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V. ALEXIADES
Alloy Solidification with Convection in the Melt

Abstract

Most models of alloy solidification are severely limited by the assumption of
constant density, thus excluding all convective effects. We present a thermo-
dynamicaly consistent model for binary alloy solidification that incorporates
energy, species and momentum conservation, constitutional supercooling, as
well as temperature, concentration, and pressure dependence of thermophysical
parameters. The crucial aspect is the development of an Equation of State cap-
turing the thermochemistry of the phases. A numerical algorithm will also be
outlined.

1 Introduction

We outline the main features of a macroscopic model for solidification of a bi-
nary alloy with convective and diffusive heat and mass transfer.

Given a binary melt A;_, B, and initial and boundary conditions, the goal
is to describe macroscopically the evolution of the phases as the melt undergoes
solidification, by modeling the heat and mass transfer in the melt and solid.

The basic physical assumptions underlying the model are:

e rather slow cooling (not quenced), so that local thermodynamic equilibrium
prevails (the lever rule applies to the phase diagram of the A-B binary);

e thermophysical properties may depend on temperature, composition, and
pressure;

e negligible nucleation difficulties (freezing starts at the liquidus);

o negligible surface tension effects.

The mathematical model of the solidification process is an extension of Alex-
iades [1], [2] to include convective effects, further generalizing the well-known
“enthalpy formulation” ( [3]).

The main features of the model include:

e coupled heat and mass transfer (conduction, diffusion and convection), with
possible cross effects (Soret, Dufour);

e golidification with constitutional supercooling;

e thermochemistry of the phases incorporated via an actual Equation of State;
e macroscopic description in terms of local variables: C' = mass fraction of com-
ponent B, u =internal energy, T =temperature, P = pressure, ¢ = velocity,
A =liquid fraction;

e conservation laws valid everywhere in weak (integral) sense; phases are dis-
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tinguished only by values of the liquid fraction (A = 1 in melt, A = 0 in solid,
0 € A < 1 in two-phase, constitutionally supercooled, regions);
e front “capturing” (not tracking).

2 Conservation Laws

Let C; = mass fraction of component ¢ = A, B, p; = pC; = partial density
ofi, p = pa + pp = total density, u = internal energy (per gram), ¥ =
velocity, P = pressure, J; = mass flux of species 1, Q = energy flux, 7 =
stress tensor of fluid.

The conservation laws for species, energy, and momentum may be expressed
as follows, understood in a weak (distributional) sense, throughout the material:

B (pa) + V-(pa? + Ja)=0, &(pr) + V-(pp? + Jg) =0, (1)

d(pu) + V- (pu¥ + @) = —PV7, (2)
O(pV) + V - (p7 — 7) = =V P + pg, (3)
8i(p) + V - (p¥) = 0. (4)

The fluxes are specified by the constitutive relations:
Fick’s Law, including pressure-diffusion and thermal-diffusion (Soret) ef-
fects:

J; = —p(DVC; +FVP +6IVT), i = A,B,  with JA+Jg=0, (5)

where D = interdiffusion coefficient, and 6, 67 are the pressure-diffusion and
Soret coefficients, T = temperature.
Fourier’s Law for conduction, with interdiffusion, and Dufour effect:

Q = —kVT + haJs+hpJs + QP, (6)
with k& = thermal conductivity (tensor), h; := partial (specific) enthalpy of i,
and QP = Dufour energy flux (diffusion-thermo effect).

Note that the Soret and Dufour cross effects are usually negligible, but the
other flux terms are principal couplings and cannot be neglected a priori.

Finally, an Equation of State (see below), relating the energy to the fields
C;, T, P, is needed to close the system of equations.

The thermophysical parameters depend on the local state, characterized by
the triplet (C;, T, P), and this dependence is generally different in different
phases, with possible jump discontinuities across intefaces. Thus the system is
highly nonlinear.
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In addition, the system is undergoing a phase transition, as dictated by
the phase diagram of the A-B binary, the simplest cases of which, and under
fixed pressure, are shown in Figure 1. The liquidus and solidus curves seen
in the Figure are constant-pressure level curves of surfaces in 3-dimensional
(C, T, P) space. The phase diagram describes the phase of each (C, T, P)
state at thermodynamic equilibrium, and the possible coexistence of phases.
States lying between the solidus and liquidus are ” constitutionally supercooled”,
thermodynamically metastable, and are actually mixtures of solid and liquid,
refered to as "mushy”. The phase diagram encapsulates the thermochemistry
of the binary system, and both are encoded into the Equation of State, of the
form:

ht in liquid
h=<nM in mushy (7
hS in solid.

presented in the next section. Here h is the enthalpy, from which the internal

energy can be found via
u=h—P/p. (8)

Remark on Fickian diffusion:

There are, of course, many details glossed over in the brief description above.
In particular, one must be careful with the definition of the Fickian diffusion
term ”—D VC” in 2-phase (mushy) regions.

