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D unit disc, T = ∂D

H2 = H2(D) the Hardy space

L2
a = {f ∈ Hol(D) :

∫
D |f |2dA <∞} the Bergman space

D = {f ∈ Hol(D) :
∫
D |f ′|2dA <∞} the Dirichlet space

If H ⊆ Hol(Ω), then

M(H) = {Mϕ : ϕH ⊆ H} ⊆ B(H),

the algebra of multiplication operators on H.



M ∈ Lat(Mz,H) iff zM ⊆M

D ⊆ H2︸                    ︷︷                    ︸ ⊆ L2
a︸ ︷︷ ︸

∀n ∈N
∀M ∈ Lat(Mz,H),M , (0) ∃Mn ∈ Lat(Mz,H)

dim M	 zM = 1 dim M	 zM = n



M ∈ Lat(Mz,H) iff zM ⊆M

D ⊆ H2 ⊆ P2(µ)︸                                  ︷︷                                  ︸ ⊆ L2
a︸ ︷︷ ︸

∀n ∈N
∀M ∈ Lat(Mz,H),M , (0) ∃Mn ∈ Lat(Mz,H)

dim M	 zM = 1 dim M	 zM = n

dµ = dA|D+ χI|dz|, I ⊆ ∂D



D ⊆ H2︸                    ︷︷                    ︸ ⊆ P2(µ) ⊆ L2
a︸           ︷︷           ︸

∀M,N ∈ Lat(Mz,H) ∃ M,N ∈ Lat(Mz,H)

M,N , (0)⇒M ∩N , (0) M ∩N = (0) and
M+N is dense in H

Well-known for L2
a . Horowitz uses zero sets, applies to P2(µ).

We’ll see that it is interesting to have a refinement of this fact,
not based on zero sets.



H separable Hilbert space, T ∈ B(H)

LatT = {M : TM ⊆M}

(ISP) - invariant subspace problem

(HISP) hyperinvariant subspace problem
If T , λI, then ∃M, M , (0),H such that SM ⊆M for all S with
ST = TS?



TAP - The transitive algebra problem, (Kadison, 1957)

Definition: An algebra A ⊆ B(H) is called transitive, if
I 1 ∈ A

I A is SOT-closed
I Lat A = {(0),H}

Example: A = B(H)

Problem
(TAP) If A is transitive, then A = B(H)?

(TAP)⇒ (HISP)

A = {T} ′ and suppose Lat A = {(0),H}, then assuming (TAP)
A = B(H), hence T = λI.
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Known results on TAP

Theorem
If A is transitive, and if one of the following holds, then A = B(H).

I A = A∗ von Neumann algebra
I A contains a MASA (Arveson, 1967)
I K ∈ A, K , 0 compact
I A contains a unilateral shift of finite multiplicity

multiplicity 1 -Arveson, 1967,
higher finite multiplicities - Nordgren, 1970

I A contains the Dirichlet shift (Mz, D) (R, 1988)
I M(H) ⊆ A -

the multiplier algebra for a space H ⊆Hol(Ω) with
complete NP kernel.
(Cheng, Guo, Wang, 2010)
Actually, this is more general, it includes finite
multiplicities and restrictions to invariant subspaces.
It includes unilateral and Dirichlet shifts.
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Open Problem: If A is transitive and if B = (Mz, L2
a) ∈ A, then

A = B(H)?

More generally: If H ⊆ Hol(Ω) and if M(H) ⊆ A, then what
extra hypothesis is needed to imply A = B(H)?

The basic tool is Arveson’s Lemma, which uses invariant graph
subspaces.
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Invariant graph subspaces
n > 1
H(n) = H ⊕ ...⊕H

A(n) = A⊕ ...⊕ A

M is an invariant graph subspace of A, IGS of A, if
I M is a closed subspace of H(n)

I A(n)M ⊆M for all A ∈ A

I M = {f , T1f , ..., Tn−1f ) : f ∈ D}, Ti : D→ H

i.e. M ∈ Lat A(n) is determined by the 1st component

Note:

x = (f , T1f , ..., Tn−1f ) ∈M

A(n)x = (Af , AT1f , ..., ATn−1f ) ∈M

⇔ ∀ i : ATi = TiA, AD ⊆ D

Ti are the linear graph transformations of A



Examples

Example ( Multiplication by a meromorphic function)
f , g ∈ H ⊆ Hol(Ω) A = M(H)

[f ] = {ϕf : ϕ ∈M(H)}

D = {h ∈ [f ] : g
f h ∈ [g]}

Then {ϕf : ϕ ∈M(H)} ⊆ D ⊆ [f ]

T = M g
f

is a multiplication

M = {(h, g
f h) : h ∈ D} is an IGS of M(H).



The main example
Let L,N ∈ Lat(Mz, L2

a) with L,N , (0) and L ∩N = (0)
(such L and N exist in L2

a , but not in D, H2)

ϕ,ψ ∈ H∞ such that 1
ϕ−ψ ∈ H∞

D = L+N T(f + g) = ϕf +ψg

M = {(f + g,ϕf +ψg) : f ∈ L, g ∈ N}

M is closed:


fn + gn → u
ϕfn +ψgn → v
ϕfn +ϕgn → ϕu

 ⇒ (ψ−ϕ)gn → v −ϕu ∈ N

⇒ gn →
v −ϕu
ψ−ϕ

∈ N

⇒ fn → f ∈ L
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Example (A = B(H))
If M is an IGS of B(H), then
I AD ⊆ D ∀ A ∈ B(H)⇒ D = H

I ATi = TiA ∀ A ∈ B(H)⇒ Ti = λiI

Theorem (Arveson’s Lemma)
If
I A is transitive, and
I whenever M is an IGS for A, then Ti = λiI,

then A = B(H)



Suppose H ⊆ Hol(Ω)

Let M be an IGS for M(H), set

AM = {A ∈ B(H) : AD ⊆ D, TiA = ATi ∀ i}
= the largest subalgebra such that M is an IGS of A

Then
M(H) ⊆ A ⊆ AM

An AM , B(H) with LatAM = {(0),H} would be a
counterexample to TAP.



