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Abstract: Rod photoreceptors are activated by light through activation of a cascade that includes
the G protein-coupled receptor rhodopsin, the G protein transducin, its effector cyclic guanosine
monophosphate (cGMP) phosphodiesterase and the second messengers cGMP and Ca2þ.
Signalling is localised to the particular rod outer segment disc, which is activated by absorption
of a single photon. Modelling of this cascade has previously been performed mostly by assumption
of a well-stirred cytoplasm. We recently published the first fully spatially resolved model that cap-
tures the local nature of light activation. The model reduces the complex geometry of the cell to a
simpler one using the mathematical theories of homogenisation and concentrated capacity. The
model shows that, upon activation of a single rhodopsin, changes of the second messengers
cGMP and Ca2þ are local about the particular activated disc. In the current work, the homogenised
model is computationally compared with the full, non-homogenised one, set in the original geome-
try of the rod outer segment. It is found to have an accuracy of 0.03% compared with the full model
in computing the integral response and a 5200-fold reduction in computation time. The model can
reconstruct the radial time-profiles of cGMP and Ca2þ in the interdiscal spaces adjacent to the acti-
vated discs. Cellular electrical responses are localised near the activation sites, and multiple
photons sufficiently far apart produce essentially independent responses. This leads to a compu-
tational analysis of the notion and estimate of ‘spread’ and the optimum distribution of activated
sites that maximises the response. Biological insights arising from the spatio-temporal model
include a quantification of how variability in the response to dim light is affected by the distance
between the outer segment discs capturing photons. The model is thus a simulation tool for
biologists to predict the effect of various factors influencing the timing, spread and control
mechanisms of this G protein-coupled, receptor-mediated cascade. It permits ease of simulation
experiments across a range of conditions, for example, clamping the concentration of calcium,
with results matching analogous experimental results. In addition, the model accommodates
differing geometries of rod outer segments from different vertebrate species. Thus it represents a
building block towards a predictive model of visual transduction.

1 Introduction

An important goal of modern biology is to predict cellular
behaviours as a function of complex inputs. It is well
known that regulatory interactions in cellular signalling
cascades are highly localised and thus cannot be modelled

using ‘well-stirred’ assumptions of ordinary differential
equations. Computationally less tractable partial differential
equations are needed to capture the spatio-temporal
evolution of signalling cascades. Thus more sophisticated
mathematical and computational methods are needed to
describe them accurately. The significance of this paper is
its introduction of a mathematical technique that simplifies
the computation of the spatial spread of second messengers
and other diffusing species. This approach is used to
describe the diffusion of cyclic guanosine monophosphate
(cGMP) in visual transduction.

Phototransduction is the process by which photons of
light generate, by activating a biochemical cascade, an
electrical signal in a rod outer segment (ROS), thereby initi-
ating the process of vision. This process is mediated by the
diffusion of the second messengers cGMP and Ca2þ

(calcium ions) in the cytoplasm of the ROS.
Phototransduction is among the best-understood

signalling processes, with the underlying biochemistry,
geometry and basic physics known in some detail.
Thus it is a prime candidate for detailed quantitative
modelling. Great strides were made over the past decade
in developing basic models for the time-evolution of
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the response [1, 2], by viewing the ROS as a single, well-
stirred compartment.

The next natural stage is to develop spatio-temporal
models accounting for diffusion of second messengers in
the cytoplasm. Such models should display all the spatial
localisation effects characterising the rod phototransduction
signalling process and enable the prediction of quantities
that are difficult or impossible to measure experimentally,
such as longitudinal and radial profiles of concentrations,
their longitudinal spread, the magnitude of response
at the activation site (expected to be much higher than
the overall, integral response), and how the response
might be affected by how far apart photons happen to be
absorbed.

There is an intrinsic difficulty in describing this diffusion
efficiently, owing to the intricate, layered geometry of the
ROS. The space available for diffusion consists of thin,
horizontal cytoplasmic layers connected by a vertical,
cylindrical space of comparable thickness, as in Fig. 1.
We can formulate a pointwise model (Section 2.2) of such
a diffusion process, based on Fick’s law, by regarding
each layer as a thin but three-dimensional region [3–6].
Although the numerical and computational analysis is
greatly complicated by such a structured geometry, the
model has the advantage of expressing the physics of the
phenomenon locally. We call this the full three-dimensional
model.

Andreucci et al. [3, 4] suggested an approach to eliminate
the geometrical complexity of the ROS using the mathemat-
ical processes of homogenisation and concentrated capacity.
By this process, the ‘homogenised’ ROS becomes a cylin-
der with no layers, and the ‘homogenised’ Fick’s diffusion
is recast in terms of an ‘interior’ diffusion, within such a
cylinder, augmented by a diffusion process taking place
on the lateral boundary of such a limiting ROS. We shall
refer to it as the homogenised model (Section 2.3).

The homogenisation technique is mathematically elegant,
and the associated computational analysis is considerably
simplified. However, the homogenisation process removes
any intuitive connection with the underlying physics, and
it is natural to ask whether the homogenised model
produces results close to the original full three-dimensional
model. This is precisely the scope of the present paper.

Numerical simulations of the response of dark-adapted
salamander rods to dim light flashes are performed with
both models, and their results are numerically compared
(Section 3). In the simulation of single photon response
(SPR), the (local) concentrations [cG] and [Ca] predicted

by the two models differ by no more than 0.2%, the corre-
sponding local current drop differs by no more than 2%, and
the total relative responses differ by no more than 0.03%.
Moreover, the code for the homogenised model runs 5200
times faster than the full model.

We examine and test literature values of model para-
meters, identify a consistent set of parameters that yield
good agreement with experimental data on salamander
SPRs, thus validating the basic model, and describe in
detail the localisation features of SPRs.

For multiple photon activation, we investigate how the
response depends on the distribution of activation sites
and identify those that yield maximum global current drop
(Section 3.4). We find that the distance between ROS
discs capturing photons can greatly contribute to response
variability in dim light. Considerable non-linear summation
of SPRs arises even with two photons.

The computational model identifies quantitatively the
spread of activation, i.e. that interval, on the longitudinal
axis of the ROS, about the activation site, where the
response is detectable (Sections 2.1.4 and 3.2). We investi-
gate how the spread of activation depends on DcG.

This modelling approach should also be applicable to the
study of the diffusion of signalling molecules in different
geometries, in other cell signalling cascades.

2 Model formulation

2.1 Mechanisms of phototransduction

2.1.1 Geometry of ROS: The rod outer segment of a
photoreceptor in vertebrates (Fig. 1) can be considered as
a right circular cylinder V1 of height H and radius Rrod.
The cylinder contains a stack of n parallel, equispaced,
disc-like, lipidic, functionally independent bilayers Cj,
j ¼ 1, 2, . . . , n, each of radius R and thickness 1, mutually
separated by a distance n1, and coaxial with the cylinder
V1. The gap Rrod 2 R is also small, in the order of 1. We
denote it by s1, so that Rrod ¼ Rþ s1.

The bilayers Cj are called discs and have upper and lower
faces Fj

+. The second messengers cGMP and Ca2þ diffuse
in the cytosol, which fills that part of the ROS not occupied
by the discs Cj, namely,

~V1 ¼ V1 �
[n

j¼1

Cj

This geometry implies that

n1 ¼
H

1þ n
and

volð
Sn

j¼1 CjÞ

volðV1Þ
¼

1

1þ n
¼
def

uo ð1Þ

Using the co-ordinate system of Fig. 1, the lateral boundary
of the ROS is described in rectangular or cylindrical
co-ordinates as

S1 ¼ fð�x; zÞ j j�xj ¼ Rþ s1; z [ ð0;HÞg

¼ fðRþ s1; u; zÞ j z [ ð0;HÞ; u [ ½0; 2pÞg ð2Þ

2.1.2 Phototransduction: The plasma membrane
forming the lateral boundary of the ROS contains cGMP-
gated channels. In the dark, a fraction of these channels
are open, permitting influx of Naþ and Ca2þ ions. An
exchanger located on the same plasma membrane extrudes
Ca2þ and Kþ while permitting additional Naþ influx. The
exchange rate varies with internal Ca2þ concentration. In
the dark, Ca2þ and cGMP are at a steady-state equilibrium,Fig. 1 Schematic drawing of vertebrate ROS
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and their steady-state (dark) concentrations are denoted by
[Ca]dark and [cG]dark. Absorption of a photon by a rhodop-
sin molecule residing on an outer segment disc initiates
a cascade receptor! transducer! effector, whose net
effect is to produce a sink (a negative source term) for
cGMP produced by the activated effector PDE�. The
cGMP is then depleted by flowing by free diffusion
towards such a sink. Depletion of cGMP causes closing of
the channels, thereby reducing the inward current. We
refer to [2] for a more detailed description of such a
process and to [4] for a discussion on the effects of diffu-
sion, its localised nature and on the notion of pointwise
against ‘bulk’ modelling.

2.1.3 Local against global currents: The current due
to Ca2þ exchange is given by a Michaelis Menten-type
relationship

Jex ¼ Jsat
ex

½Ca�

Kex þ ½Ca�
ð3Þ

where jex
sat is the saturated exchange current (as [Ca]! 1),

and Kex is the Ca2þ concentration at which the exchange
rate is half the maximum.

At fixed membrane voltage, the current JcG carried by the
cGMP-gated channels is given by the Hill-type relationship

JcG ¼ Jmax
cG

½cG�mcG

K
mcG

cG þ ½cG�mcG
ð4Þ

where jcG
max is the maximum cGMP-current (as [cG]! 1),

mcG is the Hill exponent, and KcG is the binding affinity of
each cGMP binding site on the channel.

These formulae are local in nature, i.e. they provide the
current in terms of space-time values of [cG] and [Ca].
As current is generated at the lateral boundary of the
ROS, this is where the values of [cG] and [Ca] are relevant
for the computation of JcG and Jex. In the literature, these
currents are regarded as volumic, as if they were distributed
over the entire ROS. In particular in [1], volumic current
densities are defined by dividing the coefficients jcG

max and
jex
sat by the volume of the cytosol (1 picolitre).

Equations (3) and (4) imply that a local pointwise evalu-
ation of these currents requires a pointwise description of
[cG] and [Ca] as functions of position and time.

