Extremals for the families of commuting spherical contractions and their adjoints.

Stefan Richter

joint work with Carl Sundberg

University of Tennessee

January 2009

<u>Topic</u>: Dilations and extensions of *d*-tuples of commuting Hilbert space operators

Example for d = 1:

Thm 1. (the Sz.-Nagy dilation theorem) $T \in \mathcal{B}(\mathcal{H}), ||T|| \leq 1$ $\Rightarrow \exists V \in \mathcal{B}(\mathcal{K}), \quad \mathcal{H} \subseteq \mathcal{K},$ $V\mathcal{H} \subseteq \mathcal{H}, \quad ||V^*x|| = ||x||,$ $T = V|\mathcal{H}.$

V = co-isometric extension of T

 $V = S^* \oplus U,$

 ${\cal S}$ unilateral shift of some multiplicity, U unitary

A study of such V leads to function theory in \mathbb{D} .

All Hilbert spaces in the following are supposed to be separable.

 $d \in \mathbb{N}$, $\mathbb{B}^d = \{z \in \mathbb{C}^d : |z| < 1\}$

Defn 2. (Agler) A family \mathcal{F} is a collection of d-tuples $T = (T_1, ..., T_d)$ of Hilbert space operators, $T_i \in \mathcal{B}(\mathcal{H})$ such that

(a) \mathcal{F} is bounded, $\exists c > 0 \ \forall T = (T_1, ..., T_d) \in \mathcal{F} : ||T_i|| \le c \quad \forall i$

(b) restrictions to invariant subspaces $T \in \mathcal{F}, \mathcal{M} \subseteq \mathcal{H}, T_i \mathcal{M} \subseteq \mathcal{M} \ \forall i \Rightarrow T | \mathcal{M} \in \mathcal{F}$

(c) direct sums $T_n \in \mathcal{F} \Rightarrow \bigoplus_n T_n \in \mathcal{F}, \quad T_n = (T_{1n}, ..., T_{dn})$

(d) unital * -representations $\pi : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{K}), \pi(I) = I,$ $T = (T_1, ..., T_d) \in \mathcal{F}$ $\Rightarrow \pi(T) = (\pi(T_1), ..., \pi(T_d)) \in \mathcal{F}.$

Examples:

$$d = 1$$
:
 $\mathcal{F} = \text{contractions}, T^*T \leq I$
isometries, $T^*T = I$
subnormal contractions

 $d \ge 1$: $\mathcal{F} = \text{contractions}$ commuting contractions isometries commuting isometries

 $\mathcal{F} = \text{commuting spherical contractions}$ commuting row contractions (d-contractions) commuting spherical isometries

Defn 3. If
$$T = (T_1, ..., T_d), T_i \in \mathcal{B}(\mathcal{H}),$$

 $S = (S_1, ..., S_d), S_i \in \mathcal{B}(\mathcal{K}), T, S \in \mathcal{F},$
then
 $T \leq S \Leftrightarrow \mathcal{H} \subseteq \mathcal{K}, S\mathcal{H} \subseteq \mathcal{H}, T = S|\mathcal{H}$
 $\Leftrightarrow S = \begin{pmatrix} T & X \\ 0 & Y \end{pmatrix}$
 $\Leftrightarrow S \text{ extends } T.$

Defn 4.
$$T$$
 is **extremal** for \mathcal{F} ,
 $\Leftrightarrow S \ge T, S \in \mathcal{F} \Rightarrow S = \begin{pmatrix} T & 0 \\ 0 & Y \end{pmatrix} = T \oplus Y.$

We will write $T \in ext(\mathcal{F})$

Thm 5. (Agler) \mathcal{F} family, $T \in \mathcal{F} \Rightarrow \exists S \in ext(\mathcal{F}) \ S \geq T$

Examples:

 $\mathcal{F} = \text{contractions} \Rightarrow \text{ext}(\mathcal{F}) = \text{co-isometries}$

Cor 6. (*Sz. Nagy*) Every contraction has a co-isometric extension.

 $\mathcal{F} = \text{isometries} \Rightarrow \text{ext}(\mathcal{F}) = \text{unitaries}$

Cor 7. Every isometry is subnormal.

 $\mathcal{F} =$ subnormal contractions $\Rightarrow ext(\mathcal{F}) =$ normal contractions.

Cor 8. Every subnormal contraction is subnormal. Commuting spherical isometries (A. Athavale)

$$\mathcal{F} = \{T = (T_1, ..., T_d) : T_i \leftrightarrow T_j, \\ \sum_{i=1}^d ||T_i x||^2 = ||x||^2 \quad \forall x \in \mathcal{H} \}$$

$$ext(\mathcal{F}) = \{ U = (U_1, .., U_d) : U_i \leftrightarrow U_j, U_i \text{ normal} \\ \sum_{i=1}^d \|U_i x\|^2 = \|x\|^2 \quad \forall x \in \mathcal{H} \}$$

= commuting spherical unitaries

The proof follows Attele-Lubin, JFA, 1996.

Cor 9. (*Athavale, 91*) Every commuting spherical isometry is jointly subnormal.

