ϕk ∈ N , N = Nevanlinna class

If for a.e. z ∈ T we have

nt- lim
λ→z

lλ(λ) = ∞⇒
∑
k≥0

|ϕk(z)|2 = ∞,

then same conclusion.


