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Elliptic Operators

• Laplace’s operator

L = −∆ = −div
(

A∇
)

Homogeneous and isotropic material
A = Id×d

• Second-order elliptic operators in divergence form

L = −div
(

A(x)∇
)
= − ∂

∂xi

[
aij(x)

∂

∂xj

]
Inhomogeneous material

A = A(x) =
(
aij(x)

)
d×d
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Composite Materials (Composites)

Composite materials are widely used in industry and in our daily lives.
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What is a Composite Material?

Two or more materials with different physical or chemical properties
are combined in a proper fashion to create a superior new material
(stronger, lighter, ... ).

Two main categories of constitutes:

• Matrix (binder)
• Reinforcement (fiber)

The constitutes are combined in some organized manner at a
(relatively) small scale.
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Strongly Inhomogeneous Material

• Material with rapidly oscillating and ”self-similar”
microstructure, such as composite materials,

Aε(x) = A(x/ε),

ε > 0 - microscopic scale

• A(y) could be periodic, quasi-periodic, almost-periodic, or a
realization of a stationary random field

• Direct computation of the characteristics of the material may be
costly

• Homogenization theory:
Use asymptotic analysis to find effective (averaged,
homogenized) characteristics
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Elliptic Operators
with Rapidly Oscillating Coefficients

Consider a family of elliptic operators in divergence form

Lε = −div
(

A(x/ε)∇
)
= − ∂

∂xi

[
aij

( x
ε

) ∂

∂xj

]
, ε > 0

Let
A = A(y) =

(
aij(y)

)
, 1 ≤ i, j ≤ d

Assume that

• A is real, bounded, and elliptic
• A satisfies some structure conditions, e.g., periodic,

quasi-periodic, almost-periodic, stationary random (statistically
homogeneous)
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Theory of Homogenization

• Goal: Describe the macroscopic properties of microscopically
heterogeneous material

• Consider the boundary value problem{
Lε(uε) = F in Ω,
uε subject to some boundary condition,

which describes a stationary process in a strongly
inhomogeneous material with rapidly oscillating microstructure

ε > 0 – the inhomogeneity scale

• ε is very small relative to the linear size of the domain
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Homogenization of Elliptic Equations

• As ε→ 0,

uε → u0 strongly in L2(Ω) and weakly in H1(Ω),

where u0 is a solution of an elliptic equation with constant
coefficients (the homogenized or effective equation),{

L0(u0) = F in Ω,
u0 subject to the same kind of boundary condition

• L0 = −div(Â∇) and Â = (âij) may be computed “explicitly”,
using A(y)

• The strongly inhomogeneous material with rapidly oscillating
microstructure, such as composite material, may be approximately
described via an effective homogeneous material
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Basic Questions in Homogenization

• Qualitative theory: consider a general PDE

F(D2uε, Duε, uε, x, x/ε) = 0

Does uε have a limit as ε→ 0?

If it does, what is the (effective) PDE for the limit function u0?

• Quantitative theory:

Convergence rates of uε to u0;

Regularity and geometric properties, which are uniform with
respect to ε > 0, of solutions uε
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Lecture Plan
Consider the second-order elliptic operator in divergence form

Lε = −div(A(x/ε)∇)

Assume that

• A = A(y) is real, bounded, and uniformly elliptic:

µ|ξ|2 ≤ aij(y)ξiξ j and |aij(y)| ≤ µ−1

for any y ∈ Rd and ξ = (ξi) ∈ Rd, where µ > 0

• A is 1-periodic:

A(y + z) = A(y) for any y ∈ Rd and z ∈ Zd

• Some smoothness conditions may be needed for small-scale
estimates
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Lecture Plan

• Lecture 1 - Qualitative Theory (introduction, correctors, effective
coefficients, compactness theorem, homogenization of BVPs)

• Lecture 2 - Large-scale Regularity, Part I (method of Avellaneda -
Lin by compactness)

• Lecture 3 - Large-scale Regularity, Part II (method of Armstrong -
Smart by convergence rates)

• Additional Reading - Calderón-Zygmund Estimates (classical
theory, dual and improved version, weak reverse Hölder
inequalities, local W1,p estimates, global estimates)
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Correctors χ(y) = (χj(y))

• For 1 ≤ j ≤ d, χj(y) is a function in H1(Td) satisfying
− div

(
A(y)∇χj

)
= div

(
A(y)∇yj

)
in Rd

χj is 1-periodicˆ
Td

χj dy = 0

• Existence and uniqueness: apply Lax-Milgram Theorem to

B[φ, ψ] =

ˆ
Td

A(y)∇φ · ∇ψ dy for φ, ψ ∈ H1(Td)

•
Lε

(
xj + εχj(x/ε)

)
= 0 in Rd
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Homogenized Operator and Coefficients

• Homogenized (or effective) operator:

L0 = −div(Â∇)

• Homogenized matrix Â =
(
âij
)
, where âij is given by

âij =

 
Td

[
aij + aik

∂χj

∂yk

]
= B[yj + χj, yi + χi]

• The constant matrix Â is elliptic:

µ|ξ|2 ≤ âijξiξ j and |Â| ≤ µ1,

where µ1 > 0 depends only on µ and d.
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(
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âij
)
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Homogenization of Dirichlet Problems

Theorem

Suppose A = A(y) is elliptic and periodic. Let Ω be a bounded
Lipschitz domain. Let uε ∈ H1(Ω) be the weak solution to

Lε(uε) = F in Ω and uε = f on ∂Ω,

where F ∈ H−1(Ω) and f ∈ H1/2(∂Ω).

