Graph transformations of the Bergman shift.

Stefan Richter

joint work with Alexandru Aleman (Lund), Karl-Mikael Perfekt (Trondheim), and Carl Sundberg (Knoxville)

> Department of Mathematics The University of Tennessee, Knoxville

> > 3/7/2014

D unit disc, $\mathbb{T} = \partial \mathbb{D}$ $H^2 = H^2(\mathbb{D})$ the Hardy space $L_a^2 = \{f \in \operatorname{Hol}(\mathbb{D}) : \int_{\mathbb{D}} |f|^2 dA < \infty\}$ the Bergman space $D = \{f \in \operatorname{Hol}(\mathbb{D}) : \int_{\mathbb{D}} |f'|^2 dA < \infty\}$ the Dirichlet space If $\mathcal{H} \subseteq \operatorname{Hol}(\Omega)$, then

$$M(\mathcal{H}) = \{M_{\varphi} : \varphi \mathcal{H} \subseteq \mathcal{H}\} \subseteq \mathcal{B}(\mathcal{H}),$$

the algebra of multiplication operators on \mathcal{H} .

 $\mathcal{M} \in \operatorname{Lat}(M_z, \mathcal{H}) \operatorname{iff} z\mathcal{M} \subseteq \mathcal{M}$

 $\mathcal{M} \in \operatorname{Lat}(M_z, \mathcal{H}) \operatorname{iff} z\mathcal{M} \subseteq \mathcal{M}$

$$\underbrace{D \subseteq H^2 \subseteq P^2(\mu)}_{\forall m \in \mathbb{N}} \qquad \underbrace{\subseteq L_a^2}_{\forall n \in \mathbb{N}}$$
$$\forall \mathcal{M} \in \operatorname{Lat}(M_z, \mathcal{H}), \mathcal{M} \neq (0) \qquad \exists \mathcal{M}_n \in \operatorname{Lat}(M_z, \mathcal{H})\\ \dim \mathcal{M} \ominus z\mathcal{M} = 1 \qquad \dim \mathcal{M} \ominus z\mathcal{M} = n$$

 $d\mu = dA|\mathbb{D} + \chi_I|dz|, \quad I \subseteq \partial\mathbb{D}$

$$\begin{array}{ll} \underbrace{D &\subseteq & H^2} \\ \forall \mathcal{M}, \mathcal{N} \in \operatorname{Lat}(M_z, \mathcal{H}) \\ \mathcal{M}, \mathcal{N} \neq (0) \Rightarrow \mathcal{M} \cap \mathcal{N} \neq (0) \end{array} \qquad \begin{array}{l} \subseteq & \underbrace{P^2(\mu) \subseteq L_a^2} \\ \exists & \mathcal{M}, \mathcal{N} \in \operatorname{Lat}(M_z, \mathcal{H}) \\ \mathcal{M} \cap \mathcal{N} = (0) \text{ and} \\ \mathcal{M} + \mathcal{N} \text{ is dense in } \mathcal{H} \end{array}$$

Well-known for L_a^2 . Horowitz uses zero sets, applies to $P^2(\mu)$.

We'll see that it is interesting to have a refinement of this fact, not based on zero sets.

 \mathfrak{H} separable Hilbert space, $T \in \mathfrak{B}(\mathfrak{H})$

 $LatT = \{\mathcal{M} : T\mathcal{M} \subseteq \mathcal{M}\}$

(ISP) - invariant subspace problem

(HISP) hyperinvariant subspace problem If $T \neq \lambda I$, then $\exists \mathcal{M}, \mathcal{M} \neq (0), \mathcal{H}$ such that $S\mathcal{M} \subseteq \mathcal{M}$ for all *S* with ST = TS? TAP - The transitive algebra problem, (Kadison, 1957)

Definition: An algebra $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$ is called transitive, if

- ▶ $1 \in \mathcal{A}$
- A is SOT-closed
- Lat $\mathcal{A} = \{(0), \mathcal{H}\}$

Example: $\mathcal{A} = \mathcal{B}(\mathcal{H})$

Problem (*TAP*) If A is transitive, then $A = B(\mathcal{H})$?

