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C H A P T E R 1

PROBLEM FORMULATION

The purpose of simulation is to gain understanding of the process being
simulated. Building understanding is complex, involving iterative use of
experiment and observation on the ‘‘physical plane’’ and model building and
analysis on the ‘‘conceptual plane.’’ The act of formulating a mathematical model
tests our understanding of the physical process. Do we know what is important,
and what may be ignored? Do we believe that we know the underlying
relationships between the entities making up our process well enough to formulate
them in mathematical terms?

This book is concerned with simulating the processes of melting and freezing
on a macroscopic scale. Very few processes are more familiar to us than these.
Yet our interest in them, motivated by processes of increasing complexity, has
grown steadily in recent years, while our intuition is increasingly tested. On the
one hand we know that it will take half a day to defrost a piece of meat. On the
other hand, we have not the slightest intuition about the performance of a material
used to store solar energy as the latent heat of melting as it cycles through repeated
freeze/thaw cycles. The growing use of Silicon brings us into intimate contact
with processes involving freezing of supercooled liquid; alloy processing in space
leads us to surface-tension driven convection; laser induced melting brings us to
the edge (and perhaps beyond it) of credibility of the heat equation, our
fundamental tool for heat transfer modeling on a macroscopic scale. Time scales
have broadened. When Stefan formulated the classical phase change model, the
credible time scale for processes of interest could be measured in days to several
years. In recent years the authors have dealt with problems whose time scales are
measured in pico-seconds, and with problems whose time scales are literally
20,000,000 years. Thus our need to know has expanded, and with it, our intuition
about even simple processes has waned. To build our intuition we need
experiment and observation on the one hand, and better simulation tools on the
other.

In this chapter we formulate the classical Stefan-type model of melting and
freezing. Historically this problem has been regarded as lying on the border
between tractable and intractable problems. It is nonlinear, and its principal
difficulty lies in the fact that one of its unknowns is the region in which it is to be
solved. For this reason it is called a ‘‘moving boundary problem.’’ Our intuition
tells us that for most reasonable phase change processes energy conservation
prevails. This is manifested in two ways: the heat equation, its differential
expression, holds within liquid or solid, and a ‘‘jump’’ condition expressing energy
conservation, prevails along the curves separating solid from liquid. Are there
such curves? Sometimes we really do see ‘‘nice’’ curves separating solid from
liquid, and sometimes instead, we see ‘‘fuzzy’’ or even ‘‘fat’’ regions in place of
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2 CHAPTER 1

sharp curves. The classical formulation is based on an underlying assumption,
which we will later discard, that the front is indeed of zero thickness.

The chapter is divided into three sections. The first presents an overview of the
physical ideas relevant to phase-change processes. In the second we introduce the
precise mathematical formulation of the basic physical facts leading to the ‘‘Stefan
Problem’’, the prototype of all phase-change models and a central subject of this
book. In the third section we discuss some of the complications and difficulties
encountered in more realistic phase-change processes.

1.1. AN OVERVIEW OF THE PHENOMENA INVOLVED
IN A PHASE-CHANGE

Several mechanisms are at work when a solid melts or a liquid solidifies. Such
a change of phase involves heat (and often also mass) transfer, possible
supercooling, absorption or release of latent heat, changes in thermophysical
properties, surface effects, etc. We shall briefly discuss these in rough qualitative
terms in order to orient the reader and introduce the terminology.

It is important to note that although the focus of our discussions is
solidification and melting, the principles, ideas, and many of the results apply as
well to other first-order phase transitions, including certain solid-to-solid
transitions, vapor condensation and evaporation (gas-liquid transition),
sublimation (gas-solid transition), or even certain magnetization phenomena. A
clear qualitative picture of first-order phase transitions is presented in [CALLEN],
[PIPPARD], [WALDRAM].

Both solid and liquid phases are characterized by the presence of cohesive
forces keeping atoms in close proximity. In a solid the molecules vibrate around
fixed equilibrium positions, while in a liquid they may ‘‘skip’’ between these
positions. The macroscopic manifestation of this vibrational energy is what we
call heat or thermal energy, the measure of which is temperature. Clearly atoms
in the liquid phase are more energetic (hotter) than those in the solid phase, all
other things being equal. Thus before a solid can melt it must acquire a certain
amount of energy to overcome the binding forces that maintain its solid structure.
This energy is referred to as the latent heat L (heat of fusion) of the material and
represents the difference in thermal energy (enthalpy) levels between liquid and
solid states, all other things being equal. Of course, solidification of liquid
requires the removal of this latent heat and the structuring of atoms into more
stable lattice positions. In either case there is a major re-arrangement of the
entropy of the material, a characteristic of first-order phase transitions.

There are three possible modes of heat transfer in a material: conduction,
convection and radiation. Conduction is the transfer of kinetic energy between
atoms by any of a number of ways, including collision of neighboring atoms and
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the movement of electrons; there is no flow or mass transfer of the material. This
is how heat is transferred in an opaque solid. In a liquid heat can also be
transferred by the flow of particles, i.e. by convection. Radiation is the only mode
of energy transfer that can occur in a vacuum (it requires no participating
medium). Thermal radiation, emitted by the surface of a heated solid, is radiation
of wave-length roughly in the range 0.1 to 10 microns (µm). An excellent source
on the fundamentals of heat transfer modes is [BIRD et al], see also
[WHITAKER].

The transition from one phase to the other, that is, the absorption or release of
the latent heat, occurs at some temperature at which the stability of one phase
breaks down in favor of the other according to the available energy. This phase-
change, or melt temperature Tm depends on pressure. Under fixed pressure, Tm

may be a particular fixed value characteristic of the material (for example, 0°C for
pure water freezing under atmospheric pressure), or a function of other
thermodynamic variables (for example, of glycol concentration in an anti-freeze
mixture).

Most solids are crystalline, meaning that their particles (atoms, molecules, or
ions) are arranged in a repetitive lattice structure extending over significant
distances in atomic terms. In this context atoms may be regarded as spheres of
diameter 2 to 6 Angstroms (1 Angstrom = 10−10 meters). Since formation of a
crystal may require the movement of atoms into the solid lattice structure, it may
well happen that the temperature of the material is reduced below Tm without
formation of solid. Thus supercooled liquid, that is, liquid at temperatures below
Tm, may appear; such a state is thermodynamically metastable [CALLEN],
[TURNBULL] (see §2.4). We note that melting requires no such structuring,
possibly explaining why ‘‘superheating’’ is rarely observed [CHRISTIAN]. To see
the possible effect of supercooling (also called undercooling sometimes), typical
cooling curves for both normal freezing and supercooling are shown schematically
in Figure 1.1.1. These curves are meant to show the temperature of a sample of
material as a function of time, as heat is extracted from the sample at a constant
rate. Note that for the supercooling curve of Figure 1.1.1(b), the temperature
rapidly rises back to the melt temperature Tm when crystallization does take place.
This can occur only if the latent heat released upon freezing is sufficient to raise
the temperature to Tm, i.e., the liquid was not cooled too much. Liquid cooled to
a temperature so low that the latent heat is not sufficient to raise its temperature to
Tm, is referred to as being hypercooled.

The phase-transition region where solid and liquid coexist is called the
interface. Its thickness may vary from a few Angstroms to a few centimeters, and
its microstructure may be very complex, depending on several factors (the material
itself, the rate of cooling, the temperature gradient in the liquid, surface tension,
etc.). For most pure materials solidifying under ordinary freezing conditions at a
fixed Tm the interface appears (locally) planar and of negligible thickness. Thus it
may be thought of as a ‘‘sharp front,’’ a surface separating solid from liquid at
temperature Tm. In other cases, typically resulting from supercooling, the phase-
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transition region may have apparent thickness and is referred to as a ‘‘mushy
zone’’; its microstructure may now appear to be dendritic or columnar (shown
schematically in Figure 1.1.2). The local freezing temperature at a curved solid
surface facing the liquid becomes depressed by an amount depending on the solid-
liquid surface tension and the local curvature. This so-called Gibbs-Thomson
effect is small for the overall freezing process, but crucial for the resulting
microstructure of the interface [PORTER-EASTERLING], [KURZ-FISHER],
[GURTIN] (see §2.4).

