
COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, VOl. 12,31-42 (1996)

SUPER-TIME-STEPPING ACCELERATION OF EXPLICIT
SCHEMES FOR PARABOLIC PROBLEMS

VASLIOS ALEXIADES
Mathematics Department, University of Tennessee, Knoxville, TN 37996-1300, U.S.A. and Mathematical Sciences

Section, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6367, U.S.A.

GENEVGVE AMIEZ
Laboratoire de Calcul Scientifrque, Universitt de Franche-ComtC, 25030 Besancon, France

AND

PIERRE-ALAIN GREMAUD
Department of Mathematics and Center for Research in Scientific Computation, North Carolina State University,

Raleigh, NC 27695, U.S.A.

SUMMARY
The goal of the paper is to bring to the attention of the computational community a long overlooked, very
simple, acceleration method that impressively speeds up explicit time-stepping schemes, at essentially no
extra cost. The authors explain the basis of the method, namely stabilization via wisely chosen inner steps
(stages), justify it for linear problems, and spell out how simple it is to incorporate in any explicit code
for parabolic problems. Finally, we demonstrate its performance on the (linear) heat equation as well as
on the (non-linear) classical Stefan problem, by comparing it with standard implicit schemes (employing
SOR or Newton iterations). The results show that super-time-stepping is more efficient than the implicit
schemes in that it runs at least as fast, it is of comparable or better accuracy, and it is, of course, much
easier to program (and to parallelize for distributed computing).

KEY WORDS explicit scheme; implicit scheme time-stepping; acceleration; Chebyshev parabolic; heat equation;
Stefan problem

1. INTRODUCTION

Super-time-stepping is a very simple and effective way to speed up explicit time-stepping
schemes for parabolic problems. The method is not new. Conceptually, it belongs to a class
known in the ODE numerical analysis community as Runge-Kutta-Chebyshev methods (see
References 1 and 2 and references therein. Such methods have a long history and are continually
being rediscovered. A variation of the method also exists in numerical linear algebra
(Chebyshev semi-iterative method; see Reference 3, for example), which is not surprising since
many iterative algorithms for solving linear systems admit some kind of temporal interpretation.
However, and in spite of the fact that the method is almost 20 years old,4 it seems that hardly
anyone knows about it in the computational PDE world. This is regrettable, since the method is
not only very simple to use, but also impressively effective. In fact, super-time-stepping (STS)
frees the explicit scheme from the stability restriction on the time-step, rendering it as usable as

CCC 1069-8299/96/010031- 12
0 1996 by John Wiley & Sons, Ltd.

Received 20 January I995
Revised 29 August 1995

32 V. ALEXIADES ETAL..

any implicit scheme, while retaining its simplicity and better accuracy. Our computational
results bear this out, showing that super-time-stepping is more efficient than the standard
implicit schemes (using SOR or Newton iterations), in that it runs at least as fast, it is of
comparable or better accuracy, and it is, of course, much easier to program (and to parallelize
for distributed computing).

Our goal in this paper is twofold. Firstly, it is to present a direct development of (a variant
of) the method and its justification for linear equations. The super-time stepping algorithm is
based on relaxing the requirement of (strong) stability at the end of every time step, to
requiring it only at the end of a cycle of N of them.'g6 The scheme presented here is a variant
of Gentzsch's method.6 Secondly it is to demonstrate the performance of the method and
compare it to implicit schemes. We present detailed comparisons of performance on the (linear)
heat equation, and on the (non-linear) Stefan problem. The main point of interest here is that
STS performs extremely well, not only in the linear case, but also for non-linear problems, even
though, in the latter case, no theoretical results are available. The good behaviour of STS-like
algorithms for this kind of degenerate non-linear parabolic problems was also observed in
Reference 7.

The outline of the paper is as follows. In Section 2 we derive and analyse the super-time-
stepping scheme in the case of a linear parabotic equation. Implementation related questions are
addressed in Section 3. Section 4 is devoted to performance evaluations in both the linear and
non-linear case. Conclusions are offered in Section 5.

