Chapter 21. Introduction
to Fortran 90
Language Features

21.0 Introduction

Fortran 90 is in many respects a backwards-compatible modernization of the
long-used (and much abused) Fortran 77 language, but it is also, in other respects,
a new language for parallel programming on present and future multiprocessor
machines. These twin design goals of the language sometimes add confusion to the
process of becoming fluent in Fortran 90 programming.

In a certain trivia sense, Fortran 90 is strictly backwards-compatible with
Fortran 77. That is, any Fortran 90 compiler is supposed to be able to compile
any legacy Fortran 77 code without error. The reason for terming this compatibility
trivial, however, is that you have to tell the compiler (usually via a source file name
ending in“.£f” or “.for") that it is dealing with a Fortran 77 file. If you instead
try to pass off Fortran 77 code as native Fortran 90 (e.g., by naming the source file
something ending in “.£90") it will not aways work correctly!

It is best, therefore, to approach Fortran 90 as a new computer language, albeit
one with a lot in common with Fortran 77. Indeed, in such terms, Fortran 90 is a
fairly biglanguage, with alarge number of new constructionsandintrinsic functions.
Here, in one short chapter, we do not pretend to provide a complete description
of the language. Luckily, there are good books that do exactly that. Our favorite
oneis by Metcalf and Reid [1], cited throughout this chapter as“M&R.” Other good
starting points include [2] and [3].

Our godl, intheremainder of this chapter, isto give agood, working description
of those Fortran 90 language features that are not immediately self-explanatory
to Fortran 77 programmers, with particular emphasis on those that occur most
frequently in the Fortran 90 versions of the Numerical Recipes routines. This
chapter, by itself, will not teach you to write Fortran 90 code. But it ought to help
you acquire a reading knowledge of the language, and perhaps provide enough of
a head start that you can rapidly pick up the rest of what you need to know from
M&R or another Fortran 90 reference book.

CITED REFERENCES AND FURTHER READING:
Metcalf, M., and Reid, J. 1996, Fortran 90/95 Explained (Oxford: Oxford University Press). [1]
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936 Chapter 21.  Introduction to Fortran 90 Language Features

Kerrigan, J.F. 1993, Migrating to Fortran 90 (Sebastopol, CA: O'Reilly). [2]

Brainerd, W.S., Goldberg, C.H., and Adams, J.C. 1996, Programmer’s Guide to Fortran 90, 3rd
ed. (New York: Springer-Verlag). [3]

21.1 Quick Start: Using the Fortran 90
Numerical Recipes Routines

This section is for people who want to jump right in. We'll compute a Bessel
function Jy(x), where x is equa to the fourth root of the Julian Day number of the
200th full moon since January 1900. (Now there’sa useful quantity!)

First, locate the important files nrtype.f90, nrutil.f90, and nr.£90, as
listed in Appendices C1, C1, and C2, respectively. These contain modulesthat
either are (i) used by our routines, or else (ii) describe the calling conventions of our
routines to (your) user programs. Compile each of these files, producing (with most
compilers) a .mod fileand a . o (or similarly named) file for each one.

Second, create this main program file:

PROGRAM hello_bessel

USE nrtype

USE nr, ONLY: flmoon, bessjO
IMPLICIT NONE

INTEGER(I4B) :: n=200,nph=2,jd
REAL(SP) :: x,frac,ans

call flmoon(n,nph,jd,frac)
x=jd**0.25_sp

ans=bessjo0(x)

write (*,*) ’Hello, Bessel: ’, ans
END PROGRAM

Here is a quick explanation of some elements of the above program:

The first USE statement includes a module of ours named nrtype, whose purpose is to
give symbalic names to some kinds of data types, among them single-precision reals (“sp”)
and four-byte integers (“i4b”). The second USE statement includes a module of ours that
defines the calling sequences, and variable types, expected by (in this case) the Numerical
Recipes routines flmoon and bessjo.

The IMPLICIT NONE statement signalsthat we want the compiler to require us explicitly
to declare all variable types. We strongly urge that you always take this option.

The next two lines declare integer and real variables of the desired kinds. The variablen
isinitialized to the value 200, nph to 2 (a value expected by f1lmoon).