TAP - The transitive algebra problem, (Kadison, 1957)

Definition: An algebra $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$ is called transitive, if

- ▶ $1 \in \mathcal{A}$
- A is SOT-closed
- Lat $\mathcal{A} = \{(0), \mathcal{H}\}$

Example: $\mathcal{A} = \mathcal{B}(\mathcal{H})$

Problem (TAP) If A is transitive, then $A = B(\mathcal{H})$? (TAP) \Rightarrow (HISP)

 $\mathcal{A} = \{T\}'$ and suppose Lat $\mathcal{A} = \{(0), \mathcal{H}\}$, then assuming (TAP) $\mathcal{A} = \mathcal{B}(\mathcal{H})$, hence $T = \lambda I$.

Theorem

Theorem

If A is transitive, and if one of the following holds, then A = B(H).

• $\mathcal{A} = \mathcal{A}^*$ von Neumann algebra

Theorem

- $\mathcal{A} = \mathcal{A}^*$ von Neumann algebra
- ► A contains a MASA (Arveson, 1967)

Theorem

- $\mathcal{A} = \mathcal{A}^*$ von Neumann algebra
- ► A contains a MASA (Arveson, 1967)
- $K \in \mathcal{A}, K \neq 0$ compact

Theorem

- $\mathcal{A} = \mathcal{A}^*$ von Neumann algebra
- ► A contains a MASA (Arveson, 1967)
- $K \in \mathcal{A}, K \neq 0$ compact
- A contains a unilateral shift of finite multiplicity multiplicity 1 -Arveson, 1967, higher finite multiplicities - Nordgren, 1970

Theorem

- $\mathcal{A} = \mathcal{A}^*$ von Neumann algebra
- ► A contains a MASA (Arveson, 1967)
- $K \in \mathcal{A}, K \neq 0$ compact
- A contains a unilateral shift of finite multiplicity multiplicity 1 -Arveson, 1967, higher finite multiplicities - Nordgren, 1970
- \mathcal{A} contains the Dirichlet shift (M_z, D) (R, 1988)

Theorem

If A *is transitive, and if one of the following holds, then* A = B(H)*.*

- $\mathcal{A} = \mathcal{A}^*$ von Neumann algebra
- ► A contains a MASA (Arveson, 1967)
- $K \in \mathcal{A}, K \neq 0$ compact
- A contains a unilateral shift of finite multiplicity multiplicity 1 -Arveson, 1967, higher finite multiplicities - Nordgren, 1970
- \mathcal{A} contains the Dirichlet shift (M_z, D) (R, 1988)
- $M(\mathcal{H}) \subseteq \mathcal{A}$ -

the multiplier algebra for a space $\mathcal{H}\subseteq Hol(\Omega)$ with complete NP kernel.

(Cheng, Guo, Wang, 2010)

Actually, this is more general, it includes finite multiplicities and restrictions to invariant subspaces. It includes unilateral and Dirichlet shifts. **Open Problem:** If \mathcal{A} is transitive and if $B = (M_z, L_a^2) \in \mathcal{A}$, then $\mathcal{A} = \mathcal{B}(\mathcal{H})$?

More generally: If $\mathcal{H} \subseteq \text{Hol}(\Omega)$ and if $M(\mathcal{H}) \subseteq \mathcal{A}$, then what extra hypothesis is needed to imply $\mathcal{A} = \mathcal{B}(\mathcal{H})$?

Open Problem: If \mathcal{A} is transitive and if $B = (M_z, L_a^2) \in \mathcal{A}$, then $\mathcal{A} = \mathcal{B}(\mathcal{H})$?

More generally: If $\mathcal{H} \subseteq \text{Hol}(\Omega)$ and if $M(\mathcal{H}) \subseteq \mathcal{A}$, then what extra hypothesis is needed to imply $\mathcal{A} = \mathcal{B}(\mathcal{H})$?