2. THE SUPER-TIME-STEPPING SCHEME

Let us consider the following time-dependent problem:

dU
dt
- (t) + AU(t) = 0 t > 0 U(0) = Uo

together with the corresponding standard explicit scheme,

n = O , 1, ... UO = uo (2) Un+l - - U" - AtAU"

where A is an A4 x M symmetric positive definite matrix, At > 0 is the time step, and U, is a
given vector in RM. As is well known, the above algorithm is subject to the restrictive stability
condition

p(I - AtA) < 1 (3)

where p(.) denotes the spectral radius. If A,,, stands for the largest eigenvalue of A, the latter
condition is equivalent to

This is the famous Courant-Friedrichs-Lewy (CFL) stability condition. For example, in the
case of the 1-dimensional heat equation u, = auu, discretized by standard second-order
differences on a uniform mesh, we have A,,, = 4a/Ax2, so that Atexpl = Ax2/(2a).

To relax the restrictive character of the latter condition, we do not require stability at the
end of each time-step At, but rather at the end of a cycle of N time-steps, thus leading to
a Runge-Kutta-like method with N stages. We introduce a superstep AT consisting of N

SUPER-TIME-STEPPING ACCELERATION 33

time-steps t,, t 2 , . . . , tw The idea is now to ensure stability over the superstep AT while trying
to maximize its duration AT = C:= t,.

It should be emphasized at this point that only the values at the end of each superstep AT
approximate the solution of the problem. The inner values have no approximating properties
and should only be considered as intermediate calculations.

The new algorithm can be written as

The corresponding stability condition is

This relation is satisfied if

where 0 < Amin denotes the smallest eigenvalue of A. Among the infinity of choices for the z j s
satisfying (7) we are looking for an optimal one, namely one that makes

N

AT = t, as large as possible
j = 1

However, the above problem is not well posed as stated, because in (7) we have < and not G.
To obtain ‘strong’ stability, we replace the condition (7) by

N n (1 - t j A) s K VA E [p , A,,]
l j = l I

where p is some number in the interval (0, A,,], and K is some number 0 < K < 1 . The problem
of finding the ‘optimal’ values for the t j s can then be reformulated as

Findt, , t2, ..., zN suchthatp,(A) = n;=,, (1 - zjA) satisfies

IpN(A) I s K VA E [p, A,,,] (stability)

N

[p k (o) I = C zj maximal (optimality)

Using the remarkable optimality properties of the Chebyshev polynomials TN(.) of degree N ,
Markoff’ (1892!), we have that if K is given by

,= 1

34 V. ALEXIADES ETAL..

then the optimal values of the zjs are those for which

Note that, if desired, K may be chosen arbitrarily close to 1, by choosing ,u small enough.
Moreover, the z j s corresponding to the above polynomial p N are given explicitly by

zi = 2 ((-Amax + ,u)cos (2ji1 - - l) + A m a x + , u) l j = l , ... N

which can be written more conveniently as

-1

zi = Atexp((-, + v) c o s (~ 2 j - 1 --)+ TG 1 + v) j = 1 , ... N

where v =p/Ama,, 0 < Y < Amin/Amax, Atexpl = 2/Am,, as in (4). One can show the relation

N (1 + 4 ~) ~ ~ - (1 - 4 ~) ~ ~
(1 +JvlZN+ (1 - Jv12'

AT = C tj = Atexpl -
j = 1

which yields

(9)

Lax
AT- N2AteXp (1 1)

v - 0

Noting that N explicit steps, each of length Atexp,, cover time NAtexpl, we see that executing a
superstep consisting of N substeps covers a time interval N times longer (when v = 0). Thus,
superstepping is (up to) N times faster than the standard explicit scheme, at essentially the same
cost! This is where the speed-up comes from.