In the absence of light, Jex and JcG are constant and equal
to their ‘dark’ values

Jex;dark ¼ Jexjt¼0 ¼ jsat
ex

½Ca�dark

Kex þ ½Ca�dark

JcG;dark ¼ JcGjt¼0 ¼ jmax
cG

½cG�
mcG

dark

K
mcG

cG þ ½cG�
mcG

dark

ð5Þ

The local value of (total) current Jloc and its dark value Jdark

are defined as

Jlocðu; z; tÞ ¼ Jexðu; z; tÞ þ JcGðu; z; tÞ Jdark ¼ Jlocjt¼0

ð6Þ

As z ranges over (0, H ) and u ranges over [0, 2p), the vari-
ables (u, z) range over the lateral boundary S1 of the ROS.
At t ¼ 0, both [Ca] and [cG] are constant and equal to their
dark values. Consequently, Jdark is also a constant. The
local response to light activation, at time t, at a point (u, z)
of the plasma membrane, is the variation of Jloc(u, z, t)

from its dark value, i.e. fJdark 2 Jloc(u, z, t)g. Set

J ðtÞ ¼
1

Srod

ð
S1

Jlocðu; z; tÞdS

J ðz; tÞ ¼
1

2p

ð2p

0

Jlocðu; z; tÞdu ð7Þ

where Srod is the surface area of the lateral boundary S1 of
the ROS, and dS is its surface measure. The first is the
current across the entire plasma membrane at time t, aver-
aged over S1; the second is the local current across the
plasma membrane at some fixed level z, averaged over the
z-cross-section of S1.

Results are presented in terms of the (total) response,
Jdark 2 J(t), relative response, 1 2 J(t)/Jdark, and relative
local response, 1 2 J(z, t)/Jdark.

2.1.4 Spread of activation: Let z� be the z-location of
the activated disc. At each fixed time t, the local response
Jdark 2 Jloc(z, t) is highest at z ¼ z�, it decreases symmetri-
cally away from z�, and it becomes ‘negligible’ sufficiently
far away from z�. That interval about z�, along the longi-
tudinal axis of the ROS where the current suppression is
‘not negligible’, defines, roughly speaking, the interval of
spread of the response to light activation.

This localisation has been pointed out by a number of
researchers [7, 8, 10–13], and it is generally accepted that
the response is ‘local’ in the sense that the interval of
spread of the response to light activation is considerably
smaller than the length of the outer segment. To our
knowledge, however, the literature does not contain
an unambiguous quantification of ‘spread’ in space and
time.

An intuitive way to quantify how far the response
spreads, at a certain time t, would be to choose a ‘reason-
able’ cutoff level d [ (0, 1) and define spread of excitation
as the width l(d, t) of the largest interval about z�, along the
longitudinal axis of the rod, where the response is greater
than a fixed fraction d of the dark circulating current, at
that time, i.e.

Jdark � Jlocðz�+ lðd; tÞ; tÞ . d Jdark

for a fixed d [ ð0; 1Þ ð8Þ

Although the spread is a function of time, in the literature it
is normally intended and estimated at the time tpeak of peak
response. The choice of the cutoff level d is in principle
arbitrary, and we do not know of compelling physical or
mathematical criteria for such a choice. However, in
view of the shape of the z-profiles in Fig. 7, where the
signal spreads over about 200 discs, or 4 mm, at peak
time, a reasonable choice would be to take d ¼ 0.1%
in (8) and set

lo ¼ lð10�3; tpeakÞ identified by ð8Þ

for t ¼ tpeak and d ¼ 10�3 ð9Þ

The interval of length 2lo about z� is the interval of detect-
able response. Although the determination of such an
interval is feasible in numerical simulations (see Section
3.2), it is difficult or impossible to measure experimentally,
as 0.1% Jdark is approximately 0.05 pA.

A common approach in the literature is to fit a z-profile,
such as in Fig. 8, to an exponential function of the form
expf2jz 2 z�j/l�g for some positive l�, and then use
such a l�, called a spread space constant, as a way of quant-
ifying the notion of spread at peak time. Equivalently, this
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can be viewed as the notion of spread, as introduced in (8),
for cutoff d ¼ 1/e, i.e.

l� ¼ l
1

e
; tpeak

� �
identified by ð8Þ

for t ¼ tpeak and d ¼
1

e
ð10Þ

We do not know of a firm theoretical grounding for this
approach. Although easier to determine experimentally,
the value of the space constant does not convey the size
of the interval of detectable response.

In Section 3.2, we report both quantities as obtained from
our simulations, and, in Section 4.4, we present an account
of the various notions of spread appearing in the literature
along with various estimates for the space constant.

2.2 Full three-dimensional model

The concentrations [cG] and [Ca] are smooth functions of
space and time, defined in the domain ~V1 available for
diffusion, and they satisfy the mass balance equations
within such a domain. As, in the cytosol, there are no
volume sources

@ ½cG�

@t
� r � ðDcGr½cG�Þ ¼ 0

in ~V1

@ ½Ca�

@t
� r � ðDCar½Ca�Þ ¼ 0

ð11Þ

where t is time and r is the gradient in the spatial variables
(x̄, z). The coefficients DcG and DCa are the respective diffu-
sion coefficients of cGMP and Ca2þ in the cytosol. For a
dark-adapted rod, the initial data for the concentrations
[cG] and [Ca] are their uniform, steady-state, dark values

½cG� t¼0 ¼ ½cG�dark

��
½Ca� t¼0 ¼ ½Ca�dark

�� ð12Þ

2.2.1 Boundary fluxes of [cG]: Production or depletion
of [cG] occurs through binding phenomena on the faces Fj

+

of the discs Cj. Accordingly, these terms are modelled as
fluxes across such faces.

Basal PDE hydrolyses cGMP at all disc faces. Let
[PDE]s denote the surface density of PDE (in number of
molecules mm22), and let ks ;hyd be the hydrolysis rate
(in [numbers of molecules mm23]21 s21). Accordingly,
ks ;hyd[PDE]s has dimensions of mm s21.

The rate of cGMP depletion (per unit surface area, per
unit time, i.e. depletion flux of cGMP), due to basal PDE,
is given by

+ks;hyd ½PDE�s½cG� on the faces F+
j ð13Þ

Analogous, but volumetric, expressions appear in [8, 1],
involving a volumetric hydrolysis rate khyd measured in
mM21 s21. A conversion factor between the two rates is
sought by assuming that, in a well-stirred/bulk ROS, the
same numbers of molecules of cGMP would be hydrolysed
by a volumic [PDE] (in mM), uniformly distributed in the
cytosol, as by a surface [PDE]s (in number of molecules
mm22), uniformly distributed on the faces Fj

+ of all the
discs Cj. Thus denoting by Vcyt the volume of the cytosol
in the ROS, and denoting by Adiscs the surface area of all

disc faces,

ks;hyd ½PDE�s½cG�Adiscs ¼ khyd ½PDE�½cG�Vcyt ð14Þ

The product khyd[PDE] is denoted by bdark in [1]. For
the salamander, khyd ’ 0.05 mM21 s21 [14] and
[PDE] ’ 20 mM [15], whence bdark ’ 1 s21. The volume-
to-surface ratio Vcyt/Adiscs for salamander is estimated
from the geometry of the ROS and Table 2

h ¼
def Vcyt

Adiscs

’ 1

2
n1 ¼ 0:007mm ð15Þ

With this notation, the flux generated on the faces Fj
+,

owing to hydrolysis of cGMP by dark-activated PDE, is

ks ;hyd ½PDE�s½cG� ¼ hbdark ½cG� ð16Þ

Production of cGMP is mediated by guanylyl cyclase (GC),
which is located on the faces of the discs Cj. Molecules of
guanosine triphosphate (GTP) bind to molecules of GC to
synthesise cGMP. Such activity is modulated by Ca2þ,
being maximum for [Ca] ¼ 0 and minimum for [Ca]! 1.
The cGMP production rate per unit GC surface density
can be described by a Hill-type law

kfGC;og½GC�s ¼
def

kfGC;ming½GC�s

þ
kfGC;maxg½GC�s � kfGC;ming½GC�s

1þ ð½Ca�=KcycÞ
mcyc

where kfGC;maxg and kfGC;ming are the surface catalytic rates
of GC at [Ca] ¼ 0 and [Ca]! 1, respectively, Kcyc is a
scaling Ca2þ concentration for the cyclase effect, and
mcyc is the Hill exponent. The flux on the faces Fj

+ is
+kfGC;og[GC ]s, where [GC ]s is the surface density of
GC. To our knowledge, the literature does not contain
measurements of the surface catalytic rates kfGC;maxg and
kfGC;ming, nor of the corresponding volumic rates kfGC;max;volg

and kfGC;min;volg. It does contain, however, measurements of

amax ¼
def

kfGC;max;volg½GC� and

amin ¼ kfGC;min;volg½GC�

as if GC were uniformly distributed in the ROS. A conver-
sion argument similar to the one leading to (16) gives
the production flux of cGMP across Fj

+, due to GC, in
the form

+ha where a ¼ amin þ
amax � amin

1þ ð½Ca�=KcycÞ
mcyc

ð17Þ

Let Cj�
be a disc hit by one or several photons on one of its

faces, say for example F 2
j�

, and let [PDE�]s(x̄, t) be the
resulting surface density of activated PDE molecules, as a
function of space and time. Let also k�s ;hyd denote the
surface catalytic rate of light-activated PDE (measured in
(number of molecules mm23)21 s21). The flux generated
on F 2

j�
by such a depletion of cGMP is then

k�s;hyd ½PDE��s½cG� ð18Þ

The determination of the rate ks ;hyd
� will be discussed

in Section 2.4.2. The above considerations yield the follow-
ing boundary condition for [cG] on each of the faces

Fj
+, j ¼ 1, . . . , n:

�DcG

@

@z
½cG�

���
F+

j

¼ hð+a+ bdark ½cG�Þ

þ djk
�
s;hyd ½PDE��s½cG� ð19Þ
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where dj equals 1 if j ¼ j� (activated face) and it is zero
otherwise. By (15), the factor h is of the order of 1,
which is crucial for the homogenisation process.

We finally assume that cGMP does not penetrate the
lateral part Lj of the discs Cj, nor does it flow out of the
ROS, i.e.

DcGr½cG� � n Lj
¼ 0 DcGr½cG� � n @V1

¼ 0
���� ð20Þ

where n is the unit normal to the indicated surfaces pointing
outside the ROS.

Assume n� discs are activated, each by one or several
photons, and each on their lower faces F2

j�
; we relabel and

order them as Cj�
for j� ¼ 1, . . . , n�. Then the flux

conditions on the faces Fj
+ are expressed as in (19),

where dj equals 1 if j [ f1, . . . , n�g, and it is zero otherwise.