Then

uε → u0 weakly in H1(Ω),

A(x/ε)∇uε → Â∇u0 weakly in L2(Ω),

where u0 is the solution to the homogenized problem:

L0(u0) = F in Ω and u0 = f on ∂Ω.
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Homogenization of Neumann Problems
Theorem

Suppose A = A(y) is elliptic and periodic. Let Ω be a bounded
Lipschitz domain. Let uε ∈ H1(Ω) be the weak solution to

Lε(uε) = F + div(G) in Ω and
∂uε

∂νε
= g− n · G on ∂Ω,

with
´

Ω uε dx = 0, where F, G ∈ L2(Ω), and g ∈ H−1/2(∂Ω).

Then

uε → u0 weakly in H1(Ω),

A(x/ε)∇uε → Â∇u0 weakly in L2(Ω),

where u0 is the solution to the homogenized problem:

L0(u0) = F + div(G) in Ω and
∂u0

∂ν0
= g− n · G on ∂Ω,

with
´

Ω u0 dx = 0.
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Quantitative Homogenization

Question: Convergence Rates

What can one say about the convergence rates for

‖uε − u0‖L2(Ω)

Question: Uniform (and large-scale)
Regularity

Regularity estimates for uε that are uniform in
ε > 0.
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Uniform Regularity Estimates

• Question: Suppose that

Lε(uε) = F in Ω,

uε ∈ what space uniformly in ε > 0?

• Observation: If
uε = xk + εχk(x/ε),

where χk(y) is the corrector, then

Lε(uε) = 0 in Rd and ∇uε = ∇xk +∇χk(x/ε)

• Note that ∇uε is bounded uniformly in ε > 0, but not uniformly
Hölder continuous (unless χk = 0). Thus, the optimal estimates
one may prove are the Lipchitz estimates, not C1,α estimates.
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Lipschitz Estimates: Dirichlet Condition

Theorem (M. Avellaneda - F. Lin, 1987)

Assume that A(y) =
(
aαβ

ij (y)
)

is elliptic, peri-

odic, and Hölder continuous. Let Ω be C1,α. Sup-
pose

Lε(uε) = F in Ω and uε = f on ∂Ω.

Then, if p > d and σ > 0,

‖∇uε‖L∞(Ω) ≤ C
{
‖F‖Lp(Ω) + ‖ f ‖C1,σ(∂Ω)

}
,

where C is independent of ε.
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Lipschitz Estimates: Neumann Conditions

Theorem (Kenig - Lin - S. (2013),
S. Armstrong - S. (2016))

Assume that A = A(y) is elliptic, periodic, and Hölder
continuous. Let Ω be C1,α. Suppose

Lε(uε) = F in Ω and
∂uε

∂νε
= g on ∂Ω.

Then, if p > d and σ > 0,

‖∇uε‖L∞(Ω) ≤ C
{
‖F‖Lp(Ω) + ‖g‖Cσ(∂Ω)

}
,

where C is independent of ε.
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W1,p Estimates

Theorem

Assume that A = A(y) is elliptic, periodic, and belongs
to VMO. Let Ω be C1. Suppose

Lε(uε) = div( f ) in Ω and uε = 0 on ∂Ω.

Then, if 1 < p < ∞,

‖∇uε‖Lp(Ω) ≤ C ‖ f ‖Lp(Ω),

where C is independent of ε.

Avellaneda - Lin, Caffarelli - Peral, Shen,...
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Nontangential-maximal-function Estimates

Theorem

Assume that A = A(y) is elliptic, periodic, and Hölder
continuous. Let Ω be Lipschitz. Suppose

Lε(uε) = 0 in Ω and uε = f on ∂Ω

Then,
‖(uε)

∗‖L2(∂Ω) ≤ C ‖ f ‖L2(∂Ω)

‖(∇uε)
∗‖L2(∂Ω) ≤ C ‖ f ‖H1(∂Ω)

where C is independent of ε.

Avellaneda - Lin, Dahlberg, Kenig - Shen.
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Stochastic Homogenization

Large-scale regularity for elliptic equations with random coefficients:

−div(A(x/ε, ω)∇uε) = F

A. Gloria - S. Neukamm - F. Otto,
S. Armstrong - C. Smart,
S. Armstrong - T. Kuusi - J.-C. Mourrat,
...
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• Quantitative Homogenization of Elliptic Operators with Periodic
Coefficients, Harmonic Analysis and Applications, 73 - 129,
IAS/Park City Math. Ser., 27, AMS (2020).

• Periodic Homogenization of Elliptic Systems, Operator Theory:
Advances and Applications, 269. Advances in PDEs (Basel).
Birkhäuser/Springer, Cham, 2018. ix+291 pp.

• The work was supported in part by the NSF
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Thank You
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