The basic tool is Arveson's Lemma, which uses invariant graph subspaces.

Invariant graph subspaces

$$n \ge 1$$

$$\mathcal{H}^{(n)} = \mathcal{H} \oplus ... \oplus \mathcal{H}$$

$$A^{(n)} = A \oplus ... \oplus A$$

 \mathcal{M} is an invariant graph subspace of \mathcal{A} , IGS of \mathcal{A} , if

- \mathcal{M} is a closed subspace of $\mathcal{H}^{(n)}$
- $A^{(n)}\mathcal{M} \subseteq \mathcal{M}$ for all $A \in \mathcal{A}$

•
$$\mathcal{M} = \{f, T_1 f, ..., T_{n-1} f\} : f \in \mathcal{D}\}, T_i : \mathcal{D} \to \mathcal{H}$$

i.e. $\mathcal{M} \in \text{Lat } \mathcal{A}^{(n)}$ is determined by the 1st component

Note:

$$\begin{aligned} x &= (f, T_1 f, ..., T_{n-1} f) \in \mathcal{M} \\ A^{(n)} x &= (Af, AT_1 f, ..., AT_{n-1} f) \in \mathcal{M} \\ \Leftrightarrow \qquad \forall i : AT_i = T_i A, \ A\mathcal{D} \subseteq \mathcal{D} \end{aligned}$$

 T_i are the linear graph transformations of A

Examples

Example (Multiplication by a meromorphic function) $f,g \in \mathcal{H} \subseteq \operatorname{Hol}(\Omega) \quad \mathcal{A} = M(\mathcal{H})$

$$[f] = \overline{\{\varphi f : \varphi \in M(\mathcal{H})\}}$$

$$\mathcal{D} = \{h \in [f] : \frac{g}{f}h \in [g]\}$$

Then $\{\varphi f : \varphi \in M(\mathcal{H})\} \subseteq \mathcal{D} \subseteq [f]$

 $T = M_{\frac{g}{f}}$ is a multiplication $\mathcal{M} = \{(h, \frac{g}{f}h) : h \in \mathcal{D}\}$ is an IGS of $M(\mathcal{H})$.

The main example

Let $\mathcal{L}, \mathcal{N} \in \text{Lat}(M_z, L_a^2)$ with $\mathcal{L}, \mathcal{N} \neq (0)$ and $\mathcal{L} \cap \mathcal{N} = (0)$ (such \mathcal{L} and \mathcal{N} exist in L_a^2 , but not in D, H^2)

The main example

Let $\mathcal{L}, \mathcal{N} \in \text{Lat}(M_z, L_a^2)$ with $\mathcal{L}, \mathcal{N} \neq (0)$ and $\mathcal{L} \cap \mathcal{N} = (0)$

 $\varphi, \psi \in H^{\infty}$ such that $\frac{1}{\varphi - \psi} \in H^{\infty}$

 $\mathcal{D} = \mathcal{L} + \mathcal{N} \qquad \qquad T(f + g) = \varphi f + \psi g$

 $\mathcal{M} = \{(f + g, \varphi f + \psi g) : f \in \mathcal{L}, g \in \mathcal{N}\}$

The main example

Let $\mathcal{L}, \mathcal{N} \in \operatorname{Lat}(M_z, L^2_a)$ with $\mathcal{L}, \mathcal{N} \neq (0)$ and $\mathcal{L} \cap \mathcal{N} = (0)$

 $\varphi, \psi \in H^{\infty}$ such that $\frac{1}{\varphi - \psi} \in H^{\infty}$

 $\mathcal{D} = \mathcal{L} + \mathcal{N} \qquad \qquad T(f + g) = \varphi f + \psi g$

$$\mathcal{M} = \{ (f + g, \varphi f + \psi g) : f \in \mathcal{L}, g \in \mathcal{N} \}$$