We call f1moon, and take the fourth root of the answer it returns as jd. Note that the
constant 0.25 is typed to be single-precision by the appended _sp.

We call the bessjO routine, and print the answer.

Third, compile the main program file, and aso the files flmoon.f90,
bessj0.£90. Then, link the resulting object files with also nrutil.o (or sSim-
ilar system-dependent name, as produced in step 1). Some compilers will also
require you to link with nr.o and nrtype.o.

Fourth, run the resulting executable file. Typical output is:

Hello, Bessel: 7.3096365E-02
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21.2 Fortran 90 Language Concepts 937

21.2 Fortran 90 Language Concepts

The Fortran 90 language standard defines and uses a number of standard terms
for concepts that occur in the language. Here we summarize briefly some of the
most important concepts. Standard Fortran 90 terms are shown in italics. While by
no means complete, the information in this section should help you get a quick start
with your favorite Fortran 90 reference book or language manual.

A note on capitalization: Outside a character context, Fortran 90 is not case-
sensitive, so you can use upper and lower case any way you want, to improve
readability. A variablelike SP (see below) isthe samevariableasthe variable sp. We
like to capitalize keywords whose use is primarily at compile-time (statements that
delimit program and subprogram boundaries, declaration statements of variables,
fixed parameter values), and use lower case for the bulk of run-time code. You can
adopt any convention that you find helpful to your own programming style; but we
strongly urge you to adopt and follow someconvention.

Data Types and Kinds

Data types(also caled simply typeg can be either intrinsic data typedthe
familiar INTEGER, REAL, LOGICAL, and so forth) or else derived data typethat are
built up in the manner of what are called “ structures’ or “records’ in other computer
languages. (We'll use derived data types very sparingly in this book.) Intrinsic data
types are further specified by their kind parametefor simply kind), whichis simply
an integer. Thus, on many machines, REAL (4) (withkind = 4) isasingle-precision
real, while REAL(8) (with kind = 8) is a double-precision real. Literal constants
(or simply literals) are specified as to kind by appending an underscore, as 1.5_4
for single precision, or 1.5_8 for double precision. [M&R, §2.5-52.6]

Unfortunately, the specific integer values that define the different kind types
are not specified by the language, but can vary from machine to machine. For
that reason, one almost never uses literal kind parameters like 4 or 8, but rather
defines in some central file, and imports into al one's programs, symbolic hames
for the kinds. For this book, that central file is the modulenamed nrtype, and the
chosen symbolic namesinclude SP, DP (for reals); 12B, I14B (for two- and four-byte
integers); and LGT for the default logical type. You will therefore see us consistently
writing REAL(SP), or 1.5_sp, and so forth.

Here is an example of declaring some variables, including a one-dimensional
array of length 500, and a two-dimensional array with 100 rows and 200 columns:

USE nrtype

REAL(SP) :: x,y,z

INTEGER(I4B) :: i,j,k

REAL(SP), DIMENSION(500) :: arr
REAL(SP), DIMENSION(100,200) :: barr
REAL(SP) :: carr(500)

The last line shows an alternative form for array syntax. And yes, there are default
kind parametersfor each intrinsic type, but these vary from machine to machine and
can get you into trouble when you try to move code. We therefore specify all kind
parameters explicitly in almost al situations.
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938 Chapter 21.  Introduction to Fortran 90 Language Features

Array Shapes and Sizes

The shapeof an array refers to both its dimensionality (called its rank), and
also the lengths along each dimension (called the extent}. The shape of an array is
specified by arank-one array whose elements are the extents along each dimension,
and can be queried with the shape intrinsic (see p. 949). Thus, in the above example,
shape (barr) returns an array of length 2 containing the values (100, 200).

The sizeof an array isitstotal number of elements, sotheintrinsic size (barr)
would return 20000 in the above example. More often one wants to know the
extents along each dimension, separately: size(barr,1) returns the value 100,
while size (barr,2) returns the value 200. [M&R, §2.10]

Section §21.3, below, discusses additional aspects of arraysin Fortran 90.