Most thermophysical properties of a material (usually varying smoothly with
temperature) undergo more or less sudden changes at Tm. For example the heat
capacity of aluminum changes by 11% at its melt temperature (of 659°C), but that
of silicon changes by only 0.3% (at 1083°C). Such discontinuities in
thermophysical properties complicate the mathematical problems because they

t i m e

initial temperature

LIQUID
FREEZING

SOLID

T
m

t i m e

initial temperature

T
m

LIQUID FREEZING SOLID

( a ) ( b )

Figure 1.1.1. Cooling curves for (a) normal freezing and (b) with supercooling.
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induce discontinuities in the coefficients of differential equations. However the
most fundamental and pronounced effects are due to changes in density.

Typical density changes upon freezing or melting are in the range of 5% to
10% but can be as high as 30%. For most materials the solid is denser than the liq-
uid, resulting in possible formation of voids in freezing or breaking of the con-
tainer in melting (§2.3). On the other hand water expands on freezing, resulting in
broken pipes on cold days and ice floating instead of filling the bottom of the
oceans. The density variation with temperature induces flow by natural convection
in the presence of gravity, rapidly equalizing the temperature in the liquid and
greatly affecting heat transfer. In microgravity there is no natural convection but
‘‘Marangoni’’ convection [MYSHKIS et al], due to surface tension (capillary)
effects, may arise instead and dominate heat transfer. All these effects may com-
plicate a phase-change process beyond our ability to analyze effectively.

The explanation of why and how the phenomena mentioned above occur is the
subject of physical theories, some still under development. Discussions may be
found in the relevant literature [CALLEN], [CHALMERS], [FLEMINGS],
[KURZ-FISHER], [LANDAU-LIFSHITZ], [PORTER-EASTERLING], [ROSEN-
BERGER], [TILLER], [TURNBULL], [WALDRAM].

The subject of this book is the mathematical modeling and analysis of phase
change processes at the macroscopic level. The purpose of mathematical model-
ing is to quantify the process in order to be able to predict (and ultimately control)
the evolution of the temperature field in the material, the amount of energy used
and stored, the interface location and thickness, and any other quantity of interest.
Thus the equations and conditions that express the physics of the process must be
formulated subject to certain accepted approximations; these result from the sim-
plifying assumptions made in order to obtain a manageable problem. We will
attempt to state such assumptions as clearly as possible so that the reader will be
aware of the limitations of the resulting model.

When referring to a material that undergoes a phase change we will often use
the abbreviation ‘‘PCM’’ to represent the term ‘‘Phase Change Material.’’

PROBLEMS

PROBLEM 1. It is asserted that if the density of ice were greater than that of
water then life on earth would be impossible. Why?

PROBLEM 2. Ice-making is a major industrial activity. It is said that the person
developing a method for pumping supercooled liquid without it freezing
would become ‘‘rich and famous.’’ Why?

PROBLEM 3. In your experience is it more common or less common to observe
sharp freezing fronts. Give an example.

PROBLEM 4. It was very cold yesterday and yet the snow on the roof partly
melted. Where could the heat have come from?
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PROBLEM 5. Suppose that you are flying in a plane at a very high altitude and
you can fire a water droplet into the cold exterior air. Describe what you
think will happen to it.

PROBLEM 6. Describe the appearance of the curve corresponding to that of
Figure 1.1.1(b) for the case of superheating of a solid.

1.2. FORMULATION OF THE STEFAN PROBLEM

1.2.A Introduction

We begin by formulating the mathematical model of a simple melting or freez-
ing process incorporating only the most basic of the phenomena mentioned in
§1.1. This model is known as the Classical Stefan Problem and constitutes the
foundation on which progressively more complex models can be built by incorpo-
rating some of the effects initially left out. The characteristic of phase-change
problems is that, in addition to the temperature field, the location of the interface
is unknown. Problems of this kind arise in fields such as molecular diffusion, fric-
tion and lubrication, combustion, inviscid flow, slow viscous flow, flow in porous
media, and even optimal decision theory. Overviews of the origins of such prob-
lems, referred to as ‘‘moving boundary problems’’ or ‘‘free boundary problems’’
may be found in [RUBINSTEIN] and in [ELLIOTT-OCKENDON], [CARSLAW-
JAEGER] and [CRANK]; see also the conference proceedings [OCKENDON-
HODGKINS], [WILSON-SOLOMON-BOGGS], [FASANO-PRIMICERIO,
1983], [BOSSAVIT-DAMLAMIAN-FREMOND], [HOFFMANN-SPREKELS],
[CHADAM-RASMUSSEN] on moving boundary problems.

We start with a discussion of the physical assumptions leading to the Stefan
Problem. Then we introduce the basic concepts and equations of heat conduction,
boundary conditions, and interface conditions, ending up with the precise mathe-
matical formulation of the Classical Stefan Problem.

1.2.B Assumptions

It is crucial to have a clear picture of exactly which phenomena are taken into
account and which are not, because a model can at best be as good as its underly-
ing physical assumptions. To make the assumptions as clear as possible we pre-
sent, in Table 1.1, a summary of the physical factors involved in a phase change
and the simplifying assumptions that will lead us to the classical Stefan Problem.

Our phase change process involves a PCM (phase change material) with con-
stant density ρ , latent heat L, melt temperature Tm, phase-wise constant specific
heats cL, cS, and thermal conductivities, kL, kS. Heat is transferred only isotropi-
cally (see below) by conduction, through both the solid and the liquid; the phases
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Table 1.1

Physical Factors Involved Simplifying Assumptions Remarks on the
in Phase change Processes for the Stefan Problem Assumptions

1. Heat and mass transfer Heat transfer isotropic- Most common case. Very
by conduction, convection, ally by conduction only, reasonable for pure
radiation with possible all other effects materials, small container,
gravitational, elastic, assumed negligible. moderate temperature
chemical, and electro- gradients.
magnetic effects.

2. Release or absorption of Latent heat is constant; Very reasonable and
latent heat it is released or absorbed consistent with the rest

at the phase-change of the assumptions.
temperature.

3. Variation of phase-change Phase-change tempera- Most common case,
temperature ture is a fixed known consistent with other

temperature, a property assumptions.
of the material.

4. Nucleation difficulties, Assume not present. Reasonable in many
supercooling effects situations.

5. Interface thickness and Assume locally planar Reasonable for many
structure and sharp (a surface pure materials (no

separating the phases) internal heating
at the phase-change present).
temperature.

6. Surface tension and Assume insignificant. Reasonable and consistent
curvature effects at the with other assumptions.
interface

7. Variation of thermo- Assume constant in each An assumption of
physical properties phase, for simplicity convenience only.

(cL ≠ cS, kL ≠ kS). Reasonable for
most materials under
moderate temperature
range variations. The
significant aspect is their
discontinuity across the
interface, which is allowed.

8. Density changes Assume constant Necessary assumption to
(ρ L = ρ S). avoid movement of

material. Possibly the
most unreasonable of
the assumptions.
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are separated by a sharp interface of zero thickness, an isotherm at temperature Tm,
where the latent heat is absorbed or released.

This situation arises very often in applications with the result that the Stefan
Problem is by far the most frequently applied model of a phase change process.

An additional assumption of mathematical nature often goes unmentioned. In
deriving the model it will be assumed that all the functions representing physical
quantities are as smooth as required by the equations in which they appear. Of
course this has to be assumed a-priori in order to proceed with the formulation of
the mathematical model, but has to be justified a-posteriori by proving that the
resulting mathematical problem does indeed admit such smooth solutions. It turns
out that this may not always be the case, making ‘‘weak solution’’ reformulations
necessary (see §4.4).

EXAMPLE. The specific heat (in kJ /kg K ) of ice/water is well approximated by
the relation

c =
⎧
⎨
⎩

7. 16 × 10−3 T + .138 , T ≤ 273 K (ice)

4. 1868 , T ≥ 273 K (water ) .
(1)

Similarly the thermal conductivity (in kJ /m s  K ) is giv en by

k =
⎧
⎨
⎩

2. 24 × 10−3 + 5. 975 × 10−6(2 73 − T )1.156 , T ≤ 273 K

1. 017 × 10−4 +1. 695 × 10−6 T , T ≥ 273 K
(2)

Note that at the melt temperature Tm = 273 K , cS = 2. 092 7 is only about half of
cL = 4. 1868, while kS = 2. 24 × 10−3 is about four times larger than kL =
0. 5644 × 10−3.

1.2.C Heat Conduction

The fundamental quantities involved in conduction of heat through a material
are: temperature, heat (thermal energy) and heat flux.