 \mathcal{M} is closed:

$$\begin{cases} f_n + g_n \to u \\ \varphi f_n + \psi g_n \to v \\ \varphi f_n + \varphi g_n \to \varphi u \end{cases} \implies (\psi - \varphi)g_n \to v - \varphi u \in \mathbb{N}$$
$$\Rightarrow g_n \to \frac{v - \varphi u}{\psi - \varphi} \in \mathbb{N}$$
$$\Rightarrow f_n \to f \in \mathcal{L}$$

Example ($\mathcal{A} = \mathcal{B}(\mathcal{H})$)

If \mathcal{M} is an IGS of $\mathcal{B}(\mathcal{H})$, then

- $\blacktriangleright A \mathcal{D} \subseteq \mathcal{D} \ \forall A \in \mathcal{B}(\mathcal{H}) \Rightarrow \mathcal{D} = \mathcal{H}$
- $AT_i = T_i A \ \forall A \in \mathcal{B}(\mathcal{H}) \Rightarrow T_i = \lambda_i I$

Theorem (Arveson's Lemma) *If*

- ► *A* is transitive, and
- whenever \mathfrak{M} is an IGS for \mathcal{A} , then $T_i = \lambda_i I$,

then $\mathcal{A} = \mathcal{B}(\mathcal{H})$

Suppose $\mathcal{H} \subseteq Hol(\Omega)$

Let \mathcal{M} be an IGS for $M(\mathcal{H})$, set

$$\mathcal{A}_{\mathcal{M}} = \{A \in \mathcal{B}(\mathcal{H}) : A\mathcal{D} \subseteq \mathcal{D}, T_i A = AT_i \forall i\}$$

= the largest subalgebra such that \mathcal{M} is an IGS of \mathcal{A}

Then

$$M(\mathcal{H}) \subseteq \mathcal{A} \subseteq \mathcal{A}_{\mathcal{M}}$$

An $\mathcal{A}_{\mathcal{M}} \neq \mathcal{B}(\mathcal{H})$ with Lat $\mathcal{A}_{\mathcal{M}} = \{(0), \mathcal{H}\}$ would be a counterexample to TAP.

$$\mathcal{A}_{\mathcal{M}} = \{ A \in \mathcal{B}(\mathcal{H}) : A\mathcal{D} \subseteq \mathcal{D}, T_i A = AT_i \forall i \}$$

 $\text{Lat}\mathcal{A}_{\mathcal{M}}$ - some obvious examples

$$\alpha = (\alpha_0, \alpha_1, ..., \alpha_{n-1}) \in \mathbb{C}^n$$
 $L_{\alpha} = \alpha_0 I + \sum_{i=1}^{n-1} \alpha_i T_i$

Then $L_{\alpha}A = AL_{\alpha}$ for all $A \in \mathcal{A}_{\mathcal{M}}$, hence

$$\overline{\ker L_{\alpha}}, \quad \overline{\operatorname{ran} L_{\alpha}} \in \operatorname{Lat} \mathcal{A}_{\mathcal{M}}$$

Easy fact: If $T_i = M_{\varphi}$, then

$$\overline{\operatorname{ran}\left(M_{\varphi}-\varphi(\lambda)\right)}\neq\mathcal{H}$$

Consequence: If $\mathcal{A}_{\mathcal{M}}$ is transitive, then any T_i that is a multiplication is $T_i = \lambda_i I$.

Definition:

$$\mathcal{M}_{\lambda} = \{ (f(\lambda), (T_1 f)(\lambda), ..., (T_{n-1} f)(\lambda)) : f \in \mathcal{D} \} \subseteq \mathbb{C}^n$$

= the fiber of \mathcal{M} at λ

$$fd\mathcal{M} = \sup_{\lambda \in \Omega} \dim \mathcal{M}_{\lambda}$$
$$= \text{ the fiber dimension of } \mathcal{M}$$

Proposition: If \mathcal{M} is an IGS of $M(\mathcal{H})$, then

 $fd\mathcal{M} = 1 \Leftrightarrow each T_i$ is a multiplication.