2.2.2 Boundary conditions for [Ca]: [Ca] flows into
the cytoplasm through cGMP-gated channels and is
extruded by the electrogenic exchanger. Thus the boundary
fluxes for [Ca] can be expressed as

�DCar½Ca� � n ¼
1

SrodBCaF
Jex �

1

2
fCa JcG

� �
ð21Þ

The currents Jex and JcG (measured in pA) were defined in
(3) and (4). The constant BCa is the buffering power of the
cytoplasm for [Ca], fCa is the fraction of cGMP-activated
current carried by Ca2þ, F is the Faraday constant, and
Srod is the lateral surface area of the ROS.

In [1], the currents Jex and JcG contribute with a volumic
term to the variation of [Ca], i.e. jex

sat and jcG
max are divided by

Vcyt (1 picolitre). As both currents are generated on the
lateral boundary of the ROS and are local in nature, they
are taken here as surface current densities and thus as
boundary sources for [Ca]. Calcium does not penetrate the
disc Cj, nor does it flow out of the ROS through its top
fz ¼ Hg or its bottom fz ¼ 0g. Therefore

r½Ca�
���
@Cj

� nj ¼ 0 and
@½Ca�

@z
¼ 0

for z ¼ 0 and z ¼ H ð22Þ

where nj is the unit normal to Cj.
In summary, the full three-dimensional space-time model

for cGMP and [Ca] consists of the partial differential
equations (11), the initial conditions (12) and the boundary
conditions (19)–(22).

2.2.3 Activation mechanism: Light activation is
embodied in the term [PDE�]s appearing in (19). The
literature contains various attempts to describe such a quan-
tity [1, 2, 4, 8, 16–19]. A satisfactory, full modelling of the
function [PDE�]s(x̄, t) for x̄ ¼ (x1, x2) ranging over one
of the faces of an activated disc Cj�

would have to emerge
from a careful, pointwise modelling of the cascade recep-
tor! transducer! effector on the activated discs. Until
such a detailed description is achieved, we consider here a
lumped activation mechanism proposed by [20]. By such
a model, the total number of activated PDEs in the ROS,
although changing in time, is instantaneously distributed,
equally and uniformly, on the n� activated faces F2

j�
. In

this way, the surface density of activated PDE is the total
number of PDE� molecules in the ROS divided by the
area fn�pR2

g of activated faces. Full activation is also
assumed, that is PDE� is defined to be activated if both of
its g subunits have been removed. Denote by E�(t) the
number of g subunits that have been removed from PDE

at time t, in the entire ROS. Then

½PDE��s ¼
number of molecules of PDE� in ROS

n�pR2

¼
def ð1=2ÞE�ðtÞ

n�pR2
ð23Þ

Following [2, 20], the quantity E�(t) is approximated in
terms of two first-order rate constants kR, kE, representing
decay of R� and concurrent G�-PDE� decay, as

E�ðtÞ ¼ F
vRE

kR � kE

� �
ðe�kEt � e�kRtÞ for t . 0 ð24Þ

where F is the number of photo-isomerisations per rod per
flash, and vRE is the effective rate with which a single R�

triggers activation of PDE�. (According to [20], the
activation cascade involves three delay time constants, tR,
tG and tE. The quantity E�(t) in (24) is meant for times
larger than the sum of these three delay times, i.e. for
t . tRGE ¼ tRþ tGþ tE. Such ‘initial time’ has been
renormalised to be zero.)

The rate constant vRE depends on diffusion coefficients
and the probability of successful encounters of R� with G
and of G�with PDE. The rates kR and kE are interchangeable
in (24), and so, with this type of activation, the model
cannot distinguish which of the two rate constants is the
rate-limiting one.

2.3 Homogenised model

The model is derived by regarding 1 as a small parameter to
be allowed to go to zero, starting from its initial physical
value 1o ¼ 14 nm. The limit process keeps constant the
volume fraction of the ROS available for diffusion.
Therefore, as, when 1! 0, the discs Cj become thinner,
we artificially increase their number in such a way that
the volume fraction uo in (1) remains constant. The faces
F2

j�
where a photon is captured are at levels zj�

for j� ¼ 1,
2, . . . , n�. The limit is carried out so that the levels zj�

are
kept fixed for all 1 . 0.

In the limit, the discs are conceptually removed, and we
obtain a limiting ROS, denoted by V, which is a cylinder of
radius R, height H and lateral boundary S, given by

S ¼ fð�x; zÞ j j�xj ¼ R; z [ ð0;HÞg

¼ fðR; u; zÞ j u [ ½0; 2pÞ; z [ ð0;HÞg ð25Þ

The outer shell of the ROS, i.e. the gap V1 2 V, is a thin
cylindrical layer of thickness s1. Likewise, the n� interdis-
cal spaces Ij�

adjacent to the faces F2
j�

, where the photons are
captured, are thin cylindrical layers of thickness v1. As
1! 0, they disappear in the limit and provide no limiting
information on the diffusion of cGMP and Ca2þ within
them. In these thin layers, the diffusivity and capacity coef-
ficients in (11) are concentrated (i.e. they are multiplied by
121), to compensate for their shrinkage of the same order.
The remaining layers are also thin, of the order of 1;
however, there are roughly speaking 121 of them, and so
the information in them is compounded in the limit. This
way, for 1 . 0, the system in (11) is a system of diffusion
equations with discontinuous coefficients that become
unbounded as 1! 0. The boundary conditions (19, 20)
for cGMP and (21, 22) for Ca2þ remain unchanged. The
solutions of such a three-dimensional model with discon-
tinuous and unbounded coefficients are denoted by [cG]1
and [Ca]1.
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The rigorous calculation of the limiting problem is pre-
sented in [3]. The pointwise interpretation of such a limit
is in [4]. Here, we reproduce the limit in its weak formu-
lation, which is the form suitable for numerical calculations.

As 1! 0, the approximating functions [cG]1 and [Ca]1
generate three pairs of functions:

† [cG] and [Ca], defined in V and called the interior limit.
They satisfy a two-dimensional diffusion process (diffusion
occurs only along the transverse variables x̄ ¼ (x1, x2), on
each level z and on each disc DR ¼ fjx̄j , Rg.

† [cG]s and [Ca]s, defined in S and called limit in the outer
shell. They satisfy two-dimensional surface diffusion pro-
cesses on the limiting outer shell S and they ‘glue’ together
along S the diffusion processes of the indicated interior
limit.

† [cG]� and [Ca]�, defined on the discs DR � fzj�
g, for

j� ¼ 1, 2, . . . , n�, and called limit at the activation sites.
They satisfy diffusion processes that directly respond to
activation and transmit the signal to the rest of the ROS.

These functions are smooth and satisfy the usual compat-
ibility conditions; for example, the interior limit [cG]
computed on S equals [cG]s. However, [cG] computed for
z ¼ zj�

is not [cG]�.
The indicated diffusion processes can be written down as

a system of two partial differential equations, one for [cG]
and one for [Ca]. These equations have been derived in
[3], and their biophysical significance is discussed in [4].
The formulations below, (26) for [cG] and (27) for [Ca],
are equivalent to the indicated systems of partial differential
equations and are reported in this form as they are the
starting point of the numerical simulations.

Let a be defined as in (17) for [Ca] equal to the interior
limit of [Ca]1. Define also a� as in (17), with [Ca] replaced
by [Ca]� and set

P ¼ bdark ½cG� � a

Pj� ¼ bdark ½cG�� � a� þ
1

v1o

k�s;hyd ½PDE��s½cG��

� ������
z¼zj�

Let also Jex and JcG be the currents in (3) and (4), with [Ca]
and [cG] replaced by [Ca]s and [cG]s. Then set

Q ¼
1

s1o

1

SrodBCaF
Jex �

1

2
fCaJcG

� �

With this notation, the weak formulation of the homo-
genised limiting problem for cGMP takes the form

0 ¼ ð1� uoÞ

ðt
0

ð
V

�
@

@t
½cG�wþ DcGr�x½cG�

� r�xwþ Pw

�
dV dt þ s1o

ðt
0

ð
S

�
@

@t
½cG�sw

þ DcGrS ½cG�s � rSw

�
dS dt

þ v1o

Xn�
j�¼1

ðt
0

ð
DR

�
@

@t
½cG��w

þ DcGr�x½cG�� � r�xwþ Pj�w

�
dDR dt ð26Þ

Here, t . 0 is an arbitrary time value, rx̄ is the gradient
with respect to the transverse variables x̄¼ (x1, x2) only,
rS is the gradient on the surface S, and dV, dS, dDR are

the volume or surface measures on V, S and DR, respect-
ively. The testing function w (and c below) is arbitrary
and smooth up to the boundary of V. The limiting weak
formulation for Ca2þ is, with similar notation,

0 ¼ ð1� uoÞ

ðt
0

ð
V

�
@

@t
½Ca�cþ DCar�x½Ca� � r�xc

�
dV dt

þ s1o

ðt
0

ð
S

�
@

@t
½Ca�scþ DCarS ½Ca�s

� rScþ Qc

�
dS dt þ v1o

Xn�
j�¼1

ðt
0

ð
DR�fzj�g

@

@t
½Ca��cþ DCar�x½Ca�� � r�xc

� �
dDR dt ð27Þ

As indicated earlier, the geometry becomes simple, but
the mathematical form of the homogenised limit bears no
intuitive connection with the physics of the phenomenon
and calls for a numerical verification of such a model. In
the following sections, we will present a series of numerical
experiments that indicate that the homogenised limit is
faster to compute and yields a relative response close to
that of the full three-dimensional model, with an accuracy
of at least 0.03% (Fig. 3).

2.4 Parameters

The definitions of the variables and parameters are listed in
Table 1. The values of parameters used in the simulations
are listed in Table 2, along with their sources.

All the parameter values used in this work are for the
ROS of salamander. Parameter values were chosen to be
consistent with previous modelling studies in salamander,
so that the results would be comparable.