The temperature is a macroscopic measure of perpetual molecular movement.
Its meaning and measurement are subjects of Thermodynamics [CALLEN],
[REYNOLDS], [WALDRAM], and Heat Transfer [ECKERT-DRAKE], [Mc-
ADAMS]. It is measured in degrees Kelvin (K), Celsius (°C) or Fahrenheit (°F).

The heat absorbed by a material under constant pressure is a thermodynamic
quantity called the enthalpy. We shall denote the enthalpy (thermal energy) per
unit mass by e and per unit volume by E, measuring the former in kJ/kg, and the
latter in kJ/m3 . For a pure material heated under constant pressure, when there are
no volume changes, the enthalpy represents the total energy ( see §2.3 ), and the
heat absorbed is related to the temperature rise by

(3)de = c dT .
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The quantity

c(T ) =
de

dT
,

is the specific heat (heat capacity per unit mass) (kJ / kg°C) under constant pres-
sure and represents the heat needed to raise the temperature of 1 kg of the material
by 1°C. It is a property of the material, always positive, varies slowly with temper-
ature, and is usually higher for the liquid phase than for the solid phase. Thus for
example, the specific heat of water as given in (1) above can be taken as 4.1868
kJ /kg°C, while that of ice at 0°C (273 K ) is 2.0927 kJ /kg°C. The heat accompa-
nying a temperature rise is referred to as sensible heat, in contrast with the latent
heat of phase change, absorbed or released at constant temperature (the melt tem-
perature). In the context of a phase change process the most convenient reference
temperature, relative to which temperature changes are measured, is the phase-
change temperature of the material, Tm (provided it is constant). From (3) the sen-
sible heat in a unit mass of material at temperature T is then given by

sensible heat =
T

Tm

∫ c( T ) dT , (4)

with c = cL if the material is liquid (T > Tm) and c = cS if it is solid (T < Tm).
At T = Tm the material may be either liquid or solid. What distinguishes the two is
the energy (enthalpy); liquid at Tm contains the latent heat L per unit mass,
whereas solid at Tm has no latent heat. Hence, if we fix the energy scale by choos-
ing e = 0 for solid at T = Tm, the enthalpy is giv en by

e =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

eL(T ) : = L +
T

Tm

∫ cL( T ) dT, for T > Tm (liquid)

eS(T ) : =
T

Tm

∫ cS( T ) dT, for T < Tm (solid)

(5)

Therefore the phases are characterized by either temperature or enthalpy as

solid <=> T < Tm <=> e < 0 ,
(6)

liquid <=> T > Tm <=> e > L ,

At T = Tm the enthalpy undergoes a jump of magnitude L. If e = 0 the material
is solid while for e = L it is liquid. Any region where

(7)T = Tm and 0 < e < L

is referred to as a mushy zone. According to our Assumption 5 (§1.2.B) this
region has zero thickness (a surface) and therefore the enthalpy jump across it is
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(8)[[ e]]
liquid

solid
: = eL(Tm) − eS(Tm) = L .

When the specific heats cS , cL are constants, (5) reduces to

e =

⎧
⎪
⎨
⎪
⎩

eL(T ) : = L + cL[T − Tm], T ≥ Tm

eS(T ) : = cS[T − Tm], T ≤ Tm

(liquid),

(solid),

(9)

the graph of which is shown in Figure 1.2.1(a), and of its inverse in Figure
1.2.1(b). For water/ice, (1) may be used to relate T directly to e; when graphed we
obtain the curve of Figure 1.2.2.

The amount of heat crossing a unit area per unit time is called the heat flux,
denoted by q

→
, and measured in kJ / s m2 = kW / m2. The heat flux is a vector point-

ing in the direction of heat flow, and given by

(10)Fourier′s Law: q
→ = − k

˜
∇T

where the tensor k
˜

is the thermal conductivity of the material, measured in

kJ / m s °C or kW / m K. In general it is a tensor with positive components varying
with temperature. We shall assume isotropic conduction, i.e., that k

˜
is a scalar

k > 0. Typically, its value for the solid is higher than for the liquid. For water/ice,
for example, we see from (2) that kS is substantially greater than kL . Reg arding
the isotropicity assumption, we note that in reality, even for ice frozen off a flat
surface, there is a direction dependence of conductivity.

In circular cylindrical coordinates (r , θ , z),

(11a)x = r cosθ , y = r sinθ , z = z ,

Fourier’s law for an isotropic medium takes the form

(11b)q
→ = − k (Tr ,

1

r
Tθ , Tz) ,

while in spherical coordinates (r , φ , θ )

(12a)x = r cosθ sin φ , y = r sinθ sin φ , z = r cos φ ,

it takes the form

(12b)q
→ = − k (Tr ,

1

r
Tφ ,

1

r sin φ
Tθ ) .

In one space dimension Fourier’s law is expressed by

(13a)q = − k Tx
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Figure 1.2.2. State relation, e = e(T ), for ice-water.

for the cartesian coordinate x, and by

(13b)q = − k Tr

for the r direction in both the circular cylindrical and spherical systems.
The heat flow rate across a surface of area A and unit normal n

→
is given by

(14)( q
→ . n

→
) A = − k

˜
∇ T . n

→
A ,

and represents the heat crossing the area A in the direction normal to the surface
per unit time. Thus the radial heat flow rate through the surface of a circular
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cylinder of radius r and height z is (−k Tr) 2π rz, and that through the surface of a
sphere of radius r is (−k Tr) 4π r2.

The fundamental law of conductive heat transfer is the

(15)Energy Conservation Law: (ρ e)t + div q
→ = F ,

where F (kJ /m3s) is a volumetric heat source ( > 0) or sink ( < 0). This is the dif-
ferential form (the subscript t denotes partial derivative with respect to time) of the
First Law of Thermodynamics (applied to the enthalpy, since this represents the
total energy here, see §2.3.F):

heat increase = heat in − heat out,

or, in terms of rates:

(16)d

dt ∫∫
V
∫ ρ e dV = ∫∫

V
∫ F dV − ∫

S
∫ q

→ . n
→

dS ,

where V is a volume, S its surface and n
→

the outward unit normal to S. Since, by

the Divergence Theorem, the surface integral equals ∫∫
V
∫ div q

→
dV and the vol-

ume is arbitrary, (15) is equivalent to (16). Expressing e and q
→

in terms of temper-
ature via (3) and (10) we obtain the general

(17)Heat Conduction Equation: ρ c Tt = div( k ∇T ) + F

expressing local conservation of heat conducted isotropically through the material
according to Fourier’s law. This is a partial differential equation obeyed by T (x

→
, t),

the temperature at location x
→

at time t. It holds at each point x
→

of the region occu-
pied by a material of density ρ , specific heat c, and conductivity k.

We recall the concept of well-posedness.

DEFINITION. A mathematical problem is said to be well-posed if it admits a
unique solution that depends continuously on the data (small changes in the
data result in small changes in the solution).

The well-posedness concept mimics the corresponding requirements on the physi-
cal problem being modeled. For most ‘‘standard’’ physical processes we expect a
unique solution that will not ‘‘jump’’ in response to slight changes in input data.

A well-posed problem for equation (17) in a spatial domain Ω and for positive
time t > 0  (Figure 1.2.3) requires the following information:

(a) partial differential equation (17), valid for x
→

in Ω , t > 0 ,

(b) initial condition T (x
→

, 0) = Tinit(x
→

) , x
→

in Ω ,

(c) boundary conditions (specify T , or its normal derivative, or a combina-
tion of both, see §1.2.D ), at every point of the boundary, ∂Ω , of Ω for
t > 0.
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Figure 1.2.3. Space-time region for the Heat Conduction Equation.

Here Tinit is a known initial temperature distribution.
The boundary conditions that most often arise in heat transfer are discussed

in §1.2.D. Different types of boundary conditions may be imposed on different
parts of the boundary, but some condition is needed on each part.

When the thermal conductivity k can be considered constant, then it is con-
venient to introduce the

Thermal Diffusivity: α =
k

ρc
(m2/ s) ,  (18)

and write (17) in the form known as the

(19)Heat Equation: Tt = α ∇2 T + f ,

which is now a linear parabolic equation, (see (23)).
In one-space dimension, when no internal sources are present, the Fourier Law,

general Heat Conduction Equation, and Heat Equation take the forms

(20)q = − k Tx ,

(21)ρc Tt = (k Tx)x,

(22)Tt = α Txx.