Commuting spherical contractions

Drury 78, Mueller-Vasilescu 93, Arveson 98

$$\mathcal{F} = \{T = (T_1, ..., T_d) : T_i \leftrightarrow T_j, \\ \sum_{i=1}^d ||T_i x||^2 \le ||x||^2 \quad \forall x \in \mathcal{H} \}$$
$$T \in \mathcal{F} \quad \Leftrightarrow \quad \sum_{i=1}^d T_i^* T_i \le I, \quad \text{commuting}$$
$$\text{ext}(\mathcal{F}) = \{S^* \oplus U\}$$
$$U = \text{commuting spherical unitary}$$

S = d-shift of some multiplicity

 $S = M_z$ on $H^2_d(\mathcal{D}) = H^2_d \otimes \mathcal{D}$

 $H_d^2 \subseteq$ Hol(\mathbb{B}^d), Drury-Arveson-Hardy space defined by reproducing kernel

$$k_w(z) = rac{1}{1 - \langle z, w \rangle}, \ z, w \in \mathbb{B}^d$$

Thm 10. (*Richter-Sundberg*) Let $T = (T_1, ...T_d)$ be a commuting operator tuple.

Then the following are equivalent

(a) $T \in ext(\mathcal{F})$

(b) $T = S^* \oplus U$

(c) (1)
$$\sum_{i=1}^{d} T_{i}^{*}T_{i} = P = a$$
 projection
(2) $\sum_{i=1}^{d} T_{i}T_{i}^{*} \ge I$
(2) If $x = -T_{i}$

(3) If $x_1, ..., x_d \in \mathcal{H}$ with $T_i x_j = T_j x_i$, then $\exists x \in \mathcal{H}$ with $x_i = T_i x$.

(c3) says that the Koszul complex for T is exact at a certain stage.

<u>Note 1:</u> For d = 1 (c) becomes

(1) $T^*T = P$, i.e. T is a partial isometry

(2) $TT^* \ge I$, so T is onto

(3) if $x_1 \in \mathcal{H}$, then $\exists x \in \mathcal{H}$ with $x_1 = Tx$, i.e. T is onto

Hence (1)&(2) or (1)&(3) are equivalent to T^* being an isometry.

For d > 1 let $T = M_z$ on $H^2(\partial \mathbb{B}^d)$, then (1) and (3) are satisfied, but (2) is not.

<u>Note 2</u>: If $T \in \mathcal{F}$ and if $\sum_{i=1}^{d} T_i^* T_i \neq a$ projection, then $T \notin \text{ext}(\mathcal{F})$. Commuting row contractions (d-contractions) $\mathcal{F} = \{T : T^* \text{ is a commuting spherical contraction } \}$ $= \{T : T_i \leftrightarrow T_j, \sum_{i=1}^d ||T_i^*x||^2 \leq ||x||^2 \forall x\}$ $= \{T : T_i \leftrightarrow T_j, ||\sum_{i=1}^d T_ix_i||^2 \leq \sum_{i=1}^d ||x_i||^2 \forall x_i\}$ $T \in \mathcal{F}$

 $\Leftrightarrow (T_1, ..., T_d) : \mathcal{H} \oplus .. \oplus \mathcal{H} \to \mathcal{H} \text{ is contractive}$ commutative

 $\Rightarrow T^* = S^* \oplus U | \mathcal{H}$ (by Mueller/Vasilescu-Arveson)

 $\Rightarrow T = P_{\mathcal{H}}(S \oplus U^*) | \mathcal{H},$ $\mathcal{H} = \text{co-invariant for } S \oplus U^*$

$$ext(\mathcal{F}) = ?$$

Thm 11. (easy) (a) $\{T : \sum_{i=1}^{d} T_i T_i^* = I\} \subseteq ext(\mathcal{F})$ spherical co-isometries

(b) If $\sum_{i=1}^{d} T_i T_i^* = P$ is a projection, then

 $T \notin ext(\mathcal{F})$ $\Leftrightarrow \exists x_1, ..., x_d \in ker \ P, \sum_{i=1}^d ||x_i||^2 > 0$ with $T_i x_j = T_j x_i$

If $S = M_z = d$ -shift, then $\sum_{i=1}^d S_i S_i^* = P$ is a projection, and ker P =constants, hence $S \in ext(\mathcal{F})$.

Cor 12. $\{S \oplus U^*\} \subseteq ext(\mathcal{F})$

defect operator

$$D_* = (I - \sum_{i=1}^d T_i T_i^*)^{1/2}$$

Thm 13. (*R*-*S*)

If $T \in \mathcal{F}$ and if D_* has rank one, i.e.

$$D_* = u \otimes u$$

for some $u \neq 0$, then

 $T \in ext(\mathcal{F}) \Leftrightarrow dim span\{u, T_1u, .., T_du\} \geq 3$

If $S = (M_z, H_d^2) =$ the *d*-shift, if \mathcal{M} is invariant for S, $\mathcal{M} \neq H_d^2$ then

$$T = P_{\mathcal{M}^{\perp}} S | \mathcal{M}^{\perp} \in \mathcal{F},$$

and D_* has rank 1.

This can be used to produce examples $T \in ext(\mathcal{F})$ such that $\sum_{i=1}^{d} T_i T_i^* = I - D_*^2$ is not a projection, so THM 2 does not not characterize all extremals.