AM = {A ∈ B(H) : AD ⊆ D, TiA = ATi ∀ i}

LatAM - some obvious examples

α = (α0,α1, ...,αn−1) ∈ Cn Lα = α0I +
∑n−1

i=1 αiTi

Then LαA = ALα for all A ∈ AM, hence

ker Lα, ran Lα ∈ LatAM

Easy fact: If Ti = Mϕ, then

ran (Mϕ −ϕ(λ)) , H

Consequence: If AM is transitive, then any Ti that is a
multiplication is Ti = λiI.



Definition:

Mλ = {(f (λ), (T1f )(λ), ..., (Tn−1f )(λ)) : f ∈ D} ⊆ Cn

= the fiber of M at λ

fdM = sup
λ∈Ω

dimMλ

= the fiber dimension of M

Proposition: If M is an IGS of M(H), then

fdM = 1 ⇔ each Ti is a multiplication.

Corollary: If each non-trivial IGS M of M(H) has fiber
dimension 1, then
if A is transitive and if M(H) ⊆ A, then A = B(H).
Cheng, Guo, Wang: If H has an NP kernel, then fdM = 1 ∀M.



Corollary:

Given M(H), then TFAE
I whenever A is transitive with M(H) ⊆ A, then A = B(H).
I whenever M is an IGS of M(H) with fdM > 1, then LatAM

is non-trivial.



L∩N = (0), M = {(f + g,ϕf +ψg) : f ∈ L, g ∈ N}

Mλ =

{
f (λ)

(
1

ϕ(λ)

)
+ g(λ)

(
1

ψ(λ)

)
: f ∈ L, g ∈ N

}
⇒ dimMλ = 2 ⇔ λ < Z(L) ∪ Z(N)

If dimMλ0 < 2, say λ0 ∈ Z(L), then with µ = ψ(λ0)

(T − µ)(f + g) = (ϕ−ψ(λ0))f + (ψ−ψ(λ0))g

⇒ kλ0 ⊥ ran (T − µ), since f (λ0) = 0 ∀f ∈ L

⇒ AM is not transitive.



M = {(f + g,ϕf +ψg) : f ∈ L, g ∈ N}

Theorem 1: ∃ L,N ∈ Lat(Mz, L2
a) such that

I L ∩N = (0)
I L+N is dense in L2

a

I Z(L) = Z(N) = ∅.

Theorem 2: ∃ L,N ∈ Lat(Mz, L2
a) and

∃ ϕ,ψ ∈ H∞, 1
ϕ−ψ ∈ H∞ such that ∀ α ∈ Cn

ker Lα, ran Lα ∈ {(0),H}.

Thus, AM has no non-trivial invariant subspaces defined by the
linear graph transformations of M.
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M = {(f + g,ϕf +ψg) : f ∈ L, g ∈ N}

Note:
I many ϕ,ψwill work in Theorem 2
I If (ϕ(D) \ψ(D)) ∪ (ψ(D) \ϕ(D)) , ∅, then

N or L ∈ LatAM

Theorem 3: ∃ ϕ,ψ ∈ H∞, 1
ϕ−ψ ∈ H∞

∃ L,N ∈ Lat(Mz, L2
a) such that

I L ∩N = (0)
I L+N is dense in L2

a

I L,N are zero based
I L,N < LatAM
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Proof idea for Theorem 1

wn > 0, an ∈ ∂D, µ =
∑

n wnδan , |µ| =
∑

n wn

|µ| <∞, Sµ(z) = e−
∑

n wn
an+z
an−z singular inner

[Sµ] $ L2
a

Iµ =
⋂

{[Sν] : 0 6 ν 6 µ, |ν| <∞}

µ is admissable, if Iµ , (0)



Thm 1: ∃ µ1,µ2 admissable, µ1 + µ2 not admissable, and
Iµ1 + Iµ2 is dense in L2

a

Thm (Horowitz, 1974)

f (z) =
∏

n

(1 −
5
4

z3n
) ∈ L2

a

f (z) = 0 ⇔ z =

(
4
5

) 1
3n

e2πi k
3n , k = 0, ..., 3n − 1

Thm (Korenblum, 1990)
f ∈ L2

a f (bn) = 0, wn =
1−|bn|
1+|bn|

, an = bn
|bn|

⇒ g(z) =
∏

n

Swn,an(z)
ϕbn(z)

converges and

‖gf‖L2
a
6 ‖f‖L2

a



ν =
∑

n wnδbn

θ1, θ2, ... linearly indep. over Q

νj = ν rotated by 2πiθj

Then for sufficiently large J

J∑
j=1

νj is not admissable.

µ1 =
∑J0

j=1 νj, µ2 = νJ0+1

J0 = sup{J :
∑J

j=1 νj is admissable }