We observe that the error between the exact and approximate solutions is given by

IIEkll IIU(kAT) - Ukll
N

= e-ATAU((k - ~) A I T) - n (I - ~;.A)u~-' // j= 1

Since A is positive definite, we have

SUPER-TIME-STEPPING ACCELERATION 35

On the other hand, we notice that A being symmetric, means that
stability condition (6) is equivalent to 11 nj”= I (I ’- z j A) 11 < 1. Putting all this together yields

, (I - zjA), and thus the

Expanding and keeping only the lowest-order terms, we obtain

As expected, the method is essentially of order one with respect to AT. If v is increased, the
length of each of the zjs is decreased and, in view of the last relation, so is the error, at
the expense of more computations. The length of the superstep AT (which is determined by the
spectral properties of A, and the choice of N and v) is only restricted by accuracy, just like
with any unconditionally stable implicit scheme.

We remark that the case p = v = 0 corresponds to the stability limit. Therefore choosing v too
small can lead to a method very sensitive to round-off errors. The situation can be improved by
slightly increasing v , or by using some suitable reordering of the inner steps (see, for example,
Reference 6).

It is worth noting that, although we justify the method only in case the operator A appearing
in (1) is a symmetric positive definite matrix, such an assumption does not appear to be always
required in practice. An important practical case is that of an iteration matrix A admitting
complex eigenvalues, as may be the case in convection-diffusion problems. We show in the
following example that the price to pay for the acceleration of the method is only a slight
flattening of the stability region in the complex plane.

Indeed, let us consider the case of a superstep with two inner steps against two steps of the
standard explicit scheme. Let G denote the discrete iteration operator appearing in (3, in terms
of which the region of stability on the complex plane is { z E C; 1 G(z) I < 1 1. Roughly speaking,
the variable z now plays the role of Atexp,A Using (9), we have

G,,(z) = (1 - .z), for two steps of the explicit scheme
G,(z) = (1 - d,z)(l- 6,z) for the STS method with two inner steps

where 4, = 1/((1 + v) f (-1 + v)/d2). In this normalized framework, the length of the
superstep is larger than two standard steps if 6, + 6,>2. Figure l(a) shows the region of
stability for Gexp, (circle) and G,, for v = 0,0-04, 0.08, 0-12,0-16, 0.20, for which 8, + 6 ,>2
is respectively equal to 4, 3.35,2.90,2.58,2.34, 2.14.

The stability regions are increasing with v. Again, v = 0 corresponds to the stability limit, has
the smallest stability region (=-shaped domain), and is clearly not to be considered for any
practical purposes. Figure 1 (b) shows the stability regions for N = 3.

In other words, the acceleration, up to a factor N , provided by superstepping, is obtained at
the very small price of a slight reduction of the stability region along the imaginary axis
(accompanied by an increase along the real axis).

Finally, as will be clear from the numerical experiments presented in the following Sections,
STS perfoms very well, not only in the linear case, which we have justified here, but even

36

1 -

0.5

0 -

-0.5

-1

V. ALEXIADES ETAL.

-

-

-

1.5 1

1 -

0.5

0-

-0.5

-1

-

-

.

1 -1.5

-2
-1 -0.5 0 0.5 1 1.5 2 2.5 3

-2'

Figure 1. Stability region for the standard explicit scheme (circle) and for STS with various values of v for N = 2
(Figure l.a), and forN = 3 (Figure 1.b)

when A represents a non-linear operator. The theoretical difficulties in justifying the non-linear
case come from the fact that for a time-dependent family of matrices A (t) the symmetry of the
products ny=, (I - t . ,A (.)) is no longer guaranteed, nor is the commutativity of the terms
entering in those products.

3. IMPLEMENTATION

Super-time-stepping may be applied easily to any explicit time-stepping algorithm of the form
(2), so in particular to parabolic problems.

SUPER-TIME-STEPPING ACCELERATION 37

Even though the spectral properties of the operator A play an important role in the
theoretical justification presented in Section 2, no precise knowledge of those properties is
required for implementation purposes. The method is robust in this respect. This is true not
only for the examples presented below, but also in general, as, for instance, in the three-
dimensional industrial computations in Reference 7. One determines the explicit time-step
Atexp, in the usual way to satisfy the CFL condition, but instead of executing steps of length
Atexpl one executes supersteps of length AT as follows: choose N , Y and execute the N
substeps z,, z2, ..., zN of (9), without outputing until the end of each super-step. The only
additional expense is the trivial computation in (9), while the execution is accelerated by (up
to) a factor of N .