LIQUID liquidus TB LIQUID
T .
solidus
Ty SOLID
SOLID
0 C 1
100% A 100 % B

(a) (b)
Figure 1
Simple phase diagrams: (a) A and B soluble in all proportions; (b) eutectic

To make it precise, define the fields (C := Cp):

C in liquid
C* = { Liquidus composition in mushy
0 in solid.
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0 in liquid

C% = { Solidus composition in mushy
C in solid.
and
A= (C—-ch)/(C® - CT) =liquid fraction by weight.
Then

diffusion flux = A(=DLVCE) + [1 — A](=D5VC¥)

with DL and D? the interdiffusion coefficients in liquid and solid, respectively.
Thus, diffusion is driven by gradients of the Liquidus and Solidus concen-
trations and not by gradients of the mean concentration C, which is

C =ACt +[1-A]CS.

In isothermal mushy regions, C* and C’ will be uniform, so their gradients will
be zero, and therefore there will be no Fickian diffusion in such regions, even if
C' is not uniform (due to different A’s).

3 Equation of State

The state is determined by (C, T, P) and the phase diagram. Let T = T*(C, P),
T = TS5(C, P) be the liquidus and solidus temperatures at composition C, pres-
sure P, and let C = C¥(T, P), C = C°(T, P) be the liquidus and solidus com-
positions at temperature T, pressure P. Choose a reference state (Co, Tp, ),
say solid at (C =0,T = T4, P = P,), and integrate along appropriate C, T,
and P paths the basic Gibbs relation:

du(C, T, P) = (uc)dC + (ur)dT + (up)dP
= [ap — GaldC + [cp — arP/p|dT — [arT/p — apP/pldP, (9)

with @; the partial u’s, ¢, the specific heat, a7 the thermal expansion coefficient,
ap the compressibility (= 0 here), of the appropriate phase. The enthalpy,
h =u+ P/p, in each phase can be written as follows:

Liquid: T > TY(C,P):
T

W TP =HYCP) + [ G (10)
TL(C,P)
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with HY(C, P) = enthalpy of liquidus at the point (C, T*(C, Pt), P) given by

P-P,

H™(C,P) = ho + ARI™ + p
0

[]. - T()CM%]

C
+ [ RY(,TH(C, P),P)d¢ (11)
Co

TL(C,P)
+ / c;;‘(C’g, 7, P)dr
To

ho being the enthalpy of formation and Ah(’; “% the heat of fusion at the reference
state.
Solid: T < TS(C,P):
T5(C,P)
hS(C,T,P) = H5(C, P) — / ¢ (C, 7, P)dr (12)
T

with H¥(C, P) = enthalpy of solidus at the point (C, T°(C, P%), P) given by

P_P
HS(C,P) = ho + p 21 - Tyof)
0

C
+ [ h5(¢,T5(C,P),P)d¢ (13)
Co

T3 (C,P)
+ / cﬁ(C, 7, P)dr
To

Mushy: T5(C,P) < T < T, P):
WM(C,T,P) = AW*(CH(T, P),T,P) +[L — A]p°(C%(T, P),T,P)  (14)
with A(C, T, P) the liquid fraction from the “lever rule”:

C-CHT,P
AC,T,P) = G5 TP _(cL(%, 2k (15)

Relations (10),(12),(14) define the Equation of State (7), namely the enthalpy h
as function of the triplet (C,T, P). Thus, knowing (C,T, P) we can determine
the phase and the enthalpy (hence also the energy u). However, the conser-
vation laws update the quantities C', h, P, p, but not the temperature T,
which has to be found from the Equation of State. The particular way we have
expressed the EoS enables us to use the enthalpy as the phase indicator, and
then determine the temperature. This can be accomplished as follows.
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4 Enthaply as phase indicator
Given C,h, P, we compute the quantities H”(C, P) and HS(C, P) from (11)
and (13), and we compare h with them.

If h > H¥(C,P) then the phase is liquid: set A(C,T,P) = 0 and find T
(> TE(C, P) ) by solving:

T
/ ck(C,7,P)dr =h—H"(C,P) > 0
TL(C,P)

If h < HS(C,P) then solid: set A(C,T,P) = land find T (< T5(C,P))
by solving:

TS(C,P)
- /T c(C,7,P)dr =h—H®(C,P) < 0;

If HS(C,P) < h < HY(C,P) then mushy: set A = /s GFL o and
find T by solving:

ARM(CH(T, P), T, P) +[1 - A]h*(C5(T, P),T,P) = h.

5 Outline of updating scheme

An algorithm for updating the values of C,T, P, A, p,U,u, h from a time ¢ to
time ¢t + At would go as follows:

Step 1. The balance laws update the quantities p4 , pp , (pu), (p?) , P
(for each control volume) to new time.

Step 2. From these we deduce:

p=patps, CA—p—A, CB=p—B,

u:@, h=u+P/p.

p
Step 3. Determine the new phase of each control volume from the Equation

of State and find T and (weight) liquid fraction A, as described in Section 4.

Step 4. The consistency of the updated values may be checked as follows:
Find the volume fraction of liquid:

_ A/p"
A/p" +[1 = A]/p®

B
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and the “fluid” (non-void) fraction (of each contol volume):

= (pu) ,
~ Bptu(T,P,Ct) + 1 - BlpSus(T, P,CS)’

check the consistency of the value of density:

pri=f B  + (1= B 1+ (1= Hp*™ =p?

This may be used as criterion for convergence of an iterative numerical scheme.
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