Memory Management

Fortran 90 is greatly superior to Fortran 77 in its memory-management capa
bilities, seen by the user as the ability to create, expand, or contract workspace for
programs. Within subprogramgthat is, subroutinesand functiong, one can have
automatic arrays(or other automatic data objecjsthat come into existence each
time the subprogram is entered, and disappear (returning their memory to the pool)
when the subprogram is exited. The size of automatic objects can be specified
by arbitrary expressions involving values passed as actual argumentsgn the calling
program, and thus received by the subprogram through its corresponding dummy
arguments [M&R, §6.4]

Here is an example that creates some automatic workspace named carr:

SUBROUTINE dosomething(j,k)
USE nrtype
REAL(SP), DIMENSION(2%j,k**2) :: carr

Finer control on when workspace is created or destroyed can be achieved by
declaring allocatable arrayswhich exist as names only, without associated memory,
until they are allocatedwithin the program or subprogram. When no longer needed,
they can be deallocated The allocation statuof an allocatable array can be tested
by the program viathe allocated intrinsic function (p. 952). [M&R, §6.5]

Here is an example in outline;

REAL(SP), DIMENSION(:,:), ALLOCATABLE :: darr
e'xi]'.ocate (darr(10,20))

(-iée-xllocate (darr)

;.iiocate (darr(100,200))

<'i<.ea:1110cate(darr)

Notice that darr isoriginally declared with only “slots” (colons) for its dimensions,
and is then allocated/deallocated twice, with different sizes.

Yet finer control is achieved by the use of pointers Like an alocatable array,
a pointer can be allocated, at will, its own associated memory. However, it has
the additional flexibility of aternatively being pointer associateavith a target that
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21.2 Fortran 90 Language Concepts 939

already exists under another name. Thus, pointers can be used as redefinable aliases
for other variables, arrays, or (see §21.3) array sections [M&R, §6.12]

Here is an example that first associates the pointer parr with the array earr,
then later cancels that association and allocates it its own storage of size 50:

REAL(SP), DIMENSION(:), POINTER :: parr
REAL(SP), DIMENSION(100), TARGET :: earr

parr => earr

nullify(parr)
allocate(parr(50))

deallocate(parr)

Procedure Interfaces

When a procedure is referenced(e.g., called) from within a program or
subprogram (examples of scoping unity the scoping unit must be told, or must
deduce, the procedure’s interface that is, its calling sequence, including the types
and kinds of al dummy arguments, returned values, etc. The recommended
procedure is to specify this interface via an explicit interface usually an interface
block(essentially adeclaration statement for subprograms) in the calling subprogram
or in some modulethat the calling program includes via a USE statement. In this
book all interfaces are explicit, and the module named nr contains interface blocks
for all of the Numerical Recipes routines. [M&R, §5.11]

Here is a typical example of an interface block:

INTERFACE
SUBROUTINE caldat(julian,mm,id,iyyy)
USE nrtype
INTEGER(I4B), INTENT(IN) :: julian
INTEGER(I4B), INTENT(OUT) :: mm,id,iyyy

END SUBROUTINE caldat
END INTERFACE

Once this interface is made known to a program that you are writing (by either
explicit inclusion or a USE statement), then the compiler is able to flag for you a
variety of otherwise difficult-to-find bugs. Although interface blocks can sometimes
seem overly wordy, they give a big payoff in ultimately minimizing programmer
time and frustration.

For compatibility with Fortran 77, the language also allows for implicit inter-
faces where the calling program tries to figure out the interface by the old rules of
Fortran 77. Theserules are quite limited, and prone to producing devilishly obscure
program bugs. We strongly recommend that implicit interfaces never be used.

Elemental Procedures and Generic Interfaces

Many intrinsic procedureqthose defined by the language standard and thus
usable without any further definition or specification) are also generic This means
that a single procedure name, such as Log(x), can be used with a variety of types
and kind parameters for the argument x, and the result returned will have the same
type and kind parameter as the argument. In this example, Log(x) allows any rea
or complex argument type.
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940 Chapter 21.  Introduction to Fortran 90 Language Features

Better yet, most generic functions are also elemental The argument of an
elemental function can be an array of arbitrary shape! Then, the returned result is
an array of the same shape, with each element containing the result of applying the
function to the corresponding element of the argument. (Hence the name elementa|
meaning “applied element by element.”) [M&R, §8.1] For example:

REAL(SP), DIMENSION(100,100) :: a,b
b=sin(a)