If one is to integrate (1) up to a time T , the standard explicit method requires at least
nexp, = T/At,,,, one explicit steps, all the computed values being approximations to the solution.
The small time-step, forced upon the scheme by stability, yields high accuracy, which often
exceeds the user’s requirements, and is obtained at high cost. On the other hand, both STS and
the implicit methods allow the choice of a (super) time-step AT as large as desired. The choice
here is based on accuracy rather than stability requirements. STS with N inner steps executes at
least NT/AT explicit steps, where AT is determined by (lo), and yields T/AT approximate
values of the solution. An implicit method yielding an equal number of approximate values
only requires T/AT implicit steps, but each of them is computed by an indeterminate number of
iterations. Thus, effectively, super-time-stepping frees the explicit scheme from the stability
restriction on the time-step, rendering it as usable as any implicit scheme, while retaining its
simplicity and better accuracy.

Let us remark that our approach, as the one in References 4, 6 and 7, differs from the
approach advocated in References 1, 2 and 5 . We consider a factorized implementation into a
sequence of explicit steps, as opposed to using a three-term recursion and so-called diagonal
implementation. The latter may yield better inner stability, i.e. stability of the inner steps.
However, as shown in the following examples and as observed in References 4 and 7, inner
stability problems do not seem to corrupt the solution beyond very acceptable levels. The
factorized implementation has the great advantage that it can be incorporated directly in an
existing explicit code, as described above. In addition, being a single-step method, it requires
less storage than the diagonal implementation, which uses two steps. Finally, since our
implementation does not rely on precise knowledge of spectral properties, it may be applied to
complicated problems and not to just a few textbook problems.

4. PERFORMANCE ON LINEAR AND NON-LINEAR PROBLEMS

We examine the performance of the super-time-stepping scheme on two exactly solvable model
problems: a plain heat conduction problem (linear) and the classical 2-phase Stefan problem
(non-linear), in one space dimension. In each case we compare with standard versions of the
Crank-Nicolson and/or full implicit scheme, one using SOR and the other Newton iterations
for solving the resulting system. The model problems are the following.

4.1. Problem I
Consider the heating of a slab in x > 0, initially at (normalized) temperature u(x, 0) = 0, when

u = 1 is imposed at x = 0. Assuming constant thermophysical properties, in dimensionless
variables the temperature u(x, t) satisfies the heat equation u, = u,. The problem admits an exact

38 V. ALEXIADES ETAL,.

(similarity) solution in terms of the error function, given by

u(x, t>= 1 -erf(x/2l(t) X>O, t > O

4.2. Problem 2

Consider the melting of a slab in x > O , initially solid at (normalized) temperature
u(x, 0) = - 1, due to u = + 1 imposed at x = 0. A melt front x = X (t) originates from x = 0 at
t=0, separating liquid in O s x < X (t) from solid in X (t) < x , t > O . Assuming constant
thermophysical properties and, for simplicity here, the same in both phases, in dimensionless
variables the unknown temperature u(x, t) and interface X (t) satisfy’ the heat equation u, = u,
in both phases, and the interface conditions u (X (t) , t) = 0 and X ’ (t) = St[-u,(X(t)-, t) +
u,(X(t)+, r)] where St denotes the Stefan number of the process (a ratio of sensible to latent

heat, here equal to one over latent heat due to our normalizations). This is one of the few
exactly solvable phase-change problems, admitting a similarity solution (known as the
Neumann solution) in terms of the error function.’ Problem 1 is simply the case of zero latent
heat (and initial temperature equal to zero).

The most convenient, general, and effective numerical method for treating such problems is the
enthalpy method,’ which approximates a weak formulation of the problem (expressing directly
the physics), known as the enthalpy formulation. It is a fixed-domain method, in which only the
enthalpy (energy) is updated from the conservation law, and it determines the phase and
temperature. Thus, it is a ‘front capturing’ scheme, as opposed to ‘front tracking’. Its discretization
by the finite volume method (integrated finite differences) is particularly simple and robust,
retaining conservation at the discrete level. It is described and studied in great detail in Reference
9, where the performance of the standard explicit scheme is compared with two versions of the
implicit scheme (SOR and Newton iterations), using the Neumann solution to determine accuracy.
In what follows, we present a similar comparison with the super-time-stepping scheme.

