Invariant subspaces for the Backward shift on Hilbert spaces of analytic functions with regular norm.

(joint work by:

Alexandru Aleman, Lund University, Stefan Richter, and Carl Sundberg, University of Tennessee)

for a preprint see:

http://www.math.utk.edu/ richter/publications.html

 $\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \}, \quad \zeta(z) = z \text{ for all } z \in \mathbb{D}$

 $\mathcal{H} \subseteq \operatorname{Hol}(\mathbb{D})$ - Hilbert space

Assumptions:

1. $\forall \lambda \in \mathbb{D}$ the map $f \to f(\lambda)$ is continuous on \mathcal{H} .

2. The analytic polynomials are dense in \mathcal{H} .

- **3.** If $f \in \mathcal{H}$, then $Sf = M_{\zeta}f = \zeta f \in \mathcal{H}$.
- **4.** If $f \in \mathcal{H}$, then $Lf = \frac{f-f(0)}{\zeta} \in \mathcal{H}$.
- **5.** $\sigma(S) = \sigma(L) = \overline{\mathbb{D}}.$

Examples:
$$f(z) = \sum_{n=0}^{\infty} \widehat{f}(n) z^n$$

$$H^2$$
 Hardy space,
 $f \in H^2 \iff ||f||_{H^2}^2 = \sum_{n=0}^{\infty} |\widehat{f}(n)|^2 < \infty$

$$L_a^2$$
 Bergman space,
 $f \in L_a^2 \iff ||f||_{L_a^2}^2 = \sum_{n=0}^{\infty} \frac{1}{n+1} |\widehat{f}(n)|^2 < \infty$

D Dirichlet space, $f \in D \iff ||f||_D^2 = \sum_{n=0}^{\infty} (n+1)|\widehat{f}(n)|^2 < \infty$

 H_w weighted shift space,

$$w = \{w_n\}_{n \geq 0}$$
, $w_n > 0, \frac{w_{n+1}}{w_n} \rightarrow 1$ as $n \rightarrow \infty$

$$f \in H_w \iff ||f||_w^2 = \sum_{n=0}^\infty w_n |\widehat{f}(n)|^2 < \infty$$

 $\mathcal{M} \in \mathsf{Lat} \ T$ $\iff \mathcal{M} \text{ is a closed subspace of } \mathcal{H} \text{ with } T\mathcal{M} \subseteq \mathcal{M}.$

Example 1: If $\mathcal{H} = H^2$, then $L = S^*$.

Thus Beurling's theorem implies:

 $\mathcal{M} \in \text{Lat } L, \mathcal{M} \neq H^2 \iff \mathcal{M}^{\perp} = \varphi H^2, \ \varphi \text{ inner.}$

Thm (Moeller, 62) If $\mathcal{M} \in \text{Lat } L, \mathcal{M} \neq H^2$, then $\sigma(L|\mathcal{M}) \cap \mathbb{D} = Z(\varphi)^* = Z(\mathcal{M}^{\perp})^*.$

In fact,

$$\sigma(L|\mathcal{M}) = \underline{Z}(\varphi)^* = \underline{Z}(\mathcal{M}^{\perp})^* = (\operatorname{support}\varphi)^*.$$

Here

$$A^* = \{\overline{\lambda} : \lambda \in A\}$$

$$Z(f) = \{\lambda \in \mathbb{D} : f(\lambda) = 0\}$$

$$\underline{Z}(f) = Z(f) \cup \{z \in \partial \mathbb{D} : \underline{\lim}_{\lambda \to z} |f(\lambda)| = 0\}.$$

$$Z(\mathcal{M}^{\perp}) = \bigcap_{f \in \mathcal{M}^{\perp}} Z(f)$$

$$\underline{Z}(\mathcal{M}^{\perp}) = \bigcap_{f \in \mathcal{M}^{\perp}} \underline{Z}(f)$$

Thm (Douglas, Shapiro, Shields, 70) $f \in H^2$. Then

 $\exists \mathcal{M} \in \text{Lat } L, \mathcal{M} \neq H^2 \text{ with } f \in \mathcal{M}$

 $\iff f$ has a meromorphic pseudocontinuation $\tilde{f} \in N(\mathbb{D}_e)$ in the exterior disc \mathbb{D}_e .