Corollary: If each non-trivial IGS \mathcal{M} of $M(\mathcal{H})$ has fiber dimension 1, then if \mathcal{A} is transitive and if $M(\mathcal{H}) \subseteq \mathcal{A}$, then $\mathcal{A} = \mathcal{B}(\mathcal{H})$. Cheng, Guo, Wang: If \mathcal{H} has an NP kernel, then $fd\mathcal{M} = 1 \forall \mathcal{M}$.

Corollary:

Given $M(\mathcal{H})$, then TFAE

- whenever \mathcal{A} is transitive with $M(\mathcal{H}) \subseteq \mathcal{A}$, then $\mathcal{A} = \mathcal{B}(\mathcal{H})$.
- ▶ whenever M is an IGS of M(H) with fdM > 1, then LatA_M is non-trivial.

$$\mathcal{L} \cap \mathcal{N} = (0), \ \mathcal{M} = \{(f + g, \varphi f + \psi g) : f \in \mathcal{L}, g \in \mathcal{N}\}$$

$$\begin{split} \mathcal{M}_{\lambda} &= \left\{ f(\lambda) \begin{pmatrix} 1 \\ \varphi(\lambda) \end{pmatrix} + g(\lambda) \begin{pmatrix} 1 \\ \psi(\lambda) \end{pmatrix} : f \in \mathcal{L}, g \in \mathcal{N} \right\} \\ \Rightarrow \dim \mathcal{M}_{\lambda} &= 2 \quad \Leftrightarrow \quad \lambda \notin Z(\mathcal{L}) \cup Z(\mathcal{N}) \end{split}$$

If dim $\mathcal{M}_{\lambda_0} < 2$, say $\lambda_0 \in Z(\mathcal{L})$, then with $\mu = \psi(\lambda_0)$

$$(T-\mu)(f+g) = (\varphi - \psi(\lambda_0))f + (\psi - \psi(\lambda_0))g$$

 $\Rightarrow k_{\lambda_0} \perp \operatorname{ran} (T - \mu), \operatorname{since} f(\lambda_0) = 0 \quad \forall f \in \mathcal{L}$ $\Rightarrow \quad \mathcal{A}_{\mathcal{M}} \text{ is not transitive.}$

$$\mathcal{M} = \{ (f + g, \varphi f + \psi g) : f \in \mathcal{L}, g \in \mathcal{N} \}$$

Theorem 1: $\exists \mathcal{L}, \mathcal{N} \in \operatorname{Lat}(M_z, L_a^2)$ such that

- $\mathcal{L} \cap \mathcal{N} = (0)$
- $\mathcal{L} + \mathcal{N}$ is dense in L_a^2
- $Z(\mathcal{L}) = Z(\mathcal{N}) = \emptyset.$

$$\mathcal{M} = \{(f + g, \varphi f + \psi g) : f \in \mathcal{L}, g \in \mathcal{N}\}$$

Theorem 1: $\exists \mathcal{L}, \mathcal{N} \in \operatorname{Lat}(M_z, L_a^2)$ such that

- $\mathcal{L} \cap \mathcal{N} = (0)$
- $\mathcal{L} + \mathcal{N}$ is dense in L_a^2
- $Z(\mathcal{L}) = Z(\mathcal{N}) = \emptyset.$

Theorem 2: $\exists \mathcal{L}, \mathcal{N} \in \text{Lat}(M_z, L_a^2)$ and $\exists \varphi, \psi \in H^{\infty}, \frac{1}{\varphi - \psi} \in H^{\infty}$ such that $\forall \alpha \in \mathbb{C}^n$

$$\overline{\ker L_{\alpha}}, \quad \overline{\operatorname{ran} L_{\alpha}} \in \{(0), \mathcal{H}\}.$$

Thus, $\mathcal{A}_{\mathcal{M}}$ has no non-trivial invariant subspaces defined by the linear graph transformations of \mathcal{M} .