Let us briefly recall the place the heat equation occupies among the ‘‘standard’’
partial differential equations. The classical second order partial differential equa-
tions of mathematical physics [COURANT-HILBERT], [CHESTER]
[DUCHATEAU-ZACHMANN], [ZACHMANOGLU-THOE], [STRAUSS], are
epitomized by the

(23a)Laplace equation : 0 = div(∇u) ,
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the

(23b)wave equation : utt = div(∇u) ,

and the

(23c)heat equation : ut = div(∇u) ,

where, for each, the right hand side contains derivatives only with respect to the
spatial variables.

The Laplace equation is said to be of elliptic type, a class of equations for
which time as such plays no role. Elliptic equations characterize steady state
behavior of a system. To be well-posed a problem involving an elliptic equation in
a region Ω requires data around the entire boundary of the region, and will tell us
what is happening in the interior.

EXAMPLE 1. A well-posed problem for the Laplace equation

(24a)1

r
(rur)r +

1

r2
uθθ = 0

on the unit disk Ω of the x , y plane in polar coordinates, is to seek a solution
u to the equation within Ω which on the boundary r = 1 of Ω is equal to a
given function f (θ ) (Figure 1.2.4). It is easily seen by separation of variables
that if f(θ ) can be expanded in a Fourier series

(24b)f(θ ) =
∞

n=0
Σ α ncos(nθ ) + β nsin(nθ ) ,

then the unique solution to this problem is (PROBLEM 10)

(24c)u(r ,θ ) =
∞

n=0
Σ rn[α ncos(nθ ) + β nsin(nθ )] .

where α n and β n are the Fourier coefficients of f(θ ).

Ω

r = 1

u = f (θ )

Figure 1.2.4. Region for Laplace’s equation (24a).
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The Wav e Equation is said to be of hyperbolic type, and corresponds to time-
dependent movement of a body due to conditions at its boundary. Solutions to the
equation are functions u(x

→
, t) defined on the set of points (x

→
, t) where x

→
varies in

some spatial domain Ω and t varies on some interval 0 ≤ t ≤ tmax. Well-posed-
ness requires the assignment of a condition everywhere on the boundary of Ω
throughout the time interval, together with an appropriate initial condition. Since
this equation represents the second derivative utt in terms of spatial information,
comparison with the case for ordinary differential equations implies that through-
out Ω an initial distribution of both u and ut is needed for well-posedness.

EXAMPLE 2. A well posed problem for the wav e equation in one space dimen-
sion for Ω the interval 0 ≤ x ≤ π is (Figure 1.2.5)

(25a)utt = uxx , 0 < x < π , t > 0 ,
(25b)u(0 , t) = 0 , t > 0  (boundary condition at x = 0) ,
(25c)u(π , t) = 0 , t > 0  (boundary condition at x = π ) ,
(25d)u(x, 0) = 0 ,  0 ≤ x ≤ π (initial condition) ,
(25e)ut(x, 0) = sin x , 0 ≤ x ≤ π (initial condition) .

The unique solution to this problem is u(x, t) = sin t sin x, (PROBLEM 11).

x

t

π0

utt = uxx
u = 0

ut = sin x
u = 0

u = 0

Figure 1.2.5. Region for the wav e equation problem (25).

The heat equation is said to be of parabolic type. Now the time derivative
appears only to first order. As with the wav e equation a condition is still needed
ev erywhere on the boundary of Ω, but only one initial condition, the specification
of the value of u(x

→
, t) for all x

→
in Ω at the initial time t = 0 is required (see

below).

EXAMPLE 3. A well-posed problem for the one-dimensional heat equation on
the interval 0 ≤ x ≤ π is (Figure 1.2.6)

(26a)ut = uxx , 0 < x < π , t > 0
(26b)u(0 , t) = 0 , t > 0  (boundary condition at x = 0) ,
(26c)u(π , t) = 0 , t > 0  (boundary condition at x = π ) ,
(26d)u(x , 0) = sin x , 0 < x < π (initial condition) .
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x

t

π0

u = 0u = 0

u = sin x

ut = uxx

Figure 1.2.6. Region for the heat equation problem (26).

The unique solution to this problem is u(x, t) = e−t sin x , (PROBLEM 12).

The wav e equation and the heat equation differ in two fundamental aspects.
The first is that while time is ‘‘reversible’’ for the wav e equation, meaning that
exchanging t with − t will not effect the behavior of the solution, it is not so for
the heat equation. Indeed, ‘‘backward’’ problems involving the determination of
an earlier thermal state from ‘‘final’’ data, are in general not well-posed. The sec-
ond difference is that signals moving according to the wav e equation have a finite
speed, while for the heat equation signals are propagated at infinite speed. (see
below).

EXAMPLE 4. Heat conduction in a semi-infinite slab:

Assume the slab 0 ≤ x < ∞ is initially at a uniform temperature T0 and a
temperature TL is imposed at the face x = 0. Thus, we seek T (x, t) such that

(27a)Tt = α Txx, 0 < x < ∞, t > 0

(27b)T (x, 0) = T0, 0 < x < ∞
(27c)T (0, t) = TL,

x→∞
lim T (x, t) = T0, t > 0  .

This is also a well-posed problem with solution (PROBLEM 14)

T (x, t) = TL − (TL − T0) erf ⎛
⎝

x

2√⎯ ⎯⎯α t
⎞
⎠

, (28)

where the error function is given by [ABRAMOWITZ-STEGUN], §2.1,

erf(z) =
2

√⎯ ⎯π

z

0
∫ e− s2

ds . (29)

The solution is discontinuous at x = 0, t = 0, but infinitely smooth for any
t > 0. We see that heat conduction is a smoothing process, a property of
parabolic equations not shared by hyperbolic ones (and a reason why ‘‘back-
ward’’ parabolic problems are ill-posed, generally).

Note that as long as the face x = 0 is held also at temperature T0, the whole
slab remains at T0. The moment the face temperature is changed to a different
temperature, TL , say higher than T0, the temperature at every point of the entire
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slab also rises immediately, according to (28). Hence, the disturbance at x = 0 is
felt immediately everywhere! In this sense, the thermal signal travels with infinite
speed, also a property of parabolic equations not shared by hyperbolic ones, as
mentioned earlier. Clearly this contradicts our experience and suggests that the
heat equation (actually Fourier’s law) may be a poor model for heat conduction.
Why is it then universally used as such? The reason is that this unphysical behav-
ior is more ‘‘theoretical’’ than ‘‘practical’’: The error function increases to 1
extremely rapidly ( e.g. erf(5) ≈ 1 − .15 × 10−11 ) and therefore, for moderate
TL − T0, T (x, t) is detectably different from T0 only for points x very close to
x = 0 ( say, x < 10√⎯ ⎯⎯α t ); the rest of the slab will essentially be at T0, as far as any
measuring device can detect, in accord with experience.

Notice, however, that for very large temperature gradients (e.g. very large
TL − T0) this will not be the case and then the validity of Fourier’s law does
become questionable even from the ‘‘practical’’ point of view. Such situations
arise in various applications, involving very intense local heating/cooling, e.g. laser
annealing, and there have been various attempts at examining alternatives leading
to ‘‘hyperbolic heat transfer’’ and ‘‘hyperbolic Stefan Problems’’, [OZICIK],
[SOLOMON et al,1985], [SHOWALTER-WALKINGTON], [FRIEDMAN-HU],
[LI].

1.2.D Boundary Conditions

In addition to knowing the initial temperature distribution, the thermal condi-
tions on every exterior surface of the body must be known at all times. This
requirement is not only physically obvious, but also mathematically necessary in
order to have a well-posed mathematical problem for the parabolic equation (17).

Surface heating or cooling can be achieved by the following methods, each one
inducing a boundary condition appropriate for equation (17).

I. Imposed temperature:

(30)T (x
→

, t) = Tboundary(x
→

, t) for x
→ ∈∂ Ω, t > 0,

i.e., the temperature at each boundary point is specified. This amounts to assum-
ing perfect contact between the surface and a heat source of known temperature.

