1. Fill out the last column of Table One by finding the correct limit, formula, or statement in Table Two that applies in each single case.

Table One

$\#$	LIMIT, FORMULA, OR, STATEMENT	$\#$
1	The slope of a vertical line is	
2	The average rate of change of a function $y=f(x)$ on the interval $\left[x_{1}, x_{2}\right]$ is	
3	The slope of a line given by the equation $y=m x+b$ is	
4	The instantaneous rate of change of the function $y=f(x)$ at $x=x_{0}$ is	
5	$\lim _{x \rightarrow 0} \frac{\sin (\alpha)}{\alpha}=$	
6	$\lim _{x \rightarrow 0} \frac{(\cos (\beta)-1)}{\beta}=$	
7	The equation of a horizontal line in the $x y-$ axis is	
8	$x=a$	$x^{2}-y^{2}=$
9	$x^{3}+y^{3}=$	
10		

Table Two

$\#$	COMPLEMENTARY LIMIT, FORMULA, OR STATEMENT
1	It is the equation of a vertical line in the $x y$-plane
2	0
3	$y=m x+b$, with $m=0$
4	$(x+y)\left(x^{2}+y^{2}\right)$
5	The slope of the secant line determined by the points $\left(x_{1}, f\left(x_{1}\right)\right)$ and $\left(x_{2}, f\left(x_{2}\right)\right)$
6	$\tan \left(\frac{\pi}{2}\right)$
7	$(x-y)(x+y)$
8	The slope of the tangent line to the graph of $y=f(x)$, at the point $\left(x_{0}, f\left(x_{0}\right)\right)$
9	$\tan (\varphi), \varphi$ the angle formed by the given line and the x-axis
10	1
11	There is no correct limit, formula, or statement listed

2.1 Find the following limit using algebraic methods.

$$
\lim _{x \rightarrow \frac{\pi}{3}}\left\{\frac{2 \cos ^{2} x+3 \cos x-2}{2 \cos x-1}\right\}
$$

2.2 Find the following limit using algebraic methods. $\lim _{x \rightarrow 27}\left\{\frac{x-27}{x^{\frac{1}{3}}-3}\right\}$
3.1 Use the Squeeze Theorem to find $\lim _{t \rightarrow 0^{+}}\left\{\tan t \cos \left(\sin \left(\frac{1}{t}\right)\right)\right\}$
3.2 Use the Important Trigonometric Limits to find $\lim _{x \rightarrow 0}\left\{\frac{\sin 5 x \sin 2 x}{\sin 3 x \sin 7 x}\right\}$
3.3 Use the Important Trigonometric Limits to find $\lim _{h \rightarrow 0}\left\{\frac{1-\cos (2 h)}{h}\right\}$
4. Fill out the next table by deciding whether or not the given statements are True (T) or False (F).
4.1.1 The limit when x goes to $-\infty$ of an even power of x is $-\infty$.
4.1.2 The limit when x goes to $-\infty$ of an odd power of x is $-\infty$.
4.1.3 The limit when x goes to $-\infty$ of x^{3} is $-\infty$.
4.1.4 The limit when x goes to ∞ of x^{-3} is ∞.
4.1.5 The limit when x goes to $-\infty$ of x^{-3} is ∞.
4.1.6 The limit when x goes to $-\infty$ of an even power of x is ∞.
4.1.7 The limit when x goes to $-\infty$ of an odd power of x is ∞.
4.1.8 The limit when x goes to $-\infty$ of x^{3} is ∞.

$\#$	T	F
4.1 .1		
4.1 .2		
4.1 .3		
4.1 .4		
4.1 .5		
4.1 .6		
4.1 .7		
4.1 .8		
4.1 .9		
4.1 .10		

4.1.9 The limit when x goes to ∞ of x^{-3} is $-\infty$.
4.1.10 The limit when x goes to $-\infty$ of x^{-3} is ∞.
4.2 Fill out the boxes with the correct answer about the graph of the function $y=f(x)$ given below.

4.2.1 Is the given function left continuous when x, takes the values $0,1,2,3$?
4.2.2 Does the function have a jump discontinuity when x takes the values $-2,-1,2,3$?
4.2.3 Write your answer inside the box

$$
\lim _{x \rightarrow-\infty} f(x)=
$$

YES	NO
Table 4.2.2	

Table 4.2.2

Table 4.2.3