We solve the general enthalpy formulation of these model problems numerically on the
interval 0 s x s 1 using M = 100 equispaced nodes. At the back face x = 1 we impose the values
of the exact solution ((4) or the Neumann solution) ((12) or the Neumann solution), itself
evaluated at x = 1 at any desired time. This way we are solving numerically the same problems
the exact solutions solve, and we can find the error in the numerical solutions by direct
comparison with the exact solutions. The Dirichlet boundary conditions restrict the time step of
the explicit scheme to Atexpl + Ax2/3.

The schemes are applicable to general conduction/diffusion problems with non-constant
(even u-dependent) coefficients, i.e. they are not customized or optimized in any sense for the
simple problems under consideration here.

We discretize the partial differential equation by (integrated) finite differences, and compare
the performance of the explicit super-time-stepping scheme and the fully implicit and/or
Crank-Nicolson scheme with SOR iterations and with Newton iterations (using the direct
tridiagonal solver for the Newton step).

In the explicit STS scheme we vary N and Y, whereas in the implicit schemes we increase the
time-step At in multiples of the explicit time-step Atexpl +Ax2/3, setting At = factor x Atexpl with
factor = 10,20,40, The SOR extrapolation parameter w is found from linear SOR theory for
the heat equation, and by trial for the Stefan problem since linear theory is inapplicable there.
We report a value of w that minimized the number of iterations.

To determine the accuracy of each scheme we perform a large number of direct comparisons
with the exact solution. As remarked earlier, one cannot compare more frequently than N . We

SUPER-TIME-STEPPING ACCELERATlON 39

tried to choose the frequency of comparisons so that the total number of comparisons (third
column of the Tables) would be roughly the same on all schemes. In Tables I and 11, in addition
to the values of the parameters N , Y or factor, o, we report the following quantities for each
run:

cmps = number of comparisons with exact solution
Em,, = maximum error in temperature at the fixed locations:

0,O. 1, . . . ,0.9,1 (linearly interpolated from nodal values)
over all the comparisons

(computed via trapezoidal rule integration)

(defined only for the Stefan problem)

E,I = maximum L'-error in temperature at the nodes over all the comparisons

Ef,,, = maximum error in melt-front location over all the comparisons

s-steps = number of supersteps in the STS scheme
t-steps = total number of time-steps

iters = number of iterations performed

Table I. Performance of STS and implicit schemes on the heat equation during 0 s t s , with M = 100 nodes

N Y cmps Emax EL1 s-steps t-steps CPU

Superstep
1 0.0 833 0.0006 0.00003 166494 166494 2 7 . 8 ~
7 0.0015 933 0.096 0.015 3729 26103 4 . 6 ~
9 0.001 759 0.087 0.0022 2280 20495 3.7u
9 0.005 767 0.025 0.0004 3067 27585 4 . 8 ~

20 0.006 649 0.043 0.0086 1301 25968 4.4u

Factor w cmps Ern,, ELI t-steps iters CPU

C-N SOR
20 1.40 834 0.023 0.005 8349 73242 1 1 . 4 ~
40 1.50 834 0.022 0.006 4174 56597 8 . 6 ~
80 1 -60 695 0.022 0.009 2087 44002 6-614

120 1.60 695 0.022 0.014 1391 35084 5.3u
200 1.70 834 0.065 0.025 834 30055 4 . 6 ~

C-N Newton
20
40
80

120
160
200

834 0.000 0.001 8349 8591 3 3 . 0 ~
834 0.001 0.004 4174 4418 1 7 . 2 ~
695 0.010 0.010 2087 2377 9.424
695 0.041 0.017 1391 1979 8 . 4 ~
521 0.059 0.020 1043 2603 10.224
834 0.069 0.029 834 3177 12-2u