Fortran 90 has no facility for creating new, user-defined elemental functions.
It does have, however, the related facility of overloadingby the use of generic
interfaces This is invoked by the use of an interface block that attaches a single
generic nameao a number of distinct subprograms whose dummy arguments have
different types or kinds. Then, when the generic name is referenced (e.g., called),
the compiler chooses the specific subprogram that matches the types and kinds of the
actual argumentsused. [M&R, §5.18] Hereisan exampleof agenericinterfaceblock:

INTERFACE myfunc
FUNCTION myfunc_single(x)
USE nrtype

REAL(SP) :: x,myfunc_single
END FUNCTION myfunc_single

FUNCTION myfunc_double(x)

USE nrtype

REAL(DP) :: x,myfunc_double

END FUNCTION myfunc_double
END INTERFACE

A program with knowledge of this interface could then freely use the function
reference myfunc (x) for x's of both type SP and type DP.

We use overloading quite extensively in this book. A typical useisto provide,
under the same name, both scalar and vector versions of a function such as a
Bessel function, or to provide both single-precision and double-precision versions
of procedures (as in the above example). Then, to the extent that we have provided
all the versions that you need, you can pretend that our routine is elemental. In
such a situation, if you ever cal our function with a type or kind that we have
not provided, the compiler will instantly flag the problem, because it is unable to
resolve the generic interface.

Modules

Modules already referred to several times above, are Fortran 90'sgeneralization
of Fortran 77's common blocks, INCLUDEd files of parameter statements, and (to
some extent) statement functions. Modules are program unitslike main programsor
subprograms (subroutines and functions), that can be separately compiled. A module
is a convenient place to stash global data, named constantéwhat in Fortran 77
are called “symbolic constants’ or “PARAMETERS’), interface blocks to subprograms
and/or actual subprograms themselves (module subprograms The convenienceis
that a modul€e's information can be incorporated into another program unit via a
simple, one-line USE statement. [M&R, §5.5]

Here is an example of a simple module that defines a few parameters, creates
some global storage for an array named arr (as might be done with a Fortran 77
common block), and defines the interface to a function yourfunc:
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21.3 More on Arrays and Array Sections 941

MODULE mymodule
USE nrtype
REAL(SP), PARAMETER :: con1=7.0_sp/3.0_sp,con2=10.0_sp
INTEGER(I4B), PARAMETER :: ndim=10,mdim=9
REAL(SP), DIMENSION(ndim,mdim) :: arr
INTERFACE
FUNCTION yourfunc(x)
USE nrtype
REAL(SP) :: x,yourfunc
END FUNCTION yourfunc
END INTERFACE
END MODULE mymodule

As mentioned earlier, the module nr contains INTERFACE declarations for all
the Numerical Recipes. When we include a statement of the form

USE nr, ONLY: recipel

it means that the program uses the additional routine recipel. The compiler is
able to use the explicit interface declaration in the module to check that recipel is
invoked with argumentsof the correct type, shape, and number. However, aweakness
of Fortran 90 is that there is no fail-safe way to be sure that the interface module
(herenr) stays synchronized with the underlying routine (hererecipe1). You might
think that you could accomplish this by putting USE nr, ONLY: recipel into the
recipel programitself. Unfortunately, the compiler interprets this as an erroneous
double definition of recipel’s interface, rather than (as would be desirable) as an
opportunity for a consistency check. (To achieve thiskind of consistency check, you
can put the procedures themselves, not just their interfaces, into the module.)

CITED REFERENCES AND FURTHER READING:
Metcalf, M., and Reid, J. 1996, Fortran 90/95 Explained (Oxford: Oxford University Press).