II. Imposed Flux:

(31)− k
∂T

∂ n
→

in
(x

→
, t) = qboundary (x

→
, t) for x

→ ∈∂ Ω , t > 0,

where n
→

in(x
→

) is the inward normal to ∂Ω at x
→ ∈∂Ω, and

∂T

∂n
→

in
= ∇T . n

→
in denotes the

directional derivative. This means we know the amount of heat entering the surface
per unit area per unit time. Of course, what we really know is the amount of heat
delivered to the surface by, say, a heater lamp, but not how much actually gets
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inside unless there is perfect contact and no reflective losses. If the absorptivity
a of the surface is known, then the right-hand side will be a . qboundary(x

→
, t). In

particular, (perfect) thermal insulation is expressed by

− k
∂T

∂n
→

in
= 0 .  (32)

III. Convective Flux:

−k
∂T

∂n
→

in
(x

→
, t) = h [T∞ (x

→
, t) − T (x

→
, t) ]  for x

→ ∈∂ Ω, t > 0 , (33)

that is, the incoming flux is proportional to the temperature difference between the
surface of the material and an imposed ambient temperature T∞ (Newton’s law of
cooling). This is the most realistic means of heat input, achieved by pumping a
heat transfer fluid (such as water or air) of known (and regulated) temperature T∞
over a container wall. The wall creates in fact a thin boundary layer and is mod-
eled effectively by an experimentally determined convective heat transfer coeffi-
cient, h. The units of h are kJ /m2s°C, and it depends on the material, geometry,
and roughness of the wall, as well as the velocity and properties of the heat trans-
fer fluid. Determination of heat transfer coefficients occupies a sizable part of the
science of Heat Transfer, and there exist formulas for effective heat transfer coeffi-
cients under a myriad of physical situations (see [McADAMS], [CHAPMAN]).

IV. Radiative Flux:

− k
∂T

∂ n
→

in
(x

→
, t) = ĥ̂[T∞ (x

→
, t)4 − T (x

→
, t)4 ] for x

→ ∈∂ Ω, t > 0. (34)

A hot body radiates heat with a flux which, according to Stefan’s Fourth Power
Law, is proportional to the difference of the fourth powers of the temperatures of
the surfaces exchanging heat. The actual situation is very complicated, but (34) is
often a satisfactory approximation [BIRD et al, Chap. 14]. The radiative heat
transfer coefficient ĥ̂ depends on the emissivities of the participating media, the
geometry of walls and gaps, etc. Frequently radiative flux exists in conjunction
with convective and/or conductive fluxes in which case the total incoming flux is
their sum. Note that

T 4
∞ − T 4 = (T 2

∞ + T 2)(T∞ + T ) . [T∞ − T ] ,

so that by absorbing (T 2
∞ + T 2)(T∞ + T ) into the heat transfer coefficient the radia-

tive boundary condition can be written as a convective boundary condition but with
h depending nonlinearly on the ambient and surface temperatures.

We conclude that a general expression for flux input is

− k
∂T

∂n
→

in
= h(T∞ , T , t) . [T∞ − T ] ,  on ∂ Ω , t > 0, (35)
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where the heat transfer coefficient may depend nonlinearly on the imposed ambi-
ent temperature, the surface temperature, the time, as well as the emissivities, con-
ductivities, geometry of the wall and air layers, and velocity and properties of the
heat transfer fluid. Then (35) includes both (33) and (34). In addition, we can
interpret h → ∞ in (33) as implying T = T∞ , thus including the imposed tem-
perature boundary condition (30). Finally h ≡ 0 implies the insulated boundary
case (32).

We close with the reminder that different boundary conditions may be imposed
on different parts of the boundary. What is important is that some boundary condi-
tion must be imposed on each part of the boundary (PROBLEM 18).

1.2.E Interface Conditions

In a melting or solidification process, conforming to our assumptions in
§1.2.B, the physical region Ω occupied by the phase change material will be subdi-
vided into two phases, liquid and solid, separated by a sharp interface Σ (of zero
thickness, Figure 1.2.7).

∂Ω

Σ

Ω

L I Q U I D

S O L I D

Figure 1.2.7. Solid and liquid phases separated by a sharp interface.

According to our discussion in §1.2.C conservation of energy in each phase
demands that a heat conduction equation (17) be satisfied there. In the liquid, the
coefficients will be cL and kL and in the solid cS and kS (see §1.2.F); for simplic-
ity in notation we shall not use different symbols for the temperatures of liquid and
of solid. The interface constitutes part of the boundary of both the liquid and solid
regions; hence we need a boundary condition from each side in order to complete
the initial-boundary value problem in each phase. Since the temperature must
always be continuous, and by Assumption 5 the interface is an isotherm at Tm, we
have the interface conditions

(36)lim T (x
→

, t) = Tm and

x
→ → interface

x
→ ∈ liquid

lim T (x
→

, t) = Tm ,

x
→ → interface

x
→ ∈ solid
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that is, the temperature is prescribed there. If the interface location were known
we would have enough conditions to determine the temperature inside the liquid
and the solid regions. Since the location is unknown, we need one more condition
to determine it. Such an additional condition results from energy conservation
across the interface, and it can be derived in sev eral ways. In order to avoid need-
less complications of notation we will postpone the derivation until §4.4 in
CHAPTER 4. We will merely note that jump conditions for conservation laws
can be derived in general as Rankine-Hugoniot ‘‘shock’’ conditions (Kotchine’s
Theorem, see [TRUESDELL-TOUPIN], [SEGEL], [ARIS], [CHORIN-MARS-
DEN], [DELHAYE]). For a conservation law of the general form

(37)At + div B
→

= f ,

the jump condition across a smooth surface (fixed in space-time),

(38)Σ( x
→

, t ) = 0 ,

can be shown to be

[[ A]]+
_ Nt + [[B

→
]]+

_
. N

→
x = 0 .

Here

N
→

= (N
→

x , Nt) = (∇Σ , Σt)
1

√⎯ ⎯⎯⎯⎯⎯⎯⎯Σ2
t + | ∇ Σ |2

denotes the unit normal to the surface pointing towards the ‘‘+’’ side, and
[[ A]] +

_ = A+ − A− denotes the difference between the limiting value of a quantity A
on Σ from the ‘‘+’’ side and its value on Σ from the ‘‘−’’ side. More conveniently,
this may be expressed in terms of the

normal velocity v : =
dx

→

dt
. n

→ = −
Σt

|∇Σ |
(39)

of the moving surface (see next paragraph) as

(40)[[ A]]+
− v = [[ B

→ . n
→

]]+
− ,

where n
→

: =
∇Σ
|∇Σ |

denotes the unit normal to the moving surface at each time.

Equation (39) may be seen as follows. Firstly (38) can be thought of either as
representing a fixed surface in space-time, with unit normal N

→ = ( N
→

x , Nt ) , or, a

moving surface in space, with unit normal n
→ =

∇Σ
| ∇Σ |

at each fixed time. From

(38), we have Σ t + ∇Σ. dx
→

dt
= 0, where

dx
→

dt
is the velocity of a point on the sur-

face. Hence v : =
dx

→

dt
. n

→
represents the normal component of the velocity of the

moving interface and therefore
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v =
dx

→

dt
. ∇Σ

|∇Σ|
= −

Σ t

|∇Σ|
.

Applying this to the energy conservation law, (15), we find

(41)[[ ρe]]+
− v = [[ q

→ . n
→

]]+
− .

Since both the energy, ρe, and the flux, q
→

, across any surface Σ entirely inside the
liquid (or the solid) are continuous within each one-phase region, the jumps [[ ρe]]+

−
and [[q

→
]]+

_ are both zero, and (41) degenerates to 0 = 0. But, if Σ is the interface,
then the jumps are not zero. Indeed, let us choose the liquid as ‘‘+’’ side and the
solid as ‘‘−’’ side of the interface Σ. By (8), the enthalpy jump is

[[ ρe ]]
liquid

solid
= ρ L > 0 , and therefore (41) becomes the so-called

(42)Stefan Condition : ρ L v = [[ q
→.n→ ]]

liquid

solid

on the interface. This states that the latent heat released due to the interface dis-
placement equals the net amount of heat delivered to (or from) the interface per
unit area per unit time ( q

→.n→ = flux normal to the moving surface). Thus, the Ste-
fan Condition is a statement of heat balance across the interface. For more general
versions see §2.3.E and §2.4.F.