 $N(\mathbb{D}_e) = \text{Nevanlinna class} = \text{quotients of bounded}$ analytic functions

Defn If $f \in Hol(\mathbb{D})$ and if \tilde{f} is a meromorphic function in \mathbb{D}_e , then they are pseudocontinuations of one another, if

$$\begin{split} & \text{ntl-}\lim_{\lambda\to z,\lambda\in\mathbb{D}}f(\lambda)=\text{ntl-}\lim_{\lambda\to z,\lambda\in\mathbb{D}_e}\tilde{f}(\lambda)\\ & \text{for a.e. }z\in\partial\mathbb{D}. \end{split}$$

Connection:

If $\frac{1}{\lambda} \in \mathbb{C} \setminus \sigma(L|\mathcal{M})$, then . $(I - \lambda L|\mathcal{M})^{-1}f(z) = \frac{zf(z) - \lambda f(\lambda)}{z - \lambda} \quad |\lambda| < 1$.

$$\mathcal{H} \neq H^2 \Longrightarrow L \neq S^*$$

Suppose \mathcal{H} and \mathcal{H}' are **Cauchy duals** of one another, e.g. L_a^2 and D or more generally \mathcal{H}_w and $\mathcal{H}_{1/w}$, then

$$\langle f, G \rangle_{\mathcal{H}, \mathcal{H}'} = \sum_{n \ge 0} \widehat{f}(n) \overline{\widehat{G}(n)}, f \in \mathcal{H}, G \in \mathcal{H}'$$

and

$$L = S'^*$$
 where $L = (L, H), S' = (M_{\zeta}, \mathcal{H}')$

Thus

$$\mathcal{M} \in \operatorname{Lat}(L, \mathcal{H}) \Longleftrightarrow \mathcal{M}^{\perp} \in \operatorname{Lat}(S', \mathcal{H}')$$

Thm (R) If $\mathcal{M} \in Lat(L, \mathcal{H})$, $\mathcal{M} \neq (0), \mathcal{H}$, then $\sigma(L|\mathcal{M}) \cap \mathbb{D} = Z(\mathcal{M}^{\perp}) \Leftrightarrow \text{ ind } \mathcal{M}^{\perp} = 1$ $\sigma(L|\mathcal{M}) = \overline{\mathbb{D}} \Leftrightarrow \text{ ind } \mathcal{M}^{\perp} > 1$

Thus, $\sigma(L|\mathcal{M}) \cap \mathbb{D}$ is either discrete or all of \mathbb{D} . If $\mathcal{N} \in \text{Lat}(S', \mathcal{H}')$, then ind $\mathcal{N} = \dim \mathcal{N} \ominus S' \mathcal{N} = \dim \mathcal{N}/S' \mathcal{N}$ **Fact:** (easy, but mild extra hypothesis on \mathcal{H}) If $\mathcal{M} \in \text{Lat}(L, \mathcal{H})$ such that $\sigma(L|\mathcal{M})$ omits an arc $I \subseteq \partial \mathbb{D}$, then every $f \in \mathcal{M}$ has an analytic continuation \tilde{f} across I that extends to be meromorphic in \mathbb{D}_e and whenever $\frac{1}{\lambda} \in \mathbb{C} \setminus \sigma(L|\mathcal{M})$, then

$$\begin{array}{ll} & \frac{zf(z)-\lambda f(\lambda)}{z-\lambda} & |\lambda| < 1 \\ (*) & (I-\lambda L|\mathcal{M})^{-1}f(z) = & \\ & \frac{zf(z)-\lambda \tilde{f}(\lambda)}{z-\lambda} & |\lambda| > 1 \end{array} \end{array}$$

Thm (RS, 94)
$$\mathcal{H} = L_a^2, \mathcal{H}' = D$$

If $\mathcal{M} \in \text{Lat } (L, L_a^2), \mathcal{M} \neq L_a^2$, then
(a) $\sigma(L|\mathcal{M}) \cap \mathbb{D} = Z(\mathcal{M}^{\perp})^*$ is discrete.
(b) $\sigma(L|\mathcal{M}) = \underline{Z}(\mathcal{M}^{\perp})^*$.

(c) Furthermore, if $f \in \mathcal{M}$, then $f \in N(\mathbb{D})$ and f has a meromorphic pseudocontinuation $\tilde{f} \in N(\mathbb{D}_e)$ which satisfies (*).

(ARR, 98) extend (a) and (c) to all radially weighted Bergman spaces.

Thm/Cor $\mathcal{H} = D, \mathcal{H}' = L_a^2$ Everything fails. Then

(a) (ABFP) there exists $\mathcal{M} \in \text{Lat}(L, D)$ such that $\sigma(L|\mathcal{M}) = \overline{\mathbb{D}}$, (i.e. $\mathcal{M}^{\perp} \in \text{Lat}(M_{\zeta}, L_a^2)$ with ind $\mathcal{M}^{\perp} > 1$).

