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Topic: Dilations and extensions of d-tuples
of commuting Hilbert space operators

Example for d = 1:

Thm 1. (the Sz.-Nagy dilation theorem)
T ∈ B(H), ‖T‖ ≤ 1
⇒ ∃ V ∈ B(K), H ⊆ K,

VH ⊆ H, ‖V ∗x‖ = ‖x‖,
T = V |H.

V = co-isometric extension of T

V = S∗ ⊕ U ,

S unilateral shift of some multiplicity,
U unitary

A study of such V leads to function theory
in D.



All Hilbert spaces in the following are sup-
posed to be separable.

d ∈ N, Bd = {z ∈ Cd : |z| < 1}

Defn 2. (Agler) A family F is a collection
of d-tuples T = (T1, .., Td) of Hilbert space
operators, Ti ∈ B(H) such that

(a) F is bounded,
∃c > 0 ∀T = (T1, .., Td) ∈ F : ‖Ti‖ ≤ c ∀i

(b) restrictions to invariant subspaces
T ∈ F ,M⊆ H, TiM⊆M ∀i ⇒ T |M ∈ F

(c) direct sums
Tn ∈ F ⇒ ⊕nTn ∈ F, Tn = (T1n, .., Tdn)

(d) unital * -representations
π : B(H) → B(K), π(I) = I,
T = (T1, .., Td) ∈ F
⇒ π(T ) = (π(T1), .., π(Td)) ∈ F.



Examples:

d = 1 :

F = contractions, T ∗T ≤ I

isometries, T ∗T = I

subnormal contractions

d ≥ 1 :

F = contractions

commuting contractions

isometries

commuting isometries

F = commuting spherical contractions

commuting row contractions (d-contractions)

commuting spherical isometries



Defn 3. If T = (T1, .., Td), Ti ∈ B(H),

S = (S1, .., Sd), Si ∈ B(K), T, S ∈ F,

then

T ≤ S ⇔H ⊆ K, SH ⊆ H, T = S|H
⇔ S =

(
T X
0 Y

)

⇔ S extends T .

Defn 4. T is extremal for F,

⇔ S ≥ T, S ∈ F ⇒ S =

(
T 0
0 Y

)
= T ⊕ Y .

We will write T ∈ ext(F)

Thm 5. (Agler)

F family, T ∈ F ⇒ ∃ S ∈ ext(F) S ≥ T



Examples:

F =contractions⇒ ext(F) = co-isometries

Cor 6. (Sz. Nagy)

Every contraction has a co-isometric ex-

tension.

F =isometries ⇒ ext(F) = unitaries

Cor 7. Every isometry is subnormal.

F =subnormal contractions

⇒ ext(F) = normal contractions.

Cor 8.Every subnormal contraction is sub-

normal.



Commuting spherical isometries (A. Athavale)

F = {T = (T1, .., Td) : Ti ↔ Tj,∑d
i=1 ‖Tix‖2 = ‖x‖2 ∀x ∈ H}

ext(F) = {U = (U1, .., Ud) : Ui ↔ Uj, Ui normal∑d
i=1 ‖Uix‖2 = ‖x‖2 ∀x ∈ H}

= commuting spherical unitaries

The proof follows Attele-Lubin, JFA, 1996.

Cor 9. (Athavale, 91) Every commuting

spherical isometry is jointly subnormal.



Commuting spherical contractions

Drury 78, Mueller-Vasilescu 93,
Arveson 98

F = {T = (T1, .., Td) : Ti ↔ Tj,∑d
i=1 ‖Tix‖2 ≤ ‖x‖2 ∀x ∈ H}

T ∈ F ⇔ ∑d
i=1 T ∗i Ti ≤ I, commuting

ext(F) = {S∗ ⊕ U}

U = commuting spherical unitary
S = d-shift of some multiplicity

S = Mz on H2
d (D) = H2

d ⊗D

H2
d ⊆ Hol(Bd), Drury-Arveson-Hardy space

defined by reproducing kernel

kw(z) =
1

1− 〈z, w〉, z, w ∈ Bd



Thm 10. (Richter-Sundberg) Let T = (T1, ..Td)

be a commuting operator tuple.

Then the following are equivalent

(a) T ∈ ext(F)

(b) T = S∗ ⊕ U

(c) (1)
∑d

i=1 T ∗i Ti = P = a projection

(2)
∑d

i=1 TiT
∗
i ≥ I

(3) If x1, .., xd ∈ H with Tixj = Tjxi,

then ∃x ∈ H with xi = Tix.

(c3) says that the Koszul complex for T is

exact at a certain stage.



Note 1: For d = 1 (c) becomes

(1) T ∗T = P , i.e. T is a partial isometry

(2) TT ∗ ≥ I, so T is onto

(3) if x1 ∈ H, then ∃x ∈ H with x1 = Tx,

i.e. T is onto

Hence (1)&(2) or (1)&(3) are equivalent

to T ∗ being an isometry.

For d > 1 let T = Mz on H2(∂Bd), then (1)

and (3) are satisfied, but (2) is not.

Note 2: If T ∈ F and

if
∑d

i=1 T ∗i Ti 6= a projection, then T /∈ ext(F).



Commuting row contractions (d-contractions)

F = {T : T ∗ is a commuting spherical contraction }

= {T : Ti ↔ Tj,
∑d

i=1 ‖T ∗i x‖2 ≤ ‖x‖2∀x}

= {T : Ti ↔ Tj, ‖
∑d

i=1 Tixi‖2 ≤
∑d

i=1 ‖xi‖2 ∀xi}

T ∈ F
⇔ (T1, .., Td) : H⊕ ..⊕H → H is contractive

commutative

⇒ T ∗ = S∗ ⊕ U |H
(by Mueller/Vasilescu-Arveson)

⇒ T = PH(S ⊕ U∗)|H,
H =co-invariant for S ⊕ U∗

ext(F) =?



Thm 11. (easy)

(a) {T :
∑d

i=1 TiT
∗
i = I} ⊆ ext(F)

spherical co-isometries

(b) If
∑d

i=1 TiT
∗
i = P is a projection, then

T /∈ ext(F)

⇔ ∃x1, .., xd ∈ ker P,
∑d

i=1 ‖xi‖2 > 0

with Tixj = Tjxi

If S = Mz = d-shift, then
∑d

i=1 SiS
∗
i = P is

a projection, and ker P = constants, hence

S ∈ ext(F).

Cor 12. {S ⊕ U∗} $ ext(F)



defect operator

D∗ = (I −
d∑

i=1

TiT
∗
i )1/2

Thm 13. (R-S)
If T ∈ F and if D∗ has rank one, i.e.

D∗ = u⊗ u

for some u 6= 0, then

T ∈ ext(F) ⇔ dim span{u, T1u, .., Tdu} ≥ 3

If S = (Mz, H2
d ) = the d-shift,

if M is invariant for S, M 6= H2
d

then

T = PM⊥S|M⊥ ∈ F ,

and D∗ has rank 1.
This can be used to produce examples T ∈
ext(F) such that

∑d
i=1 TiT

∗
i = I − D2∗ is

not a projection, so THM 2 does not not
characterize all extremals.