2.4.1 Diffusion coefficients: The effective longitudinal
diffusion coefficient DcG;eff of cGMP, which is measured
in experiments [16, 21, 13] can be related to the cytoplasmic
diffusion coefficient DcG by the formula [4, 7, 13]

DcG;eff ¼ ð fA=fV ÞDcG ð28Þ

where the ratio ( fA/fV) of the effective cross-sectional area
to the effective volume available for longitudinal diffusion
is a geometric factor giving a measure of tortuosity, i.e.
the physical hindrance to longitudinal diffusion arising
from the disc stack. From electron micrographs of salaman-
der disc cross-sections, [13] estimated fA ’ 0.014 and
fV ’ 0.5, so that fA/fV ’ 0.028, and deduced that the effec-
tive longitudinal coefficient DcG;eff is 1.4–5.5 mm2 s21.
Hence, the diffusion coefficient for cGMP is estimated to
be in the range

DcG ¼ ð fV=fAÞDcG;eff ’ 50–196mm2 s�1 ð29Þ

Koutalos et al. [16] estimated DcG;eff ’ 30–60 mm2 s21.
They also argued that preparation of the ROS for
microscopy could decrease the hindrance constant ( fA/fV)
and suggested ( fA/fV) ’ 0.04. For these values, (28)
would imply that DcG is in the range 750–1500 mm2 s21.
Even neglecting viscosity and buffering effects, the
latter seems to be considerably higher than the common
estimate of the aqueous diffusion coefficient of cGMP
(’500 mm2 s21). In [9], the value DcG;eff ’ 18.5 mm2 s21

is reported, which, for ( fA/fV) ’ 0.028 and no buffering
nor viscosity effects, corresponds to DcG ’ 660 mm2 s21

and, for ( fA/fV) ’ 0.04, corresponds to DcG ’ 460 mm2 s21.
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We have not found an attempt to reconcile these seemingly
different ranges, nor alternative measurements of DcG.

In the simulations, we use DcG ¼ 100 mm2 s21, with
vRE ¼ 195 (see Section 2.4.4).

The diffusion coefficient of [Ca] in cytosol,
DCa ¼ 15 mm2 s21, is taken from [22]. This value accounts
for buffering effects on [Ca].

2.4.2 Dark steady state: It is assumed that, in the
absence of light, the system is in a uniform steady state
[cG] ¼ [cG]dark and [Ca] ¼ [Ca]dark (in mM), and our
initial condition is this dark equilibrium state.
Accordingly, [cG]dark and [Ca]dark are computed as those
values for which all boundary fluxes in (19) and (21) are
zero. This yields the equations

amin þ
amax � amin

1þ ð½Ca�dark=KcycÞ
mcyc

� �
¼ bdark ½cG�dark ð30Þ

jsat
ex

1þ Kex=½Ca�dark

¼
1

2
fCa

jmax
cG

1þ ðKcG=½cG�darkÞ
mcG

ð31Þ

Substituting [cG]dark from the first into the second yields

ðbdarkKcGÞ
mcG amin þ

amax � amin

1þ ð½Ca�dark=KcycÞ
mcyc

� ��mcG

¼
1

2
fCa

jmax
cG

jsat
ex

1þ
Kex

½Ca�dark

� �
�1 ð32Þ

This is solved for [Ca]dark (e.g. by the bisection method),
and then the value of [cG]dark is computed from the
first. A necessary condition for (32) to admit a positive
solution is

bdarkKcG

amin

� �mcG

.
1

2
fCa

jmax
cG

jsat
ex

� 1 ð33Þ

With the values from Table 2, we find that such a restriction
is satisfied for amin , 5.5 mM s21. This contains the
range of literature values. With parameter values from
Nikonov et al. [1], we find [cG]dark ¼ 2.91 mM and
[Ca]dark ¼ 0.60 mM. This is slightly less than the dark
values of 3 and 0.64 appearing in Nikonov et al. [1]. By
taking Kcyc ¼ 0.135 mM, which is also within the published

Table 1: Nomenclature

Symbol Units Definition Reference

a, amin, amax mM s21 rate of synthesis of cGMP by guanylyl cyclase [17], Section 2.2.1
Adiscs mm2 surface area of disc faces; of activated faces [15], Sections 2.2.1, 2.2.2
bdark s21 rate of cGMP hydrolysis by PDE [16], Sections 2.2.1, 2.3, 2.4.2
BCa; BcG — buffering power of cytoplasm for Ca2þ; cGMP [21], Section 2.2.2, [35],

Section 2.4.3
[Ca]; [cG] mM concentration of calcium ions; of cGMP [11], Section 2.2
DCa; DcG mm2 s21 diffusion coefficient for Ca; cGMP [11], Section 2.2
1; v1 mm disc thickness; interdiscal space Section 2.1.1
E� subunits number of activated PDE subunits per ROS [23, 24], Section 2.2.3
fCa — fraction of cGMP-activated current carried by Ca2þ [21], Section 2.2.2
F Cmol21 Faraday’s constant [21], Section 2.2.2
F isom. intensity of brief flash [24], Section 2.2.3
h mm volume-to-surface ratio: Vcyt/Adiscs [15], Section 2.2.1
H mm height of ROS Section 2.1.1
J pA total circulating current (J ¼ Jexþ JcG) [7], Section 2.1.3
Jdark pA dark current Sections 2.1.3, 2.4.3
Jdark 2 J pA response Section 2.1.3
1 2 J/Jdark pA relative response Section 2.1.3
jex
sat pA saturation exchange current [3], Section 2.1.3
jcG
max pA maximum exchange current [4], Section 2.1.3
kcat/Km mM21s21 hydrolytic efficacy of activated PDE dimer [37], Section 2.4.3
kE s21 rate constant for inactivation of PDE� [24], Section 2.2.3
kR s21 rate constant for inactivation of Rh� [24], Section 2.2.3
khyd mM21s21 volumetric hydrolysis rate of cGMP by PDE [14], Sections 2.2.1, 2.4.3
ks;hyd mm3s21 surface hydrolysis rate of cGMP by PDE [13], Sections 2.2.1, 2.4.3
ks;hyd
� mm3s21 surface hydrolysis rate of cGMP by PDE� [18], Sections 2.2.1, 2.4.3

Kcyc mM half maximum constant for cyclase effect [17], Section 2.2.1
KcG mM cGMP concentration for half maximum channel opening [4], Section 2.1.3
Kex mM Ca2þ concentration for half maximum channel opening [3], Section 2.1.3
mcG; mcyc — Hill exponents [4, 17], Sections 2.1.3, 2.2.1
vRE s21 rate of E� formation per fully activated Rh� [24], Sections 2.2.3, 2.4.3
n; n� — number of discs; of activated discs Sections 2.2.1, 2.3
NAv mol21 Avogadro number Section 2.4.3
[PDE]s number of molecules mm22 surface density of dark-activated PDE [14], Section 2.2.1
[PDE�]s number of molecules mm22 surface density of light-activated PDE� [18], Sections 2.2.1, 2.4.3
R mm radius of discs Section 2.1.1
Rrod mm ¼Rþ s1o ¼ radius of ROS Section 2.1.1
Rh� number of molecules number of activated rhodopsins in ROS Section 2.1.2
Srod mm2 lateral surface area of ROS [7], Section 2.1.1
Vcyt mm3 volume of cytosol in ROS [18], Section 2.2.1
Ṽ1 — domain occupied by cytosol in ROS Section 2.1.1

isom. denotes number of photoisomerisations; — signifies dimensionless quantity
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range 0.10–0.23, we find the more agreeable dark values of
3 and 0.66. Then, from (5, 6), the resulting dark current is
Jdark ¼ 66 pA.

The root of (32) depends most sensitively on bdark and
Kcyc, then on mcyc and mcG.

2.4.3 Surface catalytic rate: The value of the surface
hydrolysis rate ks ;hyd is obtained from (15, 16). With
bdark ’ 1 s21 and [PDE]s ’ 100 mm22 [2], we find

ks ;hyd ¼
hbdark

½PDE�s
’ 7� 10�5 mm3 s�1 ð34Þ

To compute ks;hyd
� , it is assumed that the same cGMP (in

mM) is depleted by a uniform, volumic [PDE�] (in mM),
by Michaelis–Menten dynamics, as by a surface [PDE�]s
(in numbers of molecules mm22), uniformly distributed
on the n� activated faces F2

j�
, by surface/volume mass

action. Thus, by a conversion argument similar to the one
leading to (14),

k�s ;hyd ½PDE��s½cG� ¼
kcat

BcG

½cG�

Km þ ½cG�
½PDE��

Vcyt

n�pR2
ð35Þ

where BcG is the cytoplasmic buffering power of cGMP,
Km is the Michaelis constant, and kcat is the volumic
catalytic rate of hydrolysis of cGMP. Translating the
concentration [PDE�] to number of subunits E� using
[PDE�]NAvVcyt ¼ 1/2E�, with NAv the Avogadro number,

taking into account (23) and cancelling out [cG], we find

k�s;hyd ½PDE��s ¼
1

NAvBcG

kcat

Km þ ½cG�
½PDE��s ð36Þ

Earlier measurements of the Michaelis constant estimated
Km � 40 mM. Therefore, as [cG] � 4 mM, it was common
to approximate [23]

kcat

Km þ ½cG�
’ kcat

Km

ð37Þ

Recent biochemical investigations of [24] measure
Km ’ 10 mM and render such an approximation less
justified. These measurements also yield the range

kcat

Km

’ 340–600mM�1 s�1 ð38Þ

Earlier estimates had this ratio ’60 mM21 s21 [14]. To be
consistent with other modelling approaches in the literature,
we will keep the approximation (37) and adopt the upper
value in (38).

Release of cGMP from non-catalytic sites of PDE
provides a pool of cGMP that aids recovery. The buffer
constant BcG . 1 is meant to account for such an effect,
as a slowing-down factor of depletion of cGMP due to
PDE�. It is uncertain how to account for such an effect
and its relevance. It is argued to be significant by some
investigators ([23], p. 757) and too slow in time signifi-
cantly to contribute [25]. It is neglected (e.g. taken to be
1) in [8, 14] and in [24] (p. 535, formula 5). Taking

Table 2: Parameters of the model (for salamander ROS)

Symbol Units Range of values Used in simulation Reference

amax mM s21 40–50 50 [1, 2]
amin/amax — 0.0–0.02 0.02 [1, 2]
bdark s21 1 1 [1, 2]
BCa — 10–50 20 [1, 2, 20]
BcG — 1–2 1 [1, 2]
[cG]dark mM 2–4 3 [1, 23]
[Ca]dark mM 0.4–0.7 0.65 [1, 23]
DCa mm2 s21 15 15 [22]
DcG mm2 s21 50–196 100 [13, 16]
1o; v1o mm 0.01–0.014 0.014 [2, 23]
fCa — 0.1–0.2 0.17 [1, 2]
F C mol21 96 500 96 500 [1, 2]
h mm — ’0.007 Section 2.2.1
H mm 20–28 22.4 [2, 23]
Jdark pA (computed) 66 Section 2.4.2
jex
sat pA 17–20 17 [2]

jcG
max pA 70–7000 7000 [1]

kcat/Km mM21 s21 340–600 600 [1, 24]
kE s21 0.58–0.76 0.67 [20]
kR s21 1.69–3.48 2.56 [20]
ks;hyd mm3 s21 — 7 � 1025 Sections 2.2.1, 2.4.3
ks;hyd
� mm3 s21 — 1 Section 2.4.3

Kcyc mM 0.10–0.23 0.135 [1, 23]
KcG mM 13–32 32 [1, 23]
Kex mM 1.5, 1.6 1.5 [1, 23]
mcG — 2 2 [2]
mcyc — 2–3 2 [1, 16]
vRE s21 120, 150, 220 195 [1, 2]; Sections 2.2.3, 2.4.4
n — �1000 800 [1, 23]
[PDE]s mm22 100 100 [2]
R mm 5.5 5.5 [2, 23]
Rrod ¼ Rþ s1o mm 5.515 5.515 [2, 23]
s1o mm 0.015 0.015 [2, 23]
Srod mm2 — 776 [23]
Vcyt mm3 1000 1076 [23]
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BcG ¼ 1 and kcat/Km ¼ 600, we find

k�s ;hyd ¼
600

NAv

1

mM

1

s
’ 1mm3 s�1 ð39Þ

We note that the value of ks;hyd
� needs to be about 1 for the

simulations to match the experimental data shown in Fig. 5.
With BcG ¼ 2, the response would be too low unless vRE

were taken to be over 500 s21.