(ARR/ARS) In fact, one can even get such \mathcal{M} where every $f \in \mathcal{M}$ has a meromorphic pseudocontinuation in \mathbb{D}_e .

(b) there exists $\mathcal{M} \in \text{Lat}(L, D)$, $f \in \mathcal{M}$, but f has no pseudocontinuation in \mathbb{D}_e .

(c) there exists $\mathcal{M} \in \text{Lat}(L, D)$, $f \in \mathcal{M}$ such that $\sigma(L|\mathcal{M}) \cap \mathbb{D}$ is discrete, f has a pseudocontinuation \tilde{f} in \mathbb{D}_e , but for $\frac{1}{\lambda} \in \mathbb{C} \setminus \sigma(L|\mathcal{M})$ we have

$$\begin{array}{ll} & \frac{zf(z)-\lambda f(\lambda)}{z-\lambda} & |\lambda| < 1\\ & (I-\lambda L|\mathcal{M})^{-1}f(z) & = & \frac{zf(z)-\lambda F(\lambda)}{z-\lambda} & |\lambda| > 1\\ & \\ & \text{where } F \neq \tilde{f}. \end{array}$$

Thm (ARR) Suppose \mathcal{H} satisfies 1.-5. and $\mathcal{M} \in$ Lat $L, \mathcal{M} \neq (0), \mathcal{H}$. Then

 $\sigma(L|\mathcal{M})\cap\mathbb{D}$ is discrete

$$\iff \tilde{f}_g(\lambda) = \frac{\langle \frac{\zeta f}{\zeta - \lambda}, g \rangle}{\langle \frac{\lambda}{\zeta - \lambda}, g \rangle}, |\lambda| > 1 \text{ is indep. of } g \in \mathcal{M}^{\perp}$$
$$(g \neq 0)$$

If $\sigma(L|\mathcal{M}) \cap \mathbb{D}$ is discrete $g \in \mathcal{M}^{\perp}, g \neq 0$, and if $\frac{1}{\lambda} \in \mathbb{C} \setminus \sigma(L|\mathcal{M})$, then

$$\begin{array}{ll} & \frac{zf(z)-\lambda f(\lambda)}{z-\lambda} & |\lambda| < 1 \\ & (I-\lambda L|\mathcal{M})^{-1}f(z) & = & \frac{zf(z)-\lambda \tilde{f}_g(\lambda)}{z-\lambda} & |\lambda| > 1. \end{array}$$

Note: If $||M_{\zeta}|| \leq 1$, then M_{ζ} has a unitary dilation U with spectral measure E, hence for $|\lambda| > 1$ we have

$$\langle \frac{\zeta f}{\zeta - \lambda}, g \rangle = \langle (U - \lambda)^{-1} U f, g \rangle = \int_{\partial \mathbb{D}} \frac{z}{z - \lambda} d\langle E(z) f, g \rangle$$

is a Cauchy transform in $N(\mathbb{D}_e)$.

Hence

If $||M_{\zeta}|| \leq 1$, then for all $f \in \mathcal{M}$, $g \in \mathcal{M}^{\perp}, g \neq 0$ we have

$$\widetilde{f}_g(\lambda) = \frac{\langle \frac{\zeta f}{\zeta - \lambda}, g \rangle}{\langle \frac{\lambda}{\zeta - \lambda}, g \rangle} \in N(\mathbb{D}_e).$$

Question: Under what extra hypothesis is \tilde{f}_g a pseudocontinuation of f ?

If $\exists \mathcal{N} \in \operatorname{Lat}(M_{\zeta}, \mathcal{H}), \mathcal{M} \in \operatorname{Lat}(L, \mathcal{H})$ such that $\mathcal{N} \subseteq \mathcal{M} \neq \mathcal{H}$, then $\forall g \in \mathcal{M}^{\perp}$, $f \in \mathcal{N}$, $|\lambda| > 1$ $\langle \frac{\zeta f}{\zeta - \lambda}, g \rangle = 0$, hence $\tilde{f}_g = 0$.

