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Elliptic Operators

e Laplace’s operator

L=—-A=—div(AV)
Homogeneous and isotropic material
A= Lixa
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Elliptic Operators

e Laplace’s operator

L=—-A=—div(AV)
Homogeneous and isotropic material
A= Lixa

e Second-order elliptic operators in divergence form
. 9 )
L=—div(A(x)V) = “5 lal](x)a—xj
Inhomogeneous material
A= AR) = (aj(x) 4q
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Composite materials are widely used in industry and in our daily lives.
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What is a Composite Material?

Two or more materials with different physical or chemical properties
are combined in a proper fashion to create a superior new material
(stronger, lighter, ... ).

Zhongwei Shen University of Kentucky
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What is a Composite Material?

Two or more materials with different physical or chemical properties
are combined in a proper fashion to create a superior new material
(stronger, lighter, ... ).

Two main categories of constitutes:

e Matrix (binder)
e Reinforcement (fiber)

The constitutes are combined in some organized manner at a
(relatively) small scale.
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Strongly Inhomogeneous Material

e Material with rapidly oscillating and ”self-similar”
microstructure, such as composite materials,

Af(x) = A(x/e),

£€>0 - microscopic scale
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Strongly Inhomogeneous Material

e Material with rapidly oscillating and ”self-similar”
microstructure, such as composite materials,

Af(x) = A(x/e),

£€>0 - microscopic scale

o A(y) could be periodic, quasi-periodic, almost-periodic, or a
realization of a stationary random field

e Direct computation of the characteristics of the material may be
costly
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Strongly Inhomogeneous Material

e Material with rapidly oscillating and ”self-similar”
microstructure, such as composite materials,

Af(x) = A(x/e),

£€>0 - microscopic scale

o A(y) could be periodic, quasi-periodic, almost-periodic, or a
realization of a stationary random field

e Direct computation of the characteristics of the material may be
costly

e Homogenization theory:

Use asymptotic analysis to find effective (averaged,
homogenized) characteristics
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Elliptic Operators
with Rapidly Oscillating Coefficients

Consider a family of elliptic operators in divergence form

Le = —div(A(x/e)V) = _aixi lai,- (5) a%] . €>0
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Elliptic Operators
with Rapidly Oscillating Coefficients

Consider a family of elliptic operators in divergence form

Le = —div(A(x/e)V) = _aixi lai,- (5) a%] . €>0

Let
A=A(y) = (aj(y),1<i,j<d
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Elliptic Operators
with Rapidly Oscillating Coefficients

Consider a family of elliptic operators in divergence form

Le = —div(A(x/e)V) = _a% lai,- (5) a%] . €>0

Let
A=A(y) = (aj(y),1<i,j<d

Assume that

e Aisreal, bounded, and elliptic

o A satisfies some structure conditions, e.g., periodic,
quasi-periodic, almost-periodic, stationary random (statistically
homogeneous)
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Theory of Homogenization

o Goal: Describe the macroscopic properties of microscopically
heterogeneous material

o Consider the boundary value problem

{ﬁg(ug) =F inQ,

ue subject to some boundary condition,

which describes a stationary process in a strongly
inhomogeneous material with rapidly oscillating microstructure

Zhongwei Shen University of Kentucky




0O0000e0000

Theory of Homogenization

o Goal: Describe the macroscopic properties of microscopically
heterogeneous material

o Consider the boundary value problem

{ﬁg(ug) =F inQ,

ue subject to some boundary condition,

which describes a stationary process in a strongly
inhomogeneous material with rapidly oscillating microstructure

e>0 - the inhomogeneity scale

e ¢is very small relative to the linear size of the domain
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Homogenization of Elliptic Equations
e Ase — 0,
ue — ug strongly in L2(Q) and weakly in H'(Q),

where u is a solution of an elliptic equation with constant
coefficients (the homogenized or effective equation),

Lo(ug) =F inQ,
1 subject to the same kind of boundary condition
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Homogenization of Elliptic Equations

e Ase — 0,
ue — ug strongly in L2(Q) and weakly in H'(Q),

where u is a solution of an elliptic equation with constant
coefficients (the homogenized or effective equation),

Lo(ug) =F inQ,
u( subject to the same kind of boundary condition

o Lo=—div(AV)and A = (4;) may be computed “explicitly”,
using A(y)

o The strongly inhomogeneous material with rapidly oscillating
microstructure, such as composite material, may be approximately
described via an effective homogeneous material
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Basic Questions in Homogenization

e Qualitative theory: consider a general PDE

F(Dzus, Dug, g, x,x/€) =0

Does u, have a limit as ¢ — 0?

If it does, what is the (effective) PDE for the limit function u(?
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Basic Questions in Homogenization

e Qualitative theory: consider a general PDE

F(Dzug, Dug, g, x,x/€) =0

Does u, have a limit as ¢ — 0?