Imp. Newton
20
40
80

120
160
200

834 0.013 0.002 8349 8591 3 3 . 1 ~
834 0.024 0.004 4174 4446 1 7 . 3 ~
695 0-041 0.007 2087 2474 9 . 8 ~
695 0.058 0.010 1391 1938 8 . 2 ~
521 0.064 0.01 1 1043 1661 6.5 u
834 0.086 0.016 834 1600 6 . 5 ~

40 V. ALEXIADES ETAL.

Table XI. Performance of STS and implicit schemes on the Stefan problem for St =0.1 during O G ts5 ,
with M = 100 nodes

s-steps t-steps CPU N Y C ~ P S E-front Emax ELI

Superstep
1 0.0000 834 0.0005 0.038 0.003 166494 166494 36 .4~
5 0.0080 834 0.0100 0.038 0.021 8346 4180 1 9 - 3 ~
5 0.0400 862 0.0001 0.026 0.003 13808 69164 1 4 . 9 ~
7 0.0165 810 0.0100 0.056 0.024 6457 452761 1 0 . 0 ~

10 0.0400 833 0.0200 0.080 0.016 6674 66848 1 4 - 5 ~
20 0.1000 878 0.0300 0.039 0.028 5271 105627 22.51.4

C-NSOR 20 1.50 834 0.005 0.071 0.011 8349 106195 2 5 . 8 ~
40 1.60 834 0.005 0.069 0-015 4174 93567 2 2 . 0 ~
80 1.60 695 0.005 0.062 0.029 2087 61882 1 4 . 5 ~

200 1-70 834 0.029 0.170 0.077 834 44064 1 0 . 4 ~

Impl SOR
20
40
80

200

1.50 834
1.60 834
1.60 695
1-70 834

0.006
0-006
0.009
0.009

0.071
0-07 1
0.067
0.077

C-N Newton
20
40
80

200

834
834
695
834

0.000
0.001
0.000
0.005

0.038
0.041
0.065
0-162

0.012
0.012
0.016
0.021

0.006
0.014
0.026
0.089

8349
4174
2087
834

106883
83530
60944
41655

2 5 . 9 ~
19.9u
14.3u
9-9u

8349
4174
2087
834

17069
8616
4561
2172

Impl. Newton
20
40
80

200

834 0.001 0.038 0-005 8349 17367 137.0~
834 O@O1 0.038 0.006 4174 8855 7 0 . 1 ~
695 0.002 0.034 0.006 2087 4859 3 8 . 5 ~
834 0.003 0.077 0.019 834 2323 1 8 . 7 ~

Iterations of the implicit schemes correspond to time-steps of the explicit scheme, so they are
listed in the same column. We used a tolerance of for convergence in the iterative schemes.
Since the temperature range is normalized to 0 6 u s 1 and also 0 s X 6 1, the reported errors may
be viewed as percentage errors.

As At is increased, the errors grow, and only runs with both errors less than about 6% are
considered. The computations were performed, in single precision, on a SUN Sparc 10 Model
40 workstation, and we record the CPU units (user time) reported by the UNIX time command.
Coming from a networked UNIX machine, this is a rather unreliable number, but in conjunction
with the total number of time-steps or iterations it is a useful measure of efficiency. Note that
N = 1, Y = 0 is the standard explicit scheme itself.

The best performance of STS for this problem was achieved for N = 9 , v=O.OOl; it
integrated the PDE to the desired time in only 20495 time-stew (down from 166494 of the
standard explicit scheme), an 8-fold speed-up, with Em,, = 0-087 and EL! = 0.022. By increasing

SUPER-TIME-STEPPING ACCELERATION 41

the parameter Y to 0.005, the errors were reduced to 0-025 and 0.0004, respectively, at
somewhat higher cost (27585 time-steps).

Among the implicit schemes, Crank-Nicolson/SOR with At = 200 x Atexp, was fastest (30055
iterations). Its accuracy is comparable to that of the fastest STS, but its speed is 30% slower. On
the other hand, its cost is comparable to STS with N = 9, Y = 0.005, but its errors are at least 2-5
times worse.