Thm (Esterle) If $w = \{w_n\}, w_n \ge w_{n+1} \to 0$ is given, then $\exists v = \{v_n\}, v_n \ge v_{n+1} \to 0$ and $w_n \ge v_n$ so that $||(M_{\zeta}, \mathcal{H}_v)|| \le 1$ and $H^2 \subseteq \mathcal{H}_v \subseteq \mathcal{H}_w$ and the above happens in \mathcal{H}_v and in fact

$$\sigma(L|\mathcal{M}) = \overline{\mathbb{D}}.$$

Thm 1. If \mathcal{H} satisfies 1.-5., $||M_{\zeta}|| \leq 1$, and $\exists c > 0$ such that

$$||\frac{\zeta - \lambda}{1 - \overline{\lambda}\zeta}f|| \ge c||f|| \quad \forall f \in \mathcal{H}, \lambda \in \mathbb{D},$$

then whenever $\mathcal{M} \in LatL, \mathcal{M} \neq \mathcal{H}$, then every $f \in \mathcal{M}$ has a pseudocontinuation $\tilde{f} \in N(\mathbb{D}_e)$ and

$$\tilde{f} = \tilde{f}_g \quad \forall g \in \mathcal{M}^{\perp}.$$

Thus, $\sigma(L|\mathcal{M}) \cap \mathbb{D}$ is discrete.

Thm 2. If \mathcal{H} satisfies 1.-5., $||M_{\zeta}|| \leq 1$, and $\exists A = \{r_n\} \nearrow 1$ such that for $r \in A$

$$\langle \cdot, \cdot \rangle = \langle \cdot, \cdot \rangle_r + \langle \cdot, \cdot \rangle_{1/r}$$

with for all $f \in \mathcal{H}$

 $||zf||_r \le r||f||_r$ and $||Lf||_{1/r} \le \frac{1}{r}||f||_{1/r}$,

then whenever $\mathcal{M} \in LatL, \mathcal{M} \neq \mathcal{H}$, then

$$\mathcal{M} \subseteq N(\mathbb{D})$$

and every $f \in \mathcal{M}$ has a pseudocontinuation $\tilde{f} \in N(\mathbb{D}_e)$ and

$$\tilde{f} = \tilde{f}_g \quad \forall g \in \mathcal{M}^{\perp}.$$

Thus, $\sigma(L|\mathcal{M}) \cap \mathbb{D}$ is discrete.

Example: If $d\mu(z) = \omega(r)drdt$, then the decomposition

$$\int_{\mathbb{D}} |f|^2 d\mu = \int_{r\mathbb{D}} |f|^2 d\mu + \int_{\mathbb{D}\backslash r\mathbb{D}} |f|^2 d\mu$$

will satisfy the hypothesis of Thm 2.

If
$$w = \{w_n\}_{n \ge 0}$$
, $w_n > 0$, $\frac{w_{n+1}}{w_n} \to 1$ as $n \to \infty$, then
$$||(M_{\zeta}, H_w)|| \le 1 \Longleftrightarrow \frac{w_{n+1}}{w_n} \le 1 \quad \forall n$$

Define

$$\alpha_{+} = \overline{\lim}_{n \to \infty} n(1 - \frac{w_{n+1}}{w_n})$$
$$\alpha_{-} = \underline{\lim}_{n \to \infty} n(1 - \frac{w_{n+1}}{w_n})$$

Ex.: If
$$w_n = (n+1)^{-\beta}$$
, then $\alpha_+ = \alpha_- = \beta$

If $0 < \alpha_+ = \alpha_- = \alpha < \infty$, then $1 - \frac{w_{n+1}}{w_n} = \frac{\alpha}{n} + o(\frac{1}{n})$

Thm 3. *If*

$$\alpha_+ < \infty$$
 and $\alpha_+ - \alpha_- < 1$,

then H_w satisfies the hypothesis and conclusion of Theorem 1.

Thm 4. (a) If $\frac{w_{n+1}}{w_n} \nearrow 1$, then H_w satisfies the hypothesis and conclusion of Theorem 2.

(b) If
$$0 < \alpha_{-} \le \alpha_{+} < \infty$$
 and
 $\alpha_{+} \left(\log \frac{\alpha_{+}}{\alpha_{-}} - (1 - \frac{\alpha_{-}}{\alpha_{+}}) \right) e^{\alpha_{+} - \alpha_{-}} < 1,$
then H_{w} satisfies the conclusion of Theorem 2

(equivalent norm).

(c) If $1 - \frac{w_{n+1}}{w_n} = \frac{\alpha}{n^{\gamma}} + o(\frac{1}{n})$, $0 < \gamma < 1$, then then H_w satisfies the conclusion of Theorem 2 (equivalent norm).

In this case $w_n \approx b_n e^{-\frac{\alpha}{1-\gamma}n^{1-\gamma}}$.