Now, we restrict our considerations to the 1-dimensional case and derive the
Stefan Condition directly from global energy balance. Consider a slab of material,
0 ≤ x ≤ l, of constant cross-sectional area A. Heat is input or output at the faces
x = 0 and x = l by some means, resulting in, say, liquid in 0 ≤ x < X(t) and solid
in X(t) < x ≤ l, separated by a sharp interface at x = X(t), at each time t > 0. We
assume constant density and phase-wise constant properties. The total enthalpy in
the slab at time t > 0, referred to the melt temperature Tm (see PROBLEM 22) is

E(t) = A

⎧
⎪
⎨
⎪
⎩

X(t)

0
∫ {ρcL[T (x, t) − Tm] + ρ L}dx +

l

X(t)
∫ ρcS[T (x, t) − Tm]dx

⎫
⎪
⎬
⎪
⎭

. (43)

Global heat balance demands (see (16))

dE

dt
= net heat flow into the slab = A{q(0, t) − q(l, t)} , (44)

where q(0, t) and −q(l, t) are the heat fluxes into the slab through the faces x = 0
and x = l, respectively. Leibnitz’s rule enables us to compute

1

A

dE

dt
= ρcL[T (X(t), t) − Tm] . X′(t) +

X(t)

0
∫ ρcLTt(x, t)dx
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+ ρ LX′(t) − ρcS[T (X(t), t) − Tm] . X′(t) +
l

X(t)
∫ ρcSTt(x, t)dx . (45)

Using T (X(t), t) = Tm and substituting the heat equation (21) for each phase we
obtain

1

A

dE

dt
= kLTx(X(t)−, t) − kLTx(0, t) + ρ LX′(t) + kSTx(l, t) − kSTx(X(t)+, t) ,

where Tx(X(t) +−, t) denotes the values of Tx(x, t) as x → X(t) +−, i.e. from the left
or right. But, −kLTx(0, t) and +kSTx(l, t) are precisely the fluxes q(0, t) and
−q(l, t). Therefore, (44) yields the

(46)Stefan Condition: ρ L X′(t) = − kL Tx( X(t)−, t) + kS Tx( X(t)+, t),

expressing energy conservation across the interface x = X(t) in the 1-dimensional
case. In fact, since the velocity of the interface is v = X′(t), and

(qliquid − qsolid)|x=X(t) = − kLTx(X(t)−, t) + kSTx(X(t)+, t),

we see that the 1-dimensional version of (42) is indeed (46).
The Stefan Condition says that the rate of change in latent heat ρ L X′(t),

equals the amount by which the heat flux jumps across the interface. In particular,
the heat flux can be continuous across the interface if and only if either L = 0 or
the interface does not move. For an axially symmetric phase-change in a cylinder,
or a spherically symmetric phase-change in a sphere, the Stefan condition across
the interface r = R(t) has the same form, namely (PROBLEMS 24, 25)

(47)ρ L R′(t) = − kL Tr( R(t), t) + kS Tr( R(t), t) .

1.2.F The Stefan Problem

Now we hav e all the ingredients we need to state the mathematical problem
modeling a phase-change process that satisfies the assumptions of §1.2.B. We will
assume that no internal heating sources are present in the material.

As a very simple model process, we consider the following

PHYSICAL PROBLEM. A slab, 0 ≤ x ≤ l, initially solid at temperature
Tinit < Tm, is melted by imposing a hot temperature TL > Tm at the face x = 0
and keeping the back face, x = l, insulated. We assume constant thermophys-
ical parameters ρ , cL , kL , cS , kS (hence constant diffusivities α L = kL /ρcL

and α S = kS /ρcS), and a sharp interface x = X(t).

A schematic picture of the process is shown in Figure 1.2.8. At each time t, liquid
occupies [0 , X(t)) and solid (X(t) , l]. The curve x = X(t) represents the interface
location, schematically, demarcating the liquid and solid space-time regions. The
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heat equation is to be satisfied in each phase-region and the initial and boundary
conditions of the problem are shown.

The mathematical model for this process is the following

Tw o-Phase Stefan Problem (for a slab melting from the left):

Find the temperature T (x, t), 0 ≤ x ≤ l, t > 0, and interface location
X(t), t > 0, such that the following are satisfied (Figure 1.2.8):

Partial differential equations

(48a)Tt = α LTxx for 0 < x < X(t), t > 0  (liquid region)

(48b)Tt = α STxx for X(t) < x < l, t > 0  (solid region)

Interface Conditions

(49a)T (X(t), t) = Tm, t > 0

(49b)ρ L X′(t) = − kL Tx(X(t)−, t) + kS Tx(X(t)+, t), t > 0

Initial Conditions

(50a)X(0) = 0

(50b)T (x, 0) = Tinit < Tm, 0 ≤ x ≤ l, (and initial state is solid)

Boundary Conditions

(51a)T (0, t) = TL > Tm, t > 0  (imposed temperature)

(51b)−kSTx(l, t) = 0, t > 0  (insulated boundary)

t T = Tm

ρ LX′ = − kL Tx + kS Tx

l
x

L I Q U I D

− kS Tx = 0

0

T = TL > Tm

T = TS < Tm

x = X(t)

Tt = α STxx

S O L I D

Tt = α LTxx

Figure 1.2.8. Space-time diagram for the Two-Phase Stefan Problem.



24 CHAPTER 1

DEFINITION : We say that the functions T (x, t), X(t) constitute a classical
solution of the above Stefan Problem up to a time t * if the functions have
continuous derivatives to all orders appearing in the problem formulation and
satisfy the conditions of the problem.

Here, t * is the time up to which the solution is desired (global solution).

Clearly, Tinit and TL could be non-constant: Tinit(x) ≤ Tm, TL(t) ≥ Tm. From
the mathematical point of view, we could allow cL , cS , kL , kS to be (known) func-
tions of (x, t, T ) by replacing the heat equations in (48) by heat conduction equa-
tions ρciTt = (kiTx)x , i = L, S. Naturally, the boundary conditions (51) can be
replaced by any combination of the standard conditions described in §1.2.D.

All such generalizations of (48-51) are still referred to as Stefan Problems or
Stefan-type problems. They serve as prototypes of the, so-called, moving
boundary problems whose basic feature is that the regions in which the partial
differential equations are to hold are unknown and must be found as part of the
solution of the problem. This amounts to a non-linearity of geometric nature,
apparent in (49a,b), even when the rest of the equations appear to be linear, and is
the source of the mathematical difficulties that moving boundary problems present.
Their non-linearity destroys the validity of the Superposition Principle, and ‘‘sepa-
ration of variables’’ is no longer applicable ! The underlying geometric nonlinear-
ity can be made to appear algebraically in the partial differential equations by a
change of variables: replacing x by ξ = x / X(t) transforms the varying region
0 < x < X(t) to the fixed region 0 < ξ < 1, and the linear equation Tt = α LTxx to
the nonlinear equation X2Tt − ξ XX′Tξ = α L Tξξ (see §3.3).

The well-posedness (existence of a unique classical solution depending contin-
uously on the data) of reasonably general 1-dimensional Stefan Problems without
undue restrictions on the data was established only during the mid 1970’s! (CAN-
NON-HENRY-KOTLOW, see §4.4). We note that local solvability (meaning:
there exists a time t * up to which a unique classical solution exists) was already
proved by Rubinstein in 1947 (see [RUBINSTEIN] for a historical survey of the
mathematical development up to the mid 1960’s). Of course, particular, well-
behaved problems (those with a monotonic interface, like (52-55) below) were
treated earlier by various methods.

Stefan-type problems can also be formulated classically in two or three dimen-
sions (see §4.4), but such formulations may admit no (classical) solution, as the
breakup of a piece of ice into two or more pieces indicates physically. Fortunately
‘‘weak’’ or ‘‘generalized’’ (‘‘enthalpy’’) formulations which are well-posed (and
computable) came to the rescue in the early 1960’s, as we shall see in CHAP-
TER 4. Let us also note that even 1-dimensional problems with either internal
sources or variable Tm may develop mushy regions rendering the above sharp-front
classical formulation inappropriate.