If it does, what is the (effective) PDE for the limit function u(?

¢ Quantitative theory:
Convergence rates of u, to u;

Regularity and geometric properties, which are uniform with
respect to € > 0, of solutions
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Lecture Plan

Consider the second-order elliptic operator in divergence form

L, =—div(A(x/e)V)
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Lecture Plan

Consider the second-order elliptic operator in divergence form
L, =—div(A(x/e)V)

Assume that

o A = A(y) is real, bounded, and uniformly elliptic:
plel* < ay(y)&E; and  ag(y)| < pt

for any y € RY and ¢ = (&) € RY, where u > 0
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Lecture Plan

Consider the second-order elliptic operator in divergence form
L, =—div(A(x/e)V)

Assume that

o A = A(y) is real, bounded, and uniformly elliptic:
plel* < ay(y)&E; and  ag(y)| < pt
for any y € RY and ¢ = (&) € RY, where u > 0
o Ais l-periodic:
Aly+z) = A(y) foranyy e R?andz € 27

e Some smoothness conditions may be needed for small-scale
estimates
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Lecture Plan

e Lecture 1 - Qualitative Theory (introduction, correctors, effective
coefficients, compactness theorem, homogenization of BVPs)

o Lecture 2 - Large-scale Regularity, Part I (method of Avellaneda -
Lin by compactness)

o Lecture 3 - Large-scale Regularity, Part II (method of Armstrong -
Smart by convergence rates)

¢ Additional Reading - Calderén-Zygmund Estimates (classical
theory, dual and improved version, weak reverse Holder
inequalities, local W7 estimates, global estimates)
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meces e Smeeemmn
Correctors x(y) = (xj(y))

e For1<j <d, xj(y) is a function in H!(T") satisfying

—div(A(y)Vx;) = div(A(y)Vy;)  inR
X;j is 1-periodic

/dejdyIO
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meces e Smeeemmn
Correctors x(y) = (xj(y))

e For1<j <d, xj(y) is a function in H!(T") satisfying

—div(A(y)Vx;) = div(A(y)Vy;)  inR
X;j is 1-periodic

/dejdyIO

¢ Existence and uniqueness: apply Lax-Milgram Theorem to

Blg 9] = [ AW)T9-Vypdy forg,p € H(TY)
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meces e Smeeemmn
Correctors x(y) = (xj(y))

For 1 < j <d, xj(y) is a function in H(T*) satisfying

—div(A(y)Vx;) = div(A(y)Vy;)  inR
X;j is 1-periodic

/dejdyzo

Existence and uniqueness: apply Lax-Milgram Theorem to

Blg 9] = [ AW)T9-Vypdy forg,p € H(TY)

Le(xj+exj(x/e)) =0 inRY

Zhongwei Shen University of Kentucky




Homogenized Operator and Coefficients

e Homogenized (or effective) operator:

Lo = —div(AV)
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Homogenized Operator and Coefficients

e Homogenized (or effective) operator:
Lo = —div(AV)

» Homogenized matrix A = (@j;), where d; is given by

. oXi
aij = ]frd [”ij+“ika—wi] = Blyj +xj,vi + xil
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Homogenized Operator and Coefficients

e Homogenized (or effective) operator:
Lo = —div(AV)

» Homogenized matrix A = (@j;), where d; is given by
. 0xX;
aij = ]frd [“l’j +“ika—yk] = Blyj +xj,vi + xil

o The constant matrix A is elliptic:

plE? <a@yed; and Al <,

where 1 > 0 depends only on y and 4.
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Homogenization of Dirichlet Problems

Suppose A = A(y) is elliptic and periodic. Let () be a bounded
Lipschitz domain. Let u, € H'(Q) be the weak solution to

Le(ug) =F inQ and wu,=/f onoadQ,

where F € H1(Q) and f € H/2(3Q).




Homogenization of Dirichlet Problems

Suppose A = A(y) is elliptic and periodic. Let () be a bounded
Lipschitz domain. Let u, € H'(Q) be the weak solution to

Le(ug) =F inQ and wu,=/f onoadQ,
where F € H1(Q) and f € H/2(3Q)). Then

Ug — U weakly in H(Q2),
A(x/€)Vue — AVuy  weakly in L2(Q)),

where 1 is the solution to the homogenized problem:

Lo(ug) =F inQ and wuy=f onadQ.
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Homogenization of Neumann Problems

Suppose A = A(y) is elliptic and periodic. Let Q) be a bounded
Lipschitz domain. Let u, € H'(Q) be the weak solution to

Le(ue) =F+div(G) inQ and %:g—n-G on dQ},
€

with [, uedx = 0, where F,G € L*(Q), and g € H™1/2(3Q)).




