1. Fill out the last column of **Table One** by finding the correct limit, formula, or statement in **Table Two** that applies in each single case.

Table One

#	LIMIT, FORMULA, OR, STATEMENT	#
1	The slope of a vertical line is	
2	The average rate of change of a function $y = f(x)$ on the interval $[x_1, x_2]$ is	
3	The slope of a line given by the equation $y = mx + b$ is	
4	The instantaneous rate of change of the function $y = f(x)$ at $x = x_0$ is	
5	$\lim_{x\to 0} \frac{\sin(\alpha)}{\alpha} =$	
6	$\lim_{x \to 0} \frac{(\cos(\beta) - 1)}{\beta} =$	
7	The equation of a horizontal line in the xy –axis is	
8	x = a	
9	$x^2 - y^2 =$	
10	$x^3 + y^3 =$	

Table Two

#	COMPLEMENTARY LIMIT, FORMULA, OR STATEMENT	
1	It is the equation of a vertical line in the xy -plane	
2	0	
3	y = m x + b, with $m = 0$	
4	$(x+y)(x^2+y^2)$	
5	The slope of the secant line determined by the points $(x_1, f(x_1))$ and $(x_2, f(x_2))$	
6	$\tan(\frac{\pi}{2})$	
7	(x-y)(x+y)	
8	The slope of the tangent line to the graph of $y = f(x)$, at the point $(x_0, f(x_0))$	
9	$\tan(\varphi)$, φ the angle formed by the given line and the x-axis	
10	1	
11	There is no correct limit, formula, or statement listed	

2.1 Find the following limit using algebraic methods.

$$\lim_{x \to \frac{\pi}{3}} \left\{ \frac{2 \cos^2 x + 3 \cos x - 2}{2 \cos x - 1} \right\}$$

2.2 Find the following limit using algebraic methods. $\lim_{x \to 27} \left\{ \frac{x - 27}{x^{\frac{1}{3}} - 3} \right\}$

3.1 Use the Squeeze Theorem to find $\lim_{t\to 0^+} \left\{ \tan t \, \cos(\sin(\frac{1}{t})) \right\}$

3.2 Use the Important Trigonometric Limits to find
$$\lim_{x \to 0} \left\{ \frac{\sin 5x \quad \sin 2x}{\sin 3x \quad \sin 7x} \right\}$$

3.3 Use the Important Trigonometric Limits to find
$$\lim_{h \to 0} \left\{ \frac{1 - \cos(2h)}{h} \right\}$$

4. Fill out the next table by deciding whether or not the given statements are True (T) or False (F).

4.1.1 The limit when x goes to $-\infty$ of an even power of x is $-\infty$. **4.1.2** The limit when x goes to $-\infty$ of an odd power of x is $-\infty$. **4.1.3** The limit when x goes to $-\infty$ of x^3 is $-\infty$. **4.1.4** The limit when x goes to ∞ of x^{-3} is ∞ . **4.1.5** The limit when x goes to $-\infty$ of x^{-3} is ∞ . **4.1.6** The limit when x goes to $-\infty$ of an even power of x is ∞ . **4.1.7** The limit when x goes to $-\infty$ of an odd power of x is ∞ . **4.1.8** The limit when x goes to $-\infty$ of x^{-3} is ∞ . **4.1.9** The limit when x goes to ∞ of x^{-3} is $-\infty$. **4.1.10** The limit when x goes to $-\infty$ of x^{-3} is ∞ .

4.2 Fill out the boxes with the correct answer about the graph of the function y = f(x) given below.

4.2.1 Is the given function left continuous when x, takes the values 0, 1, 2, 3?

YES NO Table 4.2.1

4.2.2 Does the function have a jump discontinuity when x takes the values -2, -1, 2, 3?

4.2.3 Write your answer inside the box

$$\lim_{x \to -\infty} f(x) =$$

YES	NO
Table	4.2.2

ANSWER:
Table 4.2.3