MATHEMATICAL
MODELING
OF MELTING
AND FREEZING
PROCESSES



Vasilios Alexiades
The University of Tennessee
and Oak Ridge National Laboratory


Alan D. Solomon
Consultant
Formerly at Oak Ridge National Laboratory





HEMISPHERE PUBLISHING CORPORATION
A member of the Taylor & Francis Group
Washington     Philadelphia     London


+----------------------------------------------------------------+ | | |USA Publishing Office Taylor & Francis | | 1101 Vermont Avenue, N.W., Suite 200 | | Washington, DC 20005-2531 | | Tel: (202)289-2174 | | Fax: (202)289-3665 | | | | Distribution Center Taylor & Francis | | 1900 Frost Road, Suite 101 | | Bristol, PA 19007-1598 | | Tel: (215)785-5800 | | Fax: (215)785-5515 | | | |UK Taylor & Francis Ltd. | | 4 John Street | | London, WC1N 2ET, UK | | Tel: 071 405 2237 | | Fax: 071 831 2035 | | | +----------------------------------------------------------------+

MATHEMATICAL MODELING OF MELTING AND FREEZING PROCESSES

Copyright © 1993 by Hemisphere Publishing Corporation. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

1 2 3 4 5 6 7 8 9 0     B R B R     9 8 7 6 5 4 3 2
Cover design by Michelle Fleitz.
A CIP catalog record for this book is available from the British Library.
O The paper in this publication meets the requirements of the ANSI Standard
Z39.48-1984(Permanence of Paper)

Library of Congress Cataloging-in-Publication Data
Alexiades, Vasilios
  Mathematical modeling of melting and freezing processes /
  Vasilios Alexiades, Alan D. Solomon.
    p. cm.
  Includes bibliographical references and index.
  1. Solidification--Mathematical model.   2. Fusion--Mathematical
  models.   3. Phase transformations --
  Mathematical Models.   I. Solomon, Alan D.   II. Title.
  QC303.A38 1993
  536'.42'01518--dc20
  ISBN 1-56032-125-3        92-28180


CONTENTS


   Preface.............................................   x

  1.  PROBLEM FORMULATION 			 	  1

  1.1  AN OVERVIEW OF THE PHENOMENA INVOLVED
        IN A PHASE CHANGE 				  2
  1.2.  FORMULATION OF THE STEFAN PROBLEM		  6
    1.2.A  Introduction					  6
    1.2.B  Assumptions					  6
    1.2.C  Heat conduction				  8
    1.2.D  Boundary conditions				 17
    1.2.E  Interface conditions 			 19
    1.2.F  The Stefan Problem 				 22
                 PROBLEMS 				 26

  1.3.  GENERAL MELTING AND SOLIDIFICATION PROCESSES 	 29
                 PROBLEMS 				 32

  2.  PROBLEMS WITH EXPLICIT SOLUTIONS			 33

  2.1.  THE ONE-PHASE STEFAN PROBLEM 			 34
    2.1.A  Introduction					 34
    2.1.B  The Neumann Solution				 36
    2.1.C  Dimensionless form				 37
    2.1.D  The root @lambda@ vs the Stefan Number	 38
    2.1.E  Example: Melting a slab of ice		 40
    2.1.F  The case of small Stefan Number		 43
                 PROBLEMS				 44

  2.2.  THE TWO-PHASE PROBLEM ON A SEMI-INFINITE SLAB	 46
    2.2.A  Problem statement and solution		 46
    2.2.B  Dimensionless form				 48
    2.2.C  Approximations to the root @lambda@		 49
    2.2.D  Approximating the finite slab case		 50
    2.2.E  Energy content and Stefan Numbers		 51
    2.2.F  Shape of melting and cooling curves		 52
    2.2.G  An example					 55
                 PROBLEMS				 56

  2.3.  THE EFFECT OF DENSITY CHANGE			 59
    2.3.A  Physical effects				 59
    2.3.B  Expansion with bulk movement due to rhoL<=rhoS 61
    2.3.C  Application to cryosurgery			 64
    2.3.D  Void formation				 68
    2.3.E  Conservation laws and interface conditions	 72
                 PROBLEMS				 77

  2.4.  SOLIDIFICATION OF A SUPERCOOLED MELT		 79
    2.4.A  How supercooling arises			 79
    2.4.B  One-phase supercooled solidification		 82
    2.4.C  Two-phase supercooled solidification		 84
    2.4.D  Supercooled solidification with density change87
    2.4.E  Steady-state of a finite slab		 87
    2.4.F  Phase equilibrium and the Gibbs-Thomson effect88
    2.4.G  Mullins-Sekerka morphological stability 
	    analysis					 94
                 PROBLEMS 				 96

  2.5.  CHANGE OF PHASE IN A BINARY ALLOY		 98
    2.5.A  Introduction					 98
    2.5.B  The phase diagram				 99
    2.5.C  Interdiffusion				102
    2.5.D  A simple binary alloy solidification model	104
    2.5.E  The Rubinstein similarity solution		106
    2.5.F  Shortcomings of the simple model		107
    2.5.G  Uncoupled models of alloy solidification	109
    2.5.H  The Tien-Geiger model for freezing over an 
		extended range 				110
    2.5.I  Rapid freezing of a finite slab with 
		stirring of melt			112
                 PROBLEMS				116

  2.6.  SIMILARITY SOLUTIONS IN CYLINDRICAL
        AND SPHERICAL GEOMETRIES			117
    2.6.A  Similarity solutions				117
    2.6.B  Axially-symetric melting due to a line source118
    2.6.C  Freezing of supercooled liquid		119
                 PROBLEMS				120