Certainly however, the great majority of phase-change processes lead to
1-dimensional Stefan Problems as just described. In fact one frequently deals with
the so-called One-Phase Stefan Problem, in which only one ‘‘active’’ phase is
present. If, in the physical problem, we assume that initially the slab is solid
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X(t)
x

L I Q U I D
t

t

0

T = Tm

S O L I D

T = Tm

ρ LX′ = − kLTx

T = Tm

T = TL > Tm

Tt = α LTxx

x = X(t)

Figure 1.2.9. Space-time diagram for the One-Phase Stefan Problem.

at the melt temperature: Tinit(x) ≡ Tm, then we obtain the

One-Phase Stefan Problem (for a slab melting from the left):

Find T (x, t) and X(t) such that

(52)Tt = α LTxx , 0 < x < X(t) , t > 0, ( liquid region )

(53a)T ( X(t), t) = Tm , t > 0,

(53b)ρ L X′(t) = − kLTx( X(t), t), t > 0,

(54)X(0) = 0 ,

(55)T (0, t) = TL(t) > Tm, t > 0.

The temperature needs to be found only in the liquid 0 < x < X(t), t > 0, because
it is identically Tm in the solid, and there is no initial condition for T (x, t) because
initially there is no liquid. Since the back face x = l now plays no role, the solid
can be considered effectively semi-infinite, occupying (X(t) , ∞ ) .  The diagram
for this problem is shown in Figure 1.2.9. Clearly few realistic phase-change pro-
cesses will actually lead to the one-phase situation, with ablation (instantaneous
removal of melt) and induced stirring of liquid while freezing, being notable
exceptions. On the other hand, molecular diffusion, filtration, and other processes
commonly lead to one-phase problems [RUBINSTEIN], [ELLIOTT-OCK-
ENDON]. The inherent simplicity of one-phase problems makes them amenable
to a variety of simple approximation methods, as we shall see in CHAPTER 3, and
an entire book [HILL] is devoted to them.
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PROBLEMS

PROBLEM 1. Using relation (1) for the specific heat c(T ) of water/ice, find the
relation between the enthalpy e and the temperature T . Also express T as a
function of e and plot.

PROBLEM 2. Recall ( §1.1) that a liquid is hypercooled if the sensible heat
extracted from it is more than the latent heat. Show that its temperature

should be no more than Tm −
L

cL
.

PROBLEM 3. Describe an experiment for the determination of the thermal con-
ductivity of a solid; of a liquid. On what factors do you expect it to depend?
[CHAPMAN], [ECKERT-DRAKE].

PROBLEM 4. The thermal conductivity of aluminum is k = . 213 kJ /m s°C.
Assuming that the temperature distribution through a plate of Aluminum is a
straight line, how thick should the plate be in order that a 100°C temperature
drop across the plate will induce a heat flux of q = 1000 kJ /m2 s ?

PROBLEM 5. A heat source has been placed at the center of an aluminum ball of
radius 10 cm emitting heat at a rate of 1000 kJ /s. What should the flux of
heat at the surface of the ball be under the condition that the ball contains no
heat sources or sinks?

PROBLEM 6. What is the heat flux along an isotherm for an isotropic medium?
What if the medium is not isotropic?

PROBLEM 7. Derive (15) as the limiting case of energy conservation on a box
x0 ≤ x ≤ x0 + ∆x, y0 ≤ y ≤ y0 + ∆y, z0 ≤ z ≤ z0 + ∆z over a time
interval t0 ≤ t ≤ t0 + ∆t as ∆x , ∆y , ∆z , ∆t → 0 [WHITAKER] , [BIRD et
al].

PROBLEM 8. The thermal diffusivity of most materials is a non-constant func-
tion of the temperature. Describe in qualitative terms under what conditions
you could ‘‘safely’’ pass from the nonlinear equation of (21) to the linear
equation (22) without making too great an error.

PROBLEM 9. Show that the initial value problem y′ = √⎯ ⎯y , y(0) = 0 is not well-
posed.

PROBLEM 10. Using separation of variables, derive the solution (24c) for the
problem of EXAMPLE 1, §1.2.C. Verify (at least formally) that it is indeed a
solution.

PROBLEM 11. Derive the solution to Problem (25) of EXAMPLE 2, §1.2.C.

PROBLEM 12. Derive the solution to Problem (26) of EXAMPLE 3, §1.2.C.



1.2 FORMULATION OF THE STEFAN PROBLEM 27

PROBLEM 13. Show that the error function, (29), EXAMPLE 4, §1.2.C, satisfies
erf(0) = 0, erf(∞) = 1. [ABRAMOWITZ-STEGUN].

PROBLEM 14. (a) Seek the solution to Problem (27), EXAMPLE 4, §1.2.C, in
the form T (x, t) = F(ξ) with ξ = x/2√⎯ ⎯⎯α t (similarity solution). Show that the
unknown F(ξ) must satisfy F′′ + 2 ξ F′ = 0, F(0) = TL, F(∞) = T0 . Solve
this ODE to obtain (28). (b) Verify that (28) solves problem (27).

PROBLEM 15. Using the value T0 as the reference temperature for zero energy,
find the total energy of the semi-infinite slab of EXAMPLE 4, §1.2.C, as a
function of time (see PROBLEM 17, §2.2).
[Answer: E(t) = 2(TL − T0)(ρckt/π )

1⁄2].

PROBLEM 16. Verify that the function

T (x, t) = A + B ⎛
⎝
1 − e

−
U

α
(x − Ut) ⎞

⎠
(56)

solves the heat equation (22), for any constants A, B, U . It represents a (ther-
mal) front traveling with constant speed U (to the right if U > 0, to the left if
U < 0).

PROBLEM 17. Leave a cup of hot coffee to cool in a room while using a ther-
mometer to monitor its temperature T (t) with passing time t. Taking New-
ton’s Law of cooling in the form T ′(t) = h.(Troom − T (t)), find h for your cup
of coffee, where Troom is the room temperature.

PROBLEM 18. A solid slab 0 ≤ x ≤ l is initially at a uniform temperature
Tinit < Tm. Heat is withdrawn from the front face, x = 0, and an experimenter
can measure both the temperature, T (0, t) (by a thermocouple) and the flux
q(0, t) (by a flux meter) at this face. The experimenter wants to determine the
temperature distribution T (x, t) in the slab. Unfortunately, the back face
x = l, is inaccessible, so the only known data are T (x, 0) = Tinit , 0 ≤ x ≤ l,
T (0, t) = T face(t), and −k Tx(0, t) = q face(t), t > 0. Explain why he cannot
determine T (x, t) throughout the slab without any information about x = l.

PROBLEM 19. One of the more important and elusive types of information that
we should be able to extract from models of physical processes is the sensitiv-
ity of these processes with respect to the system specifications. For example,
one might wish to obtain information about the dependence of the tempera-
ture distribution history on the conductivity of a material. For the case of
constant thermophysical properties and heat transfer in a finite slab use the
heat equation to find relations that will yield the dependencies of the tempera-
ture and total heat content of the slab with respect to each of the parameters
α , k , c , ρ and the slab length.

PROBLEM 20. Verify the units in equations (43), and (45).
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PROBLEM 21. Derive the Stefan Condition for a slab, 0 ≤ x ≤ l, freezing from
the left. [Hint: Proceed as in (43-46)].

PROBLEM 22. Let Tref < Tm be a reference temperature. Show that the total
energy in the slab 0 ≤ x < l at any time t > 0, referred to the temperature Tref

is

E(t) = A{

X(t)

0
∫[ρcS(Tm − Tref ) + ρcL(T − Tm) + ρ L]dx +

l

X(t)
∫ ρcS(T − Tref )dx}.

Compare with (43).

PROBLEM 23. Show that the Stefan Condition remains unchanged no matter
what we choose as reference temperature. [see the previous problem, proceed
as in (43-46)].

PROBLEM 24. Derive the Stefan Condition, (47), across the interface r = R(t)
for an axially symmetric phase-change process in a cylinder. For definiteness,
consider 0 < r < R(t) as liquid and R(t) < r < R0 as solid. Note that the
total enthalpy (per unit height) may be written as

R(t)

0
∫ {ρcL[T (r, t) − Tm] + ρ L}2π rdr +

Ro

R(t)
∫ ρcS[T (r, t) − Tm]2π rdr .

PROBLEM 25. Derive the Stefan Condition across the interface r = R(t) for a
spherically symmetric phase-change process in a sphere. For definiteness,
consider 0 < r < R(t) as liquid and R(t) < r < R0 as solid. Then we have

E(t) =
R(t)

0
∫ {ρcL[T (r, t) − Tm] + ρ L}4π r2dr +

R0

R(t)
∫ ρcS[T (r, t) − Tm]4π r2dr .