With Newton iterations, far fewer iterations were performed, but each Newton iteration is
so much more expensive that efficiency suffers considerably, and in fact it deteriorated for
factor > 120. With large At (i.e. factor > 120), Newton iterations on the fully implicit (backward
Euler) scheme did better than on the Crank-Nicolson, but it still falls far short of STS in both
cost and accuracy.

Table I1 shows similar comparisons on the Stefan problem. In addition to the pointwise and
L' errors on temperature, we show the error in interface location, Efront, again found by
comparison with the exact (Neumann) solution. The phase-change renders the problem non-
linear and degrades the performance of all the schemes considerably.

The best performance of STS now is for N = 5 , Y = 0.008; it reduced the 166494 steps of the
standard explicit scheme to 41801 steps, a 4-fold speed-up. Again, by increasing the parameter
Y to 0.04, the errors become lower than even those of the explicit scheme, itself, at a
respectable speed-up by a factor of 2.4.

The Crank-Nicolson scheme with either SOR or Newton iterations shows unacceptably large
errors for large At. On the other hand, the fully implicit/SOR scheme becomes competitive with
STS when factor = 200, at which it achieves the same front- and L'-errors but its temperature-
error (Emu) is three times that of STS. Newton iterations again prove to be too expensive.

At the same cost, the best performing implicit scheme is the fully implicit/SOR at
factor = 80, but its errors are considerably worse.

5. CONCLUSIONS

The paper describes a simple method that stabilizes and accelerates the explicit (forward Euler)
scheme for parabolic problems. The method is a variant of Gentzsch's super-time-stepping
scheme, and it belongs to the Runge-Kutta-Chebyshev class of methods.

The analysis and computations presented show that super-time-stepping is not only very
simple to implement in an existing explicit code, but also impressively effective. It runs at least
as fast, it achieves comparable or better accuracy, and it is, of course much easier to program
(and to parallelize for distributed computing) than standard implicit schemes for parabolic
problems.

It should be noted that STS is independent of space dimensionality, so it applies as well in
higher dimensions. Given the increased complexity and cost of higher-dimensional implicit
schemes, STS is even more effective there.

ACKNOWLEDGEMENTS

We are grateful to Steve Campbell and to the referees for several remarks that led to a better
presentation of this paper. The first author was partially supported by Science Alliance, a
centres of Excellence Program of the State of Tennessee. The third author was partially
supported by the Army Research Office through grant no. DAAJ304-91-1-0419, and by the
Minesota Supercomputer Institute while at a stay at the School of the University of Minnesota.

42 V. ALEXIADES ET AL.

REFERENCES
I. P. J. van der Houwen, Construction of Integration Formulas for Initial Value Problems, North-

Holland, 1977.
2. J. G. Verwer, W. H. Hndsdorfer and B. P. Someijer, ‘Convergence properties of the Runge-Kutta-

Chebyshev method’, Numer. Math., 57, 157-178 (1900).
3. R. S . Varga, Matrix Iterative Analysis, Prentice-Hall, 1962.
4. W. Gentzsch and A. Schluter, ’On one-step methods with cyclic stepsize changes for solving parabolic

differential equations’ (German), 2. Angew, Math. Mech., 58, T415-T416 (1978).
5. P. J. van der Houwen, Construction of Integration Formulas for Initial Value Problems, North-

Holland, 1977.
6. W. Gentzsch, Numerical solution of linear and non-linear parabolic differential equations by a time-

discretisation of third order accuracy’, in E. H. Hirschel (Ed.), Proceedings of the Third GAMM-
Conference on Numerical Methods in Fluid Mechanics, Friedr. Vieweg & Sohn, 1979, pp. 109-117.

7. J.-J. Droux, ‘Three-dimensional numerical simulation of solidification by an improved explicit
scheme’, Comput. Methods Appl. Mech. Eng., 85 57-74 (1991).

8. W. Markoff, ‘Uber Polynome, die in einem gegebenen Interval1 moglichst wenig von Null abweichen’,
Ann., 77, 213-258 (1892) (translation and condenstation by J. Grossman of Russian article published
in 1892)).

9. V. Alexiades and A. D. Solomon, Mathematical Modeling of Melting and Freezing Processes,
Hemisphere h b l . Co., Washington DC, 1993.