2.4.4 Activation rates: The values of the rate constants
kR and kE are reported in Table 2, along with their
sources. The values we use in the simulations are within
the published ranges.

The parameter vRE represents the activation rate of PDE�

per R�. It depends on the probability of successful encoun-
ters of Rh� with G and of G� with PDE and thus on many
factors that are highly variable and difficult to determine.
In disrupted toad ROS experiments, [24] estimated
vRE � 120 s21. In [2] it is taken to be 150, and in [1] it is
taken to be 220 s21. Earlier values were an order of magni-
tude higher, e.g. 3500 s21 in [26], and 1000 s21 in [19].

In (24), vRE regulates the initial slope and thus the achiev-
able peak response. Once all other parameters are chosen,
vRE can be adjusted to produce a desired peak response.
In extensive simulations, we found that the value of vRE

necessary to match the 0.8% peak of the experimental data
(Fig. 5) depends strongly on the values used for DcG and
ks;hyd
� . With DcG ¼ 100 mm2 s21 and ks;hyd

� ¼ 1 mm3s21,
in the simulations we use vRE ¼ 195 s21.

3 Results

3.1 Comparison of full and homogenised models

Figures 2–4 display simulations of the single-photon
response in an 800-disc salamander rod photoreceptor by
both the full and the homogenised models. The 400th disc
is activated (at its lower face) by a single photon, by the
activation mechanism of Section 2.2.3, with parameters
from Table 2.

In the full model, the rather fine mesh described in
Appendix 2 was used (34 radial by 4 � 800 ¼ 3200 axial
nodes); the entire 8 s simulation (on four networked Intel
Xeon 3 GHz workstations) took about 108 h total, equival-
ent to �430 CPU h on a single processor.

As mentioned in Appendix 3, we tried various mesh sizes
with the homogenised model and found that 16 radial and
120 axial nodes give excellent agreement with the full
model, as can be seen in Figs. 2–4. The 8 s simulation
took only 300 s (on an Intel Xeon 3 GHz), which amounts
to a spectacular speedup by a factor of �5200 compared
with the full model.

3.2 Single-photon response

Several additional results for the single-photon response of
the salamander rod photoreceptor are shown in Figs. 6–9.
Again, the full and homogenised models produce essentially
identical results, except for Fig. 9, showing radial profiles of
cGMP just above the activated disc; the homogenised
model cannot distinguish the upper and lower faces of the
activated disc, and so it produces r-profiles symmetric
with respect to the activated disc.

The simulations show that a single photoisomerisation
has considerable local effect (near the activation site) on
both transverse and longitudinal diffusion of the second
messengers cGMP and Ca2þ and thus also on current.
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Fig. 2 Single photon response from full and homogenised models

—— Full model
– – – Homogenised model
Normalised response (1 2 J/Jdark) and response (Jdark 2 J ) against
time. Peak amplitude of response is 0.54 pA, which amounts to
0.82% suppression in dark standing current of 66 pA. Peak occurs
860 ms after activation. Maximum relative difference between red
and blue curves is less than 0.03%
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Fig. 3 Concentration histories from the full and homogenised models, at lateral membrane at activation level z�

—— Full model
– – – Homogenised model
Initial concentrations [cG]dark and [Ca]dark are, respectively, 3 and 0.66 mM. (a) [cG](z�, t) against time; maximum depletion 7.91% at time 790 ms.
(b) [Ca](z�, t) against time; maximum depletion 12.84% at time 1060 ms. Maximum relative difference between red and blue curves: a 0.19% and
b 0.05%
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In Fig. 5, we superimpose the simulated normalised
response of Fig. 2 (thick red curve) on experimental
measurements of the single photon response of salamander
ROS. The simulation captures well the peak response, the
time at which it occurs and the tail of the recovery, but it dis-
plays a steeper recovery than the data. One possibility for the
less satisfactory agreement in the recovery phase may be that
the calcium feedback needs improvement. Another reason
may be due to the basic activation mechanism (Section
2.2.3) employed in the simulation. Future refinements of
the model will improve upon this mechanism.

Various aspects of the behaviour of the rod photo-
receptor, seen in Figs. 2–9, are summarised and further dis-
cussed below.

The peak amplitude of the response, Jdark 2 J, is about
0.54 pA, with Jdark ¼ 66 pA, which amounts to 0.82%
suppression in the dark standing current; it occurs at time
860 ms after light activation. However, the local response
at the activated disc is much greater (�15%, Fig. 6).

The suppression of dark current results from highly loca-
lised depletion of [cG] and [Ca] (Fig. 8) about the activated
400th disc at the plasma membrane. The peak depletion of
[cG](z�, t) is 8% at time 800 ms, whereas [Ca](z�, t)
decreases more, �13%, and later, at 1100 ms.

The response is highly localised about the activated disc,
as revealed by the longitudinal profiles of normalised local
response 1 2 J(z, t)/Jdark in Figs. 7 and 8. The maximum
spread, about z�, is �311 discs at time 1300 ms; this
amounts to a spread of 8.7 mm, or 39% of the 22.4 mm
ROS length. Representative values of spread are listed in
Table 3. During recovery, the spread continually recedes
to zero. Spread results reported in the literature for other
species are discussed in Section 4.4.

The shapes of the z-profiles of [cG](z, t) are almost iden-
tical to those of current, whereas the z-profiles of [Ca](z, t)
are more rounded, see Fig. 8b. [cG](z, t) spreads up to 282
discs (�7.9 mm, i.e. �35% of the ROS length) at time
1200 ms. [Ca](z, t) spreads more, up to 318 discs

100 ms

200 ms

400 ms

1000 ms

200 ms

400 ms

600 ms

800 ms

1000 ms

3.0

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

[
] (

M
)

cG
m

r ( m)m
0 1 2 3 4 5 6

a

0.66

0.64

0.62

0.60

0.58

[
] (

M
)

C
a

m

r ( m)m
0 1 2 3 4 5 6

b

Fig. 4 Concentration radial profiles just below activated disc from full and homogenised models

—— Full model
– – – Homogenised model
(a) Radial profiles of [cG](r, z�, t) at times 200, 400, 1000 ms. (b) Radial profiles of [Ca](r, z�, t) every 200 ms. r-profiles of [Ca](r, z, t) above and
below activated disc are very similar, whereas those of [cG](r, z, t) are not (compare a with Fig. 9). Maximum relative difference between red and
blue curves is 0.37% for cGMP and 0.07% for Ca2þ

1.0

0.8

0.6

0.4

0.2

0

1
( 

)/
(%

)
-

J
t

J d
ar

k

time (s)
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Fig. 5 Comparison of single photon simulation (thick red curve,
same as Fig. 2) with seven measured responses in salamander
(data of F. Rieke)

Single photon responses were estimated from suction electrode record-
ings of average response to 50–100 flashes producing �2–4 absorbed
photons. Responses were divided by mean number of absorbed
photons to estimate single photon response. Each cell’s data were
normalised by its dark current (average 44 pA) to produce the cell’s
relative response 1 2 J/Jdark

The thick black line is their average, salient features of which (peak
amplitude and time-to-peak) are captured well by simulation
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Fig. 6 Local response at activated 400th disc unit only, normal-
ised by Jdark, i.e. 1 2 J(z�, t)/Jdark and normalised response of
entire ROS (same curve as in Fig. 2, reshown here for comparison)

Upper curve: local response
Lower curve: normalised response
Maximum relative reduction in local current (across plasma membrane
corresponding to activated disc unit) is 14.8% (occurring at time
800 ms), whereas, in total current is only 0.82% (at time 860 ms).
Thus local response, at activated disc, is �18 times greater than
total (integrated) response. Maximum relative difference between
red (full model) and blue (homogenised) curves for local response is
2.00%, whereas for total response it is only 0.03%
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(�8.9 mm, i.e. �40% of the ROS length), and later, at time
1500 ms.

The variation, in the radial direction, of the concen-
trations [cG](r, z�, t) and [Ca](r, z�, t) at the activation
level z� is shown in Figs. 4 and 9. During activation, the
radial profiles of [cG] become steeper with time, indicating
that radial diffusion (especially below the activated disc)
might not be negligible, contrary to what has been
assumed in several studies [2, 7, 8, 21, 24]. As recovery pro-
ceeds, the radial profiles seem to regress and flatten out.

The radial profiles of [cG](r, z�, t) in the cytosol just
above (Fig. 4a) and just below (Fig. 9) the activated disc
are quite different in shape, whereas those of [Ca](r, z�, t)
are very similar to each other (Fig. 4b). This is expected
from the fact that cGMP is assumed to be hydrolysed by
PDE� only on the lower surface of the activated disc,
whereas Ca2þ is not affected by the discs.

Activating any single disc farther away than about 25
discs from the ends of the ROS produces the same
behaviour, with the peak translated at the activation site.

A thinner rod, with 30% smaller disc radius (R ¼
3.85 mm), produces �50% higher peak response (0.83 pA

or 1.2%, at 750 ms). On the other hand, a wider rod, with
30% larger radius (R ¼ 7.15 mm), produces �30% lower
peak response (0.38 pA or 0.58%, at 970 ms). Note that
the steady-state dark values are independent of the radius
(see (32)), assuming parameters such as bdark remain the
same.

3.3 Clamped calcium

Next, we present simulations of single-photon responses
when the [Ca] concentration is held fixed at four different
values: [Ca]dark ¼ 0.4, 0.66, 0.8, 1.0 mM. The correspond-
ing dark values of [cG] that ensure steady state are:
[cG]dark ¼ 6.1, 3.0, 2.4, 1.9 mM, computed from (30). The
corresponding dark currents are: Jdark ¼ 247, 66, 44.5,
31 pA.