$$\mathcal{M} = \{(f + g, \varphi f + \psi g) : f \in \mathcal{L}, g \in \mathcal{N}\}$$

Note:

- many φ , ψ will work in Theorem 2
- If $(\phi(\mathbb{D}) \setminus \overline{\psi(\mathbb{D})}) \cup (\psi(\mathbb{D}) \setminus \overline{\phi(\mathbb{D})}) \neq \emptyset$, then

 $\mathcal{N} \text{ or } \mathcal{L} \in \text{ Lat} \mathcal{A}_{\mathcal{M}}$

$$\mathcal{M} = \{(f + g, \varphi f + \psi g) : f \in \mathcal{L}, g \in \mathcal{N}\}$$

Note:

- many φ , ψ will work in Theorem 2
- If $(\phi(\mathbb{D}) \setminus \overline{\psi(\mathbb{D})}) \cup (\psi(\mathbb{D}) \setminus \overline{\phi(\mathbb{D})}) \neq \emptyset$, then

 $\mathfrak{N} \text{ or } \mathcal{L} \in \ Lat \mathcal{A}_{\mathcal{M}}$

- **Theorem 3:** $\exists \phi, \psi \in H^{\infty}, \frac{1}{\phi \psi} \in H^{\infty}$ $\exists \mathcal{L}, \mathcal{N} \in \text{Lat}(M_z, L_a^2) \text{ such that}$
 - $\mathcal{L} \cap \mathcal{N} = (0)$
 - $\mathcal{L} + \mathcal{N}$ is dense in L_a^2
 - \mathcal{L}, \mathcal{N} are zero based
 - $\mathcal{L}, \mathcal{N} \notin \text{Lat}\mathcal{A}_{\mathcal{M}}$

Proof idea for Theorem 1

$$w_n > 0, a_n \in \partial \mathbb{D}, \quad \mu = \sum_n w_n \delta_{a_n}, \quad |\mu| = \sum_n w_n$$

 $|\mu| < \infty, \quad S_{\mu}(z) = e^{-\sum_n w_n \frac{a_n + z}{a_n - z}} \qquad \text{singular inner}$
 $[S_{\mu}] \subsetneq L_a^2$

$$I_{\mu} = \bigcap \{ [S_{\nu}] : 0 \leqslant \nu \leqslant \mu, |\nu| < \infty \}$$

 μ is admissable, if $I_{\mu} \neq (0)$

Thm 1: $\exists \mu_1, \mu_2$ admissable, $\mu_1 + \mu_2$ not admissable, and $I_{\mu_1} + I_{\mu_2}$ is dense in L^2_a

Thm (Horowitz, 1974)

$$f(z) = \prod_{n} (1 - \frac{5}{4}z^{3^{n}}) \in L^{2}_{a}$$
$$f(z) = 0 \iff z = \left(\frac{4}{5}\right)^{\frac{1}{3^{n}}} e^{2\pi i \frac{k}{3^{n}}}, \ k = 0, ..., 3^{n} - 1$$

Thm (Korenblum, 1990) $f \in L_a^2$ $f(b_n) = 0$, $w_n = \frac{1 - |b_n|}{1 + |b_n|}$, $a_n = \frac{b_n}{|b_n|}$ $\Rightarrow g(z) = \prod_n \frac{S_{w_n, a_n}(z)}{\varphi_{b_n}(z)}$ converges and $\|gf\|_{L_a^2} \leq \|f\|_{L_a^2}$

$$\mathbf{v} = \sum_{n} w_n \delta_{b_n}$$

 $\theta_1, \theta_2, ...$ linearly indep. over Q

 $v_j = v$ rotated by $2\pi i \theta_j$

Then for sufficiently large J

$$\sum_{j=1}^{J} v_j \text{ is not admissable.}$$

$$\mu_1 = \sum_{j=1}^{J_0} \nu_j, \quad \mu_2 = \nu_{J_0+1}$$
$$J_0 = \sup\{J : \sum_{j=1}^{J} \nu_j \text{ is admissable }\}$$