PROBLEM 26. Consider the 1-phase Stefan Problem for the slab (when the mate-
rial is initially solid at its melt temperature T = Tm). Using the fact that the
phase change front is an isotherm, show that along the front we have

(57)Txx =
cL

L
T 2

x

exhibiting vividly the nonlinearity of the problem. Observe that (57) is a spe-
cial case of (40) for one space dimension and one phase, if we regard the
interface as an isotherm for the temperature, permitting the function Σ of (40)
to be defined as Σ = T − Tm .

PROBLEM 27. A slab 0 < x < l is filled with material having melting tempera-
ture Tm. The material has constant thermophysical parameters, different for
liquid and solid phases. At x = 0 a temperature T0 < Tm is imposed for all
time, while at x = l a temperature Tl > Tm is imposed for all time. Find the
steady state temperature distribution and the location of the front separating
solid and liquid phases.
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PROBLEM 28. (A 1-phase Stefan Problem with straight-line interface)
Fix U=constant and assume a straight-line interface X(t) = Ut, separating liq-
uid in 0 ≤ x < X(t) from solid at the melt temperature Tm (for x > X(t)).

(a) Determine the constants A, B so that the traveling-front solution (56) also sat-
isfies the interface conditions (53). Then, the resulting T (x, t) will satisfy
(52-53), with X(t) = Ut.

(b) Show that the boundary temperature, TL(t), necessary for the T (x, t) (found
in (a)) to satisfy the 1-phase problem (52-55) is an exponentially increasing
function of time, given by

TL(t) = Tm −
L

cL
[1 − eU2t/α ], t > 0  .

1.3. GENERAL MELTING AND SOLIDIFICATION
PROCESSES

The mathematical model of a melting process formulated in §1.2 is disarm-
ingly simple, since it concerns a process for which, at any time there are two dis-
tinct regions, one solid, the other liquid, separated by a single phase front X(t)
(Figures 1.2.6,7). Moreover the phase boundary is always moving in the same
direction, while the temperature at any point is always rising. Such simplicity is
not typical of the kinds of problems that arise in melt/freeze scenarios. Thus for
example, molten metal placed in a cast will partly contract away from the cast wall
because of the increase in density upon solidification; this reduces the cooling
effect of the cast and can induce remelting of the solid skin of the metal adjacent to
the cast. More dramatically, in latent heat thermal energy storage applications
where we might wish to store solar energy as the latent heat of melting of a PCM
during daylight hours for use at night, the PCM will go through repeated
melt/freeze cycles possibly producing a multitude of phase change fronts separat-
ing zones of liquid and solid. Similarly, placing two cold ice cubes sufficiently
close to each other in water can induce the formation of an ‘‘ice bridge’’ linking
them, due to local freezing of the water; if the water is sufficiently warm this
bridge, together with the cubes themselves, will melt.

Let us examine the possibility of multiple melt/freeze fronts for a process in
which a material is subjected alternatively to temperatures above and below its
melt temperature.

EXAMPLE 1. A slab of length l is intermittently heated and cooled to the
extent that freezing and melting take place. The periods of heat input are
referred to as charging times while those of heat withdrawal are discharging
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Figure 1.3.1. Repeated melting and freezing of a slab.

times . Assume that heat input and withdrawal are always carried out at the left-
hand face of the slab, while the right-hand face is insulated (Figure 1.3.1). Let
the slab be entirely solid at the beginning of our scenario.

Suppose that heat is input to the slab over a period of time tC
1 with the superscript

C corresponding to the ‘‘charging’’ mode. If the initial temperature was not too
low, and the heat flux into the slab is not too small, a melt front will appear at x = 0
moving monotonically into the slab. For an imposed temperature the front will
appear at t = 0 while for flux, convection or radiation input, the front will only
appear when the material temperature at the face x = 0 has reached Tm. In any
event, a front X1 with liquid on its left and solid at its right may well appear before
the end of the first charge interval, t = tC

1 .
Now suppose that the material begins to discharge heat at time t = tC

1 in a pro-
cess whose duration is t D

1 (the superscript D representing ‘‘discharge’’). Depend-
ing on the mechanism of heat withdrawal, a new front X2 will appear at some time
t > tC

1 separating solid material (on its left) from liquid material (on its right).
Meanwhile the earlier appearing melt front X1 will continue to move into the
solid; the velocity of this front will be far less than it was during the charging pro-
cess, since its driving force (the surface heat flux into the slab) has now been
replaced by the low temperature gradient in the liquid. Eventually, it will stop
advancing (if the right-hand face were cooled instead of being insulated, it could
even move leftward!) Hence during the time of discharge several possible events
may occur, two of which are: a) the freezing front X2 moving to the right meets the
melt front X1; when this occurs the liquid region formed during the charge inter-
val will disappear, as will both fronts; b) the freezing front X2 will move to the
right, but not overtake X1 before the discharge period ends. Now when the new
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charge period begins we may find ourselves in the situation shown in Figure 1.3.1,
wherein three fronts separating four zones exist: the first melt front X1, the second
freeze front X2, and a third melt front X3. As the number of cycles increases a
myriad of possible phase configurations may occur because of variations in heat
input and extraction rates and durations.

EXAMPLE 1 was concerned with a one-dimensional problem. For two or
three dimensions the complexity of the geometry of the phase regions and their
boundaries goes beyond the stage where simple physical intuition can be of much
use. A hint of what may occur in two space dimensions is given in EXAMPLE 2,
concerned with a charge-discharge cycle with a reversal of flow of the heat transfer
fluid.

EXAMPLE 2. Two Dimensional Phase Change: Consider a two-dimensional
material slab as seen in Figure 1.3.2. Heat exchange with a transfer fluid chan-
nel will take place at face A while faces B,C,D are assumed insulated. We
also assume that the material is initially solid. During a charge period a hot
transfer fluid is to flow upward- in the direction of increasing y ; as the transfer
fluid flows upward it will cool down; thus a melt front will be formed, as seen
in the Figure, moving further into the slab for smaller y than for larger y . If
the discharge process is carried out with a downward flow of a cold transfer
fluid, then at the end of the discharge cycle, we may well find a ‘‘V’’ shaped
front extending only partly in the y direction. Clearly further cycles, if they
correspond to intermittent heat sources and sinks, may well result in isolated
regions of one phase, within material of the second phase.

Note that the qualitative description of EXAMPLE 2 is not surprising. If one
were to immerse an ice-sculpture of, say, a unicorn, in a hot- water bath, we might
well find after some moments that the single ice statue has melted in such a way
that several distinct pieces of ice result.

Our examples imply that in processes involving alternate melt-freeze cycles we
must seek modeling techniques in which we do not have to know apriori the quali-
tative behavior of the process. In general, we will encounter multiple fronts, dis-
appearing phases, and extremely complex geometries. Whether the actual physical
process would yield such multiple solid/liquid regions depends on the physical
makeup of the material and the conditions of the process. Thus for example in a
microgravity space environment one could expect a much reduced tendency for
solid particles to float or settle in the liquid.

Of course the complexity of the phase change process is only increased when
other, sometimes extremely realistic physical phenomena are taken into account.
Thus for example liquid paraffin wax easily dissolves air; on solidification the air
is entrapped in the solid. On melting, the solid particles are alternately buoyant-
when they contain bubbles of air, and sink in the liquid when the bubbles are
released from the melting solid. In engineering applications one may have to
accommodate such behavior, if possible, through suitable assumptions in a model
not explicitly incorporating the phenomenon, or in the development of a more
complete model.
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Figure 1.3.2. A two-dimensional charge/discharge process.

PROBLEMS

PROBLEM 1. Discuss the phase change history of a sample of radioactive
material placed in an insulated container. Assume that the sample is cubically
shaped and that it is initially at a temperature TS below its melt temperature
Tm. Will any phase change front appear in the material?

PROBLEM 2. In addition to the radioactive decay of PROBLEM 1 internal
heating may arise from radiative transfer through semi-transparent materials.
Describe a charge-discharge process similar to that in Example 1, but with
radiation taken into account.

PROBLEM 3. Two samples of a material, one of them liquid at a high temper-
ature, the second solid at a low temperature, are placed in contact. Discuss
what factors will determine whether the liquid freezes or the solid melts.

PROBLEM 4. For several days the temperature in the town was on the average
0 ° F. Then suddenly the weather changed, the temperature rose to the low
40’s and an ice layer formed on all the streets, paralyzing movement of cars
and people for a while. What happened?