The results are plotted in Fig. 10 and summarised in
Table 4. The case of [Ca]dark ¼ 0.66 mM is directly com-
parable with the normal single-photon response of Fig. 2.
The peak response is much higher and occurs much later,
and recovery is much slower than the normal unclamped
case, as is also observed in various experimental studies
[1]. The spread interval exceeds 420 discs (11.8 mm) at
1800 ms, and l� ¼ 0.92 mm. We note that, in Fig. 10, the
area under the clamped (Ca ¼ 0.66) curve is four times
greater than the area under the non-clamped response,
similar to measured area ratios [17].

3.4 Multi-photon response

Simulations with a higher intensity stimulus of F ¼ 7
photoisomerisations are presented in Fig. 11 and summar-
ised in Table 5. When several discs are activated, we
observe that the spacing of activated sites significantly
affects the response. Activating discs far apart from each
other produces considerably higher response than activating
discs adjacent to each other.

In the multiphoton simulations, F ¼ 7 photoisomerisa-
tions are applied in three different configurations. In one
configuration (Figs. 11a and b), the seven photons are
applied on one disc (number 400), which produces 2.1%
peak response. In the second configuration (Figs. 11c and
d), seven adjacent discs (discs number 397–403) are
activated with one photon each, resulting in 3.5% peak
response. In the third configuration (Figs. 11e and f ),
seven discs, 100 disc units apart from each other, are
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activated (discs number 100, 200, 300, 400, 500, 600, 700),
which produces a higher peak response of 5.7%.

We note that, in the third case, the local response at each
of the activated discs (see Table 5) is almost identical to that
of the single-photon case, as might be expected, as the discs
hardly interact, and their contributions to the total response
are additive. Thus maximum separation produces maximum
total response. This phenomenon can create variability of
responses to non-saturating light, apart from any other
factors, merely according to where (how far apart)
photons happen to be absorbed.

For higher F, the effect can be much more pronounced
than that seen in Fig. 11. For example, as shown in
Fig. 12, whereas 700 photons all on one disc produce 4%
peak response, they produce 38% peak when distributed
on 12 discs lying 70 discs apart from each other, and 86%
peak when spread one each on 700 consecutive discs.
Considering the enormous number of possible ways that
700 photons could be distributed among 800 discs (in the
order of 1025), it is clear that this photon-distribution
effect alone can generate tremendous variability in res-
ponse, essentially any response in the range between
minimum and maximum (e.g. between 4% and �90% for
F ¼ 700). Minimum response is produced when all the
photons are on one disc (adaptation takes over, reducing
the response), and maximum response is produced when
they are maximally separated, with as few as possible on
each disc (to minimise adaptation).

Another way of viewing the phenomenon is that of
additivity of individual responses. In experiments, non-
linear summation of single-photon responses (SPRs)
becomes noticeable (about 10% deviation from linearity)
for flashes that suppress 20–25% of the dark current. Our
simulations show that non-linear summation occurs at
much lower light and it is strictly due to how many discs
apart are the discs upon which the photons act. Proximity
reduces longitudinal gradients, hence the total response.
Fig. 13 presents the case of two photons placed at various
distances: the response is the maximum, at twice that of
SPR (linear summation), when the two activated discs are
400 discs apart, and reduces down to �90% of the
maximum when the discs are adjacent (or when both
photons are on the same disc); at that point, the 9.7% devi-
ation from linear summation would become ‘noticeable’. Of
course, such a setting cannot be achieved experimentally
(yet), as individual photons cannot be directed to impinge
at specific locations.

In Fig. 14, responses of four dim flashes (F ¼ 11, 23,
45, 94) are overlayed on Fig. 10 of [2] for comparison.
As in Fig. 5, the rising phase, peak and tail agree well
with the data, but the recovery is too steep, and steeper
than in the bulk model (black curves in Fig. 14). This
indicates that the feedback (calcium-modulated cyclase)
mechanism built into the model is too strong at maximum
calcium depletion, and/or other effects may be missing.
Note that very low responses are produced if all the
photons are taken to act on a single disc (or adjacent
discs), and responses are too high if taken at maximum
separation. By spreading the photons over discs at
various distances, intermediate peak responses are
obtained, and it is possible to match the experimental
data, as seen in Fig. 14.

4 Discussion

The significance of this paper is its introduction of a
mathematical technique that simplifies the computation of
the spatio-temporal diffusion of second messengers in the
well-understood visual transduction cascade. The layered
geometry of the ROS presents significant computational
difficulties in simulation of the diffusion of cGMP and
Ca2þ. A full model that computes the process starting
from Fick’s law, set in the complex geometry of the rod
outer segment, takes multiple days of computer time. A
mathematical technique called homogenisation simplifies
the geometry and allows the resulting partial differential
equations to generate simulations in a few seconds on a
desktop. The two models are compared in this paper and

Table 3: Spread of response at various times from single-photon activation. Both models produce same values for
spread

Time Spread interval 2lo Space constant l�

ms Number of discs mm % of ROS length mm % of ROS length

100 103 2.9 12.9 0.25 1.12
200 148 4.1 18.3 0.36 1.61
400 208 5.8 25.9 0.48 2.14
600 248 6.9 30.6 0.56 2.50
800 277 7.8 34.8 0.60 2.68

1000 297 8.3 37.0 0.61 2.72
1200 308 8.6 38.4 0.59 2.63
1400 308 8.6 38.4 0.55 2.46
1600 286 8.0 35.7 0.50 2.23
1800 166 4.6 20.5 0.42 1.87
2000 124 3.5 15.6 0.36 1.61

100 ms

200 ms

400 ms

1000 ms

3.00

2.95

2.90

2.85

2.80

2.75

[
] (

M
)

cG
m

r ( m)m
0 1 2 3 4 5 6

Fig. 9 Radial profiles of [cG](r, z, t) just above activated disc at
various times

Compare with Fig. 4a. Drastically different behaviour of cGMP above
and below activated disc is due to its hydrolysis by PDE� on lower face
of disc only (see Section 3.2)
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are shown to have identical output to an accuracy of 0.03%.
This simplified model is thus a simulation tool for biologists
to predict the effect of various factors influencing the
timing, spread and control mechanisms of this G protein-
coupled receptor-mediated cascade.

4.1 Comparing simulations with experimental
data

We have compared our simulations with experimental data
for single-photon response in salamander rods. All par-
ameters chosen were consistent with those published in
[1, 2, 8, 16, 20, 21, 24], as described in Section 2.4, and
are listed in Table 2. With these parameters, we obtained
0.54 pA (0.82%) peak reduction at 860 ms of the 66 pA
dark current.

A simulation with rate constants as in [1] produced a very
low response. Good agreement (Fig. 5) with measured sala-
mander responses was obtained for DcG ¼ 100 mm2 s21,
vRE ¼ 195 s21, BcG ¼ 1, kcat/Km ¼ 600, and BCa ¼ 20.
The amplitude of peak response is primarily regulated by

the value of vRE, which was the last parameter value to be
chosen.

We are currently devising a mathematical model, still
based on homogenisation and concentrated capacity, that
would account for one or several incisures. Note that the
effect of incisures is implicitly incorporated in the various
parameters of any bulk (well-stirred) model.

4.2 Single-photon response

The simulations of the single-photon response exhibit high
localisation about the activation site. The local current
J(z�, t), across the plasma membrane of the activated disc,
depletes much more (14.8%, Fig. 6) than the total current
J(t) (0.82%).

It has been suggested that, in response to a single photo-
isomerisation, [Ca], at the site of photon absorption, could
drop to one-third of its resting value within 2 s ([2], page
249). Our simulations show a drop less than half as large
(13%), within half the time (�1 s), under the activation
mechanism of Section 2.2.3. A larger drop might occur if
a more refined activation mechanism were employed, and
if the effect of incisures was taken into account.

4.3 Multiple-photon response

Rod photoreceptors work over a large range of light inten-
sities, and it is natural to ask to what degree the response
to many photons can be accounted for by the response to
a single photon. This has been tested with the spatially
resolved computational model, using seven photons,
spread across the discs of a photoreceptor outer segment
in different ways.

When the ROS is activated by seven photons, both the
local and total responses are lowest if the photons activate
the same disc and highest if they activate equispaced
discs at largest mutual distance (Fig. 11). Thus the arrange-
ment of activation sites also plays a major role, and it can
contribute to variability of responses to dim light merely
by how far apart photons happen to be absorbed. All this
elucidates the highly local nature of the response.
Moreover, Fig. 11b shows that no significantly larger res-
ponse is obtained by more and more photons on the same
disc. This can be understood by the saturation of the signal-
ling machinery at a single disc that received multiple
photons, and the independence of discs from each other if

Table 4: Summary of single photon results (F 5 1) for normal and clamped [Ca]

Current [cG] [Ca]

Peak response Maximum depletion Maximum depletion

Dark Time Dark Time Dark Time
pA pA % ms mM mM % ms mM mM % ms

total 66 0.54 0.82 860
local 9.8 14.8 860 3 0.24 8 790 0.66 0.085 12.8 1060

total 247 4.3 1.7 1880
local 49 20 1300 6.08 0.67 11 1300 0.4 clamped

total 66.3 1.1 1.7 1880
local 12.6 19 1300 3 0.33 11 1300 0.66 clamped

total 44.5 0.7 1.6 1880
local 8 17.9 1300 2.38 0.26 11 1300 0.8 clamped

total 31.3 0.44 1.4 1880
local 5.1 16.2 1300 1.9 0.21 11 1300 1.0 clamped

Local values for current, [cG] and [Ca] are those at lateral boundary at activated disc, i.e. J(z, t), [cG](z�, t), [Ca](z�, t)
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Fig. 10 Clamped [Ca] simulations of single-photon response,
for four different dark [Ca] concentrations [Ca]dark ¼ 0.4, 0.66,
0.8, 1.0 mM

Corresponding cGMP dark values are: [cG]dark ¼ 6.1, 3.0, 2.4, 1.9 mM.
For comparison, normal non-clamped case (of Fig. 2) is also shown
(in red). Peak responses are much higher and occur later, and recovery
is much slower than normal unclamped case. Maximum relative
difference between full model and homogenised model values is
less than 0.1%
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they are distant enough to not be within the area of ‘spread’
from another activated disc. Thus this model can account
for the overall saturation of rod responses as the light inten-
sity (number of photons impinging on each disc) increases.