  2.7.  BENCHMARK SOLUTIONS OF MULTIDIMENSIONAL
        PROBLEMS FOR SIMULATION VERIFICATION		121
    2.7.A  Necessity of benchmark solutions		121
    2.7.B  Phase-change in a box			121
    2.7.C  Summary of the method			123
                 PROBLEMS				123

  3.  ANALYTICAL APPROXIMATIONS				125

  3.1.  THE QUASISTATIONARY APPROXIMATION		126
    3.1.A  Introduction					126
    3.1.B  One-phase Stefan Problem with imposed 
		temperature				127
    3.1.C  One-phase Stefan Problem with imposed flux	134
    3.1.D  The case of convective boundary condition	137
    3.1.E  Volumetric heating				140
                 PROBLEMS				141

  3.2.  QUASISTATIONARY APPROXIMATION OF AXIALLY
        OR RADIALLY SYMMETRIC PROCESSES			144
    3.2.A  Introduction					144
    3.2.B  Outward melting of a hollow cylinder		144
    3.2.C  Inward melting of a cylinder			147
    3.2.D  Inward melting of a sphere			148
    3.2.E  Simple approximations of a heat storage 
	    process					149
                 PROBLEMS				152

  3.3.  PERTURBATION METHODS FOR ONE-PHASE PROBLEMS	154
    3.3.A  Introduction					154
    3.3.B  Landau transformation			155
    3.3.C  Front location as independent variable	157
    3.3.D  Rapid freezing of dilute alloys		160
                 PROBLEMS				161

  3.4.  THE MEGERLIN AND HEAT-BALANCE-INTEGRAL
        METHODS						162
    3.4.A  Introduction					162
    3.4.B  The Megerlin method				162
    3.4.C  The Heat-Balance-Integral method		165
                 PROBLEMS				167

  3.5.  SOME MELTING TIME RELATIONS			168
    3.5.A  Introduction					168
    3.5.B  Melt-time for a simple PCM body with 
		imposed temperature			168
    3.5.C  Melt-time for a simple PCM body with 
		convective boundary condition		171
    3.5.D  Melt-time for a rectangular body under 
		imposed temperature			173
    3.5.E  Freezing of a PCM cylinder array		174
                 PROBLEMS				178

  4.  NUMERICAL METHODS - THE ENTHALPY FORMULATION	180

  4.1.  NUMERICAL HEAT TRANSFER				181
    4.1.A  Introduction					181
    4.1.B  Control volume discretization of the 
		conservation law			184
    4.1.C  Discretization of boundary conditions	191
    4.1.D  The discrete problem				192
    4.1.E  Explicit time updating			194
    4.1.F  Implicit time updating			197
    4.1.G  Heat conduction in 2 or 3 dimensions		199
    4.1.H  Internal heat source				202
    4.1.I   Some programming suggestions		203
                 PROBLEMS				205

  4.2.  BRIEF OVERVIEW OF NUMERICAL METHODS
        FOR PHASE CHANGE PROBLEMS			210

  4.3.  THE ENTHALPY METHOD IN ONE SPACE DIMENSION	212
    4.3.A  Introduction					212
    4.3.B  The enthalpy method				212
    4.3.C  A time-explicit scheme			217
    4.3.D  Performance of the explicit scheme on a 
		one-phase problem			218
    4.3.E  Implicit schemes				224
    4.3.F  Implicit scheme by Newton iteration		229
    4.3.G  Performance of the schemes on the two-phase 
		Stefan problem				231
    4.3.H  Performance on problems with unequal
                properties 				236
    4.3.I   Implicit versus explicit schemes		238
    4.3.J   Use of the enthalpy method for a 
		multi-layered slab			239
                 PROBLEMS				241

  4.4.  MATHEMATICAL FRAMEWORK
        OF THE ENTHALPY FORMULATION			242
    4.4.A  Introduction					242
    4.4.B  Weak derivatives				244
    4.4.C  Examples of weak formulation of problems	248
    4.4.D  Classical formulation of Stefan Problems 
		in 3-dimensions				250
    4.4.E  Weak formulation of the Stefan Problem	253
                 PROBLEMS				260

  4.5.  CONVERGENCE OF THE ENTHALPY SCHEME
        AND EXISTENCE OF THE WEAK SOLUTION		260
    4.5.A  Introduction					260
    4.5.B  Structure of the proof			261
    4.5.C  Proof of CLAIM 1 				264
    4.5.D  Proof of CLAIM 2 				269
    4.5.E  Proof of CLAIM 3 				272
    4.5.F  Note on error estimates 			273
                 PROBLEMS 				273

  5.  APPLYING THE TECHNIQUES OF MODELING 		274

  5.1.  LATENT HEAT STORAGE
        AND PHASE CHANGE MATERIALS 			276
    5.1.A  Introduction 				276
    5.1.B  A simple heat storage example 		277
    5.1.C  Trombe wall 					279
                 PROBLEMS 				283

  5.2.  NUMERICAL SIMULATION
        OF A LATENT HEAT TROMBE WALL 			284
                 PROBLEMS				290
  5.3.  DEVELOPMENT OF A SIMULATION CODE
        FOR A LHTES SYSTEM IN A SPACE STATION 		290
    5.3.A  Introduction					290
    5.3.B  The system of interest 			291
    5.3.C  Rough sizing of the storage system via 
		the quasistationary approximation 	296
    5.3.D  Numerical simulation 			298
    5.3.E  Some simulation results 			299
                 PROBLEMS 				304

BIBLIOGRAPHY 						305

INDEX 							321


Markup created by unroff 1.0,    November 08, 1997,