Homogenization of Neumann Problems

Suppose A = A(y) is elliptic and periodic. Let Q) be a bounded
Lipschitz domain. Let u, € H'(Q) be the weak solution to

Le(ue) =F+div(G) inQ and %:g—n-G on dQ},
€

with [, uedx = 0, where F,G € L*(Q), and g € H™1/2(3Q)).
Then

e — 1 weakly in H(Q)),
A(x/€)Vue — AVuy weakly in L?(Q)),

where 1 is the solution to the homogenized problem:

Lo(uyg) = F+div(G) inQ and %zg—nfi on dQ),
0
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Quantitative Homogenization

Question: Convergence Rates

What can one say about the convergence rates for

[te — o]l 12
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Quantitative Homogenization

Question: Convergence Rates

What can one say about the convergence rates for

[te — o]l 12

Question: Uniform (and large-scale)

Regularity

Regularity estimates for u, that are uniform in
e > 0.

=} F = = =

University of Kentu
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Uniform Regularity Estimates

e Question: Suppose that
cg(ug) = F 11’1 Q,

ue € what space uniformly in e > 0?
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Uniform Regularity Estimates
e Question: Suppose that
Le(u) =F inQ,
ue € what space uniformly in e > 0?

e Observation: If
ue = xp +exr(x/e),

where xi(y) is the corrector, then

Le(ug) =0 inRY and Vue = Vxp + Vy(x/e)
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Uniform Regularity Estimates

e Question: Suppose that
cg(ug) - F 11’1 Q,

ue € what space uniformly in e > 0?

e Observation: If
ue = xp +exr(x/e),

where xi(y) is the corrector, then
Le(ug) =0 inRY and Vue = Vxp + Vy(x/e)

¢ Note that Vu, is bounded uniformly in € > 0, but not uniformly
Holder continuous (unless xj = 0). Thus, the optimal estimates
one may prove are the Lipchitz estimates, not C'* estimates.
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Lipschitz Estimates: Dirichlet Condition

Theorem (M. Avellaneda - F. Lin, 1987)

Assume that A(y) = (u?;.ﬁ (y)) is elliptic, peri-

odic, and Holder continuous. Let Q be C14. Sup-
pose

Le(ug)=F inQ and wu,=f ondQ.




[e]e] Je]elele]e]e]

Lipschitz Estimates: Dirichlet Condition

Theorem (M. Avellaneda - F. Lin, 1987)

Assume that A(y) = (u?;.’g (y)) is elliptic, peri-

odic, and Holder continuous. Let Q be C14. Sup-
pose

Le(ug) =F inQ) and wu;=f onod
Then, if p > dand ¢ > 0,
IVtell ey < € {IF ) + I fllcroaay b

where C is independent of «.
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Lipschitz Estimates: Neumann Conditions

Theorem (Kenig - Lin - S. (2013),

S. Armstrong - S. (2016))

Assume that A = A(y) is elliptic, periodic, and Holder
continuous. Let Q) be C1**. Suppose

Le(ug) =F inQ and %zg on 0Q).
oV

Then, if p > dand o > 0,

IVtelli() < € {IFllLr( + Iglco@ny |

where C is independent of ¢.
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WP Estimates

Assume that A = A(y) is elliptic, periodic, and belongs
to VMO. Let Q be C!. Suppose

Le(ue) =div(f) inQ and wu,=0 ondQ.
Then, if 1 < p < oo,
IVuelr) < Cllfllra)

where C is independent of ¢.

Avellaneda - Lin, Caffarelli - Peral, Shen,...
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Nontangential-maximal-function Estimates

Assume that A = A(y) is elliptic, periodic, and Holder
continuous. Let () be Lipschitz. Suppose

Le(ug) =0 inQ) and wu,=/f onodQ

Then,
1(ue)* 200y < Cllfll2an)
[(Vue)* 200) < Cllflmoa)

where C is independent of «.

Avellaneda - Lin, Dahlberg, Kenig - Shen.
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Stochastic Homogenization

Large-scale regularity for elliptic equations with random coefficients:
—div(A(x/e,w)Vue) = F
A. Gloria - S. Neukamm - E. Otto,

S. Armstrong - C. Smart,
S. Armstrong - T. Kuusi - ].-C. Mourrat,
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o Quantitative Homogenization of Elliptic Operators with Periodic
Coefficients, Harmonic Analysis and Applications, 73 - 129,
IAS/Park City Math. Ser., 27, AMS (2020).

e Periodic Homogenization of Elliptic Systems, Operator Theory:
Advances and Applications, 269. Advances in PDEs (Basel).
Birkhduser/Springer, Cham, 2018. ix+291 pp.

e The work was supported in part by the NSF
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