4.4 On the spread of activation

The literature contains several notions of ‘spread’ [7–9] in
terms of the diffusion coefficient of cGMP and various reac-
tion parameters. Although they are all based on the assump-
tion that the ROS is well-stirred in the transverse variables,
they all build on different dynamic assumptions and lead to
quite different estimates. For example, in [9], the spread
length constant is defined as

lHK ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DcG;eff tpeak

p
ð40Þ

In [7], it is defined as

lLM ¼ 0:554
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DcG;eff tpeak

p
ð41Þ

and, in [8], it is defined as

lGK ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DcG;eff tpeak

rð1þ 6qÞ

s
where rð1þ 6qÞ ’ 7s�1 ð42Þ

where r is the ‘. . . turnover rate in darkness of the free
pool of cGMP’ and q is ‘the influence of Ca2þ on cGMP
turnover rate’ [8].

We have collected in Table 6 the values of lHK, lLM and
lGK, for some of the values of DcG;eff in the published
ranges indicated in Section 2.4.1.

As seen in Table 6, for the same value of longitudinal
effective diffusion coefficient DcG;eff, the three formulae
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Fig. 11 Multiphoton simulations with F ¼ 7 photoisomerisations for three different arrangements of activation sites

a, b, Only one disc is activated (disc 400) by 7 photons
c, d Seven adjacent discs are activated around centre of rod (discs 397–403), each by one photon
e, f Seven discs are activated, 100 discs apart from each other (discs 100, 200, 300, 400, 500, 600, 700)
a, c and e z-profiles of (local) relative response 1 2 J(z, t)/Jdark at two times
b, d and f : Total response 1 2 J(t)/Jdark against time
Suppression of circulating current varies considerably with arrangements of activated discs
Maximum relative difference between red (full model) and blue (homogenised): a 2.00% at 200 ms, 1.82% at 1000 ms; c 1.21% at 200 ms, 0.02% at
1000 ms; e 1.66% at 200 m, 1.20% at 1000 mss; b 0.58%; d 0.68%; f 0.01%
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(40)–(42) produce quite different ‘spread’ estimates,
varying by almost a factor of 3. We have been unable to
find in the literature any attempts to reconcile these
notions and estimates.

Our approach to the notion of spread is computational
and based on estimating those regions where the response
is detectable.

The peak response of 0.54 pA we obtained for salamander
rods is below the range 0.7–1.7 pA reported in [10] (p. 631)
for single-photon activation in toad rods. In that paper, 5%
suppression of the (30 pA) dark current was measured.
From this, it is inferred [7, 13] that the change in [cG]
effected by a single isomerisation must spread longitudin-
ally over at least the corresponding fractional length of
the outer segment. Lamb et al. [7] note (from 1 pA peak
reduction of 30 pA dark current) that each photo-
isomerisation affects at least 1/30 (�2 mm or 3%) of the
toad rod. The spread would be greater if the local response
did not close all available cGMP-gated channels.

In rat rods, [27] estimated the spread of activation to be
about 12 mm, or 20% of the rat rod (60 mm length).
Again, it is not clear in what sense the notion of ‘spread’
is meant.

In Gecko lizard rods, Grey-Keller et al. [8] obtained a
space constant of l� ’ 3.8 mm. For salamander, we obtained

interval of detectable response lo ¼ 8.7 mm, which
amounts to 39% of ROS length (22.4 mm), and space
constant l� ¼ 0.6 mm (Table 3). The space constant
appears to be much smaller than the value for lizard
reported in [8]. However, the various spread results are
not directly comparable, as they pertain to different
species, they are often indirectly deduced, and the notion
of ‘spread’ is vague and ill-defined in the literature. The
cutoff we used for determining the maximum spread inter-
val (0.1% of the dark current) is probably more strict than
that of others, but realistic in view of the shape of the
profiles. For example, a slightly higher cutoff 0.3% would
produce �7.4 mm (263 discs) spread interval, 15% nar-
rower than from the 0.1% cutoff.

The previous discussion points out the difficulty in
attempting any reasonable comparison with published
notions and estimates of ‘spread’. The only direct exper-
imental work we are aware of is that of [8] for the gecko.
With an exponential fitting of their experimental response
curves, such as the one leading to l� in (10), they found
l� ’ 3.8 mm. Their theoretical analysis leading to (42) for
DcG;eff ’ 60 mm2 s21 yields l� ’ 2.9 mm, as indicated
in Table 6. Our simulations were carried out with
DcG ¼ 100 mm2 s21, which, for ( fA/fV) ’ 0.04 and no
viscosity and buffering effects, would correspond to

Table 5: Summary of multi-photon results (F 5 7) for three different configurations discussed in Section 3.4 and
Fig. 11

Current [cG] [Ca]

Peak response Maximum depletion Maximum depletion

Dark Time Dark Time Dark Time
pA pA % ms mM mM % ms mM mM % ms

on one disc
total 66 1.4 2.1 760
local 24.7 37.2 700 3 0.63 24.2 520 0.66 0.21 31.6 960

on adjacent
total 66 2.4 3.6 740
local 37.9 57.4 670 3 1.1 36.2 650 0.66 0.32 48.9 920

100 discs apart
total 66 3.8 5.7 860
local 9.8 14.8 810 3 0.24 8.0 800 0.66 0.086 13 1070
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Fig. 12 Multiphoton simulations with F ¼ 700 photoisomerisations for three different arrangements of activation sites, to illustrate
dramatic effect of photon distribution (see Section 3.4)

Case 1 (green curves): all 700 photons on one disc (disc 400)
Case 2 (blue curves): on 12 discs located 70 discs apart (discs 15, 85, . . . , 785)
Case 3 (red curves): one photon on each of 700 consecutive discs (discs 50–749)
a Total response 1 2 J(t)/Jdark against time. Peak response is only 4% in case 1, but 38% in case 2, and 86% in case 3. Other arrangements can
generate essentially any intermediate response
b z-profiles of (local) relative response 1 2 J(z, t)/Jdark at time 1000 ms for each of three cases in a
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DcG;eff ’ 4 mm2 s21. This value of DcG,eff is incomparable
with DcG;eff ’ 60 mm2 s21 taken in [8]. On the other hand,
in Section 2.4.1, we have also pointed out that
DcG;eff ’ 60 mm2 s21 seems to contradict the accepted
value of aqueous diffusivity of cGMP.

Another source of discrepancy between our value of l�
and that of [8] is the issue of incisures. These naturally
favour longitudinal diffusion of cGMP, thus resulting in
larger spread.

4.5 Homogenised against full model and locality

The maximum relative difference between the values
produced by the homogenised and full models, for
[cG](z�, t) and [Ca](z�, t), at the plasma membrane, at the
activation level z�, is about 0.19% (Fig. 3). Precisely, denot-
ing by [cG] full and [cG]hom, respectively, the computation
of [cG] by the full and homogenised models,

½cG�full
ðz�; tÞ � ½cG�hom

ðz�; tÞ ’ 0:19% ½cG� full
ðz�; tÞ

The analogous relative difference for [Ca](z�, t) is 0.05%.
Computing the corresponding currents from (3) and (4) at
peak time, we find

J fullðz�; tÞ � Jhomðz�; tÞ ’ 0:34% � J fullðz�; tÞ

On the other hand, the difference between the total (aver-
aged over the plasma membrane) currents Jfull(t) and
Jhom(t) normalised by Jfull(t) is less than 0.0002%. This
indicates that the discrepancy arises only from a small
region about the activation site and suggests that the homo-
genised model could be further improved by modifying the
limiting process about the activation site. The discrepancies
between the full and the homogenised model mentioned
above are much smaller than typical experimental errors.
Moreover, a simulation of 8 s with the (axisymmetric) full
model and parallel computing required over 100 h,
whereas the corresponding computation with the homogen-
ised model took only 300 s on a desktop (Section 3.1).

Simulations could be carried out for non-axisymmetric
phenomena, and, in such a case, the response and ‘spread’
would depend on the eccentric activation site (Section
2.1.4).

Finally, the simulations are in remarkable agreement with
the experimental results shown in Fig. 5.

All this points to the homogenised model as a building
block in modelling diffusion of second messengers in the
layered geometry of the cytosol of the ROS. Some improve-
ments and expansions are possible. These include refining
the homogenised/concentrated limit near the activation
site, a mathematical account of incisures, and the activation
and recovery mechanisms. The theoretical grounding of this
machinery is sufficiently robust to allow for improvements/
modifications within its logical structure.

4.6 Homogenisation methods

Homogenisation methods have been successfully used in
physical processes where it is possible to identify a periodic
geometry, and their success relies on a careful mathematical
analysis of the underlying geometry. In the case of visual
transduction, its application was made possible by the
layered structure of the discs.

In other signalling processes, the structure of the cyto-
plasm is not periodic, and the actin cytoskeleton exhibits
a random structure. In general, cells do not have a periodic
structure, nor a natural notion of surface-to-volume

Table 6: Values of space constants against effctive
diffusion coefficient DcG;eff predicted from (40)–(42)

DcG; eff, mm2 s21 lHK, mm lLM, mm lGK, mm

1.7 1.3 0.7 0.5
11 3.3 1.83 1.2
18.5 4.3 2.38 1.6
30 5.4 3.03 2.1
60 7.7 4.3 2.9
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Fig. 13 Two-photon simulations (F ¼ 2) exhibiting non-linear
summation of SPRs as distance between activated discs decreases

Left scale shows peak total response as % of Jdark; right scale shows
deviation from linear summation as % of maximum relative response,
against distance in disc units. When two photons are sufficiently
far apart (at least 300 discs), (total) response is maximum (1.64%) at
twice the SPR (0.082%); thus their effect is additive. This linear
summation of SPRs begins to diminish at �150 discs apart, as
their spreads begin to overlap. Deviation becomes 9.7% when
two photons act on adjacent discs or on same disc, where response
is minimum (1.48%). Simulations were performed for distances
of 0, 1, 10, 20, 40, 50, 100, 200, 400 discs apart, centred
about middle (400th disc) of ROS. Peak times range from 830 to
860 ms
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Fig. 14 Comparison of responses for F ¼ 11, 23, 45, 94 photo-
isomerisations with those in Fig. 10 of [2]. Flash responses of
salamander rod (replotted from Fig. 12 of [20])

Black curves are predictions from bulk model of [2]
Red curves are from our spatio-temporal model, obtained by following
arrangements of activated discs: for F ¼ 11: 11 discs activated,
lying 20 discs apart from each other (discs 300, 320, . . . , 500); for
F ¼ 23: 23 discs activated, 16 discs apart (discs 216, . . . , 568);
for F ¼ 45: 45 discs activated, 10 discs apart (discs 175, . . . , 615);
for F ¼ 94: 94 discs activated, 6 discs apart (discs 118, . . . , 676).
Different arrangements can produce quite different peak responses
for each F, similar to F ¼ 700 case seen in Fig. 12

IEE Proc.-Syst. Biol., Vol. 152, No. 3, September 2005134



interaction. The classical homogenisation theory has very
recently been applied to investigate limiting processes
across randomly distributed scales [28]. We feel that these
biological processes could be attacked by these new ideas,
and, in turn, they could provide motivation and experimental
validation to further the theory of diffusion in randomly
organised media.

5 Conclusions

A spatio-temporal model for diffusion of second messengers
in rod phototransduction has been presented, and a
consistent set of parameters have been determined for the
model to predict single-photon response in good agreement
with experimental data. The model exhibits strong locali-
sation of the response about the activation site and enables
us to quantify the longitudinal spread at any particular time
(item 3 of Section 3.2 and Table 3). We also noticed an
interesting dependence of response on the arrangement of
activation sites (Section 3.4), namely that maximum
separation of activated sites produces maximum response,
which by itself can create variability of dim light responses
apart from any other factors.

Given a set of parameters, our model can be used to deter-
mine the spatial and temporal variation of the concen-
trations of the second messengers cGMP and Ca2þ and of
the resulting electrical response, providing detailed
information that may be diffcult to obtain experimentally.
It makes possible computational experiments for the
interpretation of available biological data, comparison of
model predictions with measurements, determination
of sensitivity of output on various model parameters, and
the design of further biological experiments. It can also be
used for determining physical parameter values that are
difficult, non-feasible or impossible to measure directly.
In addition, it can be used to simulate phototransduction
in rods of various sizes (longer or thinner and/or of variable
cross-section).

In summary, this mathematical tool allows investigation
into the space-time, local behaviour of signalling using
second messengers in the ROS.

The control of signal transduction in cells occurs by
precise, highly regulated localisation of key enzymes in
sub-compartments in cells. Homogenisation methods such
as those described here may, in the future, be applied to
the complex geometries of other cell types, allowing
precise modelling of the particular spatial locations in
cells of the components of signalling pathways, as well as
their spatial and temporal evolution, a dramatic improve-
ment from current models based upon ordinary differential
equations. It should be possible to use this approach to build
up a realistic spatio-temporal signal transduction network to
test specific hypotheses of signal cross-talk, integration and
decision-making.
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7 Appendices

7.1 Numerical simulations

Computational models have been developed for the full
model introduced in Section 2.2 and for the corresponding
homogenised model introduced in Section 2.3. The simu-
lations are based, respectively, on finite volume and finite
element discretisations and implemented in Fortran and
Matlab, as described below.

The activation mechanism used for both models is the
lumped method described in Section 2.2.3, which implies
that the process is axially symmetric. Accordingly, axial
symmetry is assumed in the simulations, reducing the
computation to two dimensions, in the radial, r, and axial,
z, directions.

The full model faithfully describes the physical problem;
as such, it requires discretisation of the intricate micro-
structure of the rod, as explained in Appendix 2, leading
to a highly refined mesh and, consequently, to very high
computational cost. By contrast, the disc-free geometry of
the homogenised model does not demand high resolution
along the z-direction and can be resolved using a much
coarser mesh, achieving essentially the same accuracy as
the highly resolved full model. As described in greater
detail in Section 3.1, the gradients of [cG] and [Ca] are
concentrated locally near the activation site; thus the
homogenised model can be efficiently implemented by
using a very coarse z-mesh, which needs to be refined
locally only near the activation site.

To assess the effectiveness of the homogenised model,
numerical simulations from both models (full and homo-
genised) are compared in detail in Section 3.1. Further
simulation results are presented in Section 3.

Because of axial symmetry, there is no angle dependence,
and so, in particular, Jloc(u, z, t) ¼ J(z, t) and
[cG] ¼ [cG](r, z, t) are functions of the radial, r, and
axial, z, co-ordinates and of time t. If a quantity, e.g.
[cG], is computed on the outer membrane (r ¼ Rrod for
full, r ¼ R for homogenised), in view of symmetry with
respect to the axis of the ROS, we set

½cG� outer membrane ¼ ½cG�ðz; tÞ
��

Similar notation is adopted for the remaining variables,
[Ca], JcG, etc.

The numerical solution of the partial differential
equations gives the (discretised) spatial distribution of
[cG] and [Ca] in the cytosol as they evolve in time. Then
the local current Jloc(z, t) at any level z at any time t is
obtained from (3)–(6) using the values of [cG](z, t) and
[Ca](z, t), on the outer membrane, at that level z and time
t. The total current J(t) across the entire plasma membrane
at time t is the mean value of J(z, t) over Srod (see (7)).
Results are presented in terms of the response Jdark 2 J(t),
relative (or normalised) response 1 2 J(t)/Jdark and local
normalised response 1 2 J(z, t)/Jdark.

7.2 Discretisation of full model

The numerical solution of the full model is based on finite
volume discretisation of the partial differential equations
and boundary conditions for the axially symmetric case.
The domain to be discretised here is a rod V1o

containing
n ¼ 800 discs, each of thickness 1o (¼14 nm).
Axisymmetric finite volumes have been employed to
create the mesh. We partition the rod into n small cylinders,
which we will call disc units, each of height

hi ¼
1

2
v1þ 1þ

1

2
v1 i ¼ 1; 2; . . . ; n

containing one disc in its middle. Each disc unit is discre-
tised by subdivision of its radius and its height into subinter-
vals and rotation about the z-axis. Thus each finite volume is
an annulus of rectangular cross-section. Concentrations are
approximated by their mean values over each finite
volume. By integration of the partial differential equations
(11) over each finite volume, local balance equations are
written for each volume that express mass conservation at
the discrete level, just as the diffusion equations express
mass conservation at the continuous level.

Time-integration is performed by explicit time-stepping
(most convenient for parallel computation), with time-
steps sufficiently small to ensure numerical stability of the
scheme; however, boundary values are updated implicitly
by direct solution of the resulting equations.

Parallelisation: Owing to the intricate geometry of the
cytosol, even the axisymmetric version of the full model
involves very intensive computations. To reduce the
computation time, we parallelised the scheme for distri-
buted memory clusters of processors, using domain
decomposition by assigning groups of disc units to proces-
sors. The parallel implementation employs the message
passing interface (MPI) library, following the master/
slaves paradigm generated in single program multiple data
(SPMD) mode, where one processor acts as a master and
the rest as slaves. The master handles input/output, distri-
butes tasks to the slaves, and controls and synchronises
them. The slaves all solve the same problem (but on their
own segment of the mesh), exchange boundary values
with their neighbours through message passing, and send
their output to the master.

In the simulations reported here, we employ a fairly fine
grid in each disc unit, consisting of 32 r-nodes in [0, R];
two r-nodes in Rrod 2 R; one z-node below the disc, two
z-nodes along the height of each disc, and one node
above the disc. Thus each disc unit is discretised into
34 � 4 ¼ 136 control volumes, resulting in 136 � 800 ¼
108 800 control volumes for a typical rod with 800 discs.
Finer grids were tested, with no discernible effect (to at
least three significant digits).

Computations were performed on four networked Intel
dual Xeon workstations. A typical 1000 ms simulation
for a rod with 800 discs with such a grid, using four dual
processors (eight slave processes), takes about 13 h.

7.3 Discretisation of homogenised model

The numerical solution of the homogenised model is based
on finite element discretisation of the weak form of the
homogenised-model equations (26)–(27), for the axially
symmetric case. The domain to be discretised consists of
the cylinder V (the limiting ROS), the zero-thickness disc
DR � fz�g (at the activated face F2

j�) and the lateral
surface S (the limiting outer shell).

IEE Proc.-Syst. Biol., Vol. 152, No. 3, September 2005136



In the homogenised model, the disc unit containing an
activated face is reduced, through a capacity-concentration
process, to DR � fz�g. Accordingly, the volume equivalent
to a disc unit just above the activated level is no longer
available for diffusion, as it has been concentrated on the
surface DR. We compensate for this in the discretisation
by removing a slit of thickness of one disc unit from the
volume just above z�. The location z� is the z co-ordinate
of the activated face F2

� .
An axisymmetric finite-element mesh is created by rotat-

ing an r–z mesh about the z-axis. The r–z mesh consists of
three-node isoparametric elements of triangular cross-
section for the interior of the rod; circular-annular elements
for the activated disc; and two-node surface-cylindrical
elements for the outer surface. For a non-axisymmetric
activation mechanism, a more complicated mesh must be
adopted, using four-node tetrahedral elements for the
interior of the rod and three-node triangular elements for
the activated disc and the outer shell [3].

Linear shape functions are used to interpolate (nodal
values of) the solution in the interior of each element. As a
consequence, both [cG] and [Ca] are approximated by con-
tinuous functions. As the greatest rates of change of [cG]
and [Ca] occur near the activated disc, a mesh-generation
algorithm has been written to produce a finer z-mesh in a
chosen region around the activated disc. This enables us to
obtain an accurate solution using far fewer elements,
thereby considerably reducing the computational cost.

Time-integration was performed with the Crank–
Nicolson scheme, which guarantees stability and conver-
gence without requiring time steps that are too small. The
non-linear forcing terms have been linearised within each
finite element about the local mean value of [cG] and
[Ca], evaluated at the middle of the time-step (midpoint
between the old and new time), as prescribed by the semi-

implicit integration method. Accordingly, an iterative pro-
cedure is necessary to advance the solution to the new
time, for which we use a Matlab linear system solver.

The finite-element scheme has been implemented by a
dedicated code within the Matlab environment. To reduce
the computational time, the evaluation of the non-linear
forcing terms needed at each time-step is performed by a
routine written in C, which, after compilation with the
‘mex’ compiler of Matlab, is used in the code as a Matlab
function.

Several numerical tests were performed to find out the
most economical grid size and time-step for which the
scheme attains convergence. Some of those tests are
reported in Table 7 in terms of peak response, but similar
convergence was achieved also for all other significant
quantities of the problem. The last column shows the
CPU time for 1 s simulation.

The numerical tests in Table 7 show that a 16 � 120
mesh (with finer z-grid near the activated disc) and time
step of 10 ms are sufficient for simulations, and it runs
very fast. Indeed, refinement of the grid both in the radial
and axial directions does not lead to any significant
change in the solution.

Table 7: Effect of mesh size on peak response value and
CPU time in homogenised model, for 1 s simulation,
using time-step of 10 ms

r � z mesh Peak response % CPU time, s

64 � 240 0.81964 885
32 � 400 0.81967 613
16 � 720 0.81986 506
16 � 240 0.81991 118
16 � 120 0.81993 53
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