21.3 More on Arrays and Array Sections

Arrays are the central conceptual core of Fortran 90 as a parallel programming
language, and thus worthy of some further discussion. We have aready seen that
arrays can “come into existence” in Fortran 90 in severa ways, either directly
declared, as

REAL(SP), DIMENSION(100,200) :: arr
or else allocated by an allocatablevariable or a pointer variable,

REAL(SP), DIMENSION(:,:), ALLOCATABLE :: arr
REAL(SP), DIMENSION(:,:), POINTER :: barr

allocate(arr(100,200) ,barr(100,200))

or else (not previously mentioned) passed into a subprogram through a dummy
argument:

SUBROUTINE myroutine(carr)

USE nrtype

REAL(SP), DIMENSION(:,:) :: carr

i=size(carr,1)
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942 Chapter 21.  Introduction to Fortran 90 Language Features

j=size(carr,2)

In the above example we also show how the subprogram can find out the size of
the actual array that is passed, using the size intrinsic. Thisroutineis an example
of the use of an assumed-shape arragew to Fortran 90. The actual extents along
each dimension are inherited from the calling routine at run time. A subroutine
with assumed-shape array arguments musthave an explicit interface in the calling
routine, otherwise the compiler doesn’t know about the extra information that must
be passed. A typical setup for calling myroutine would be:
PROGRAM use_myroutine
USE nrtype
REAL(SP), DIMENSION(10,10) :: arr
INTERFACE
SUBROUTINE myroutine(carr)
USE nrtype
REAL(SP), DIMENSION(:,:) :: carr

END SUBROUTINE myroutine
END INTERFACE

call myroutine(a)

Of course, for therecipeswe have provided al theinterface blocksinthefilenr . £90,
and you need only a USE nr statement in your calling program.

Conformable Arrays

Two arrays are said to be conformabldf their shapes are the same. Fortran 90
allows practically all operations among conformable arrays and elemental functions
that are allowed for scalar variables. Thus, if arr, barr, and carr are mutualy
conformable, we can write,

arr=barr+cos(carr)+2.0_sp

and have the indicated operations performed, element by corresponding element,
on the entire arrays. The above line aso illustrates that a scalar (here the constant
2.0_sp, but a scalar variable would also be fine) is deemed conformable with any
array — it gets “expanded” to the shape of the rest of the expression that it is
in. [M&R, §3.11]

In Fortran 90, as in Fortran 77, the default lower bound for an array subscript is
1; however, it can be made some other value at the time that the array is declared:

REAL(SP), DIMENSION(100,200) :: farr
REAL(SP), DIMENSION(0:99,0:199) :: garr

farr = 3.0_sp*garr + 1.0_sp

Notice that farr and garr are conformable, since they have the same shape, in
this case (100,200). Also note that when they are used in an array expression,
the operations are taken between the corresponding elements of their shapesnot
necessarily the corresponding elements of their indices [M&R, §3.10] In other
words, one of the components evaluated is,

farr(1,1) = 3.0_sp*garr(0,0) + 1.0_sp

This illustrates a fundamental aspect of array (or data) parallelism in Fortran 90.
Array constructions should not be thought of as merely abbreviations for do-loops
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21.3 More on Arrays and Array Sections 943

over indices, but rather as genuinely parallel operations on same-shaped objects,
abstracted of their indices. This is why the standard makes no statement about the
order in which the individual operations in an array expression are executed; they
might in fact be carried out simultaneously, on parallel hardware.

By default, array expressions and assignments are performed for all elements
of the same-shaped arrays referenced. This can be modified, however, by use of
a where construction like this:

where (harr > 0.0_sp)

farr = 3.0_sp*garr + 1.0_sp

end where
Hereharr must also beconformableto farrand garr. Analogously withthe Fortran
if-statement, there is aso a one-line form of the where-statement. There is also
awhere ... elsewhere ... end where form of the statement, analogousto
if ... else if ... end if. A significant language limitation in Fortran 90
is that nested where-statements are not allowed. [M&R, §6.8]

Array Sections

Much of the versatility of Fortran 90'sarray facilities stemsfrom the avail ability
of array sections An array section acts like an array, but its memory location, and
thus the values of its elements, is actually a subset of the memory location of an
already-declared array. Array sections are thus “windowsinto arrays,” and they can
appear on either the left side, or the right side, or both, of a replacement statement.
Some examples will clarify these ideas.

Let us presume the declarations

REAL(SP), DIMENSION(100) :: arr

INTEGER(I4B), DIMENSION(6) :: iarr=(/11,22,33,44,55,66/)
Notethat iarr isnot only declared, itisalsoinitialized by aninitialization expression
(areplacement for Fortran 77'sDATA statement). [M&R, §7.5] Here are some array
sections constructed from these arrays:

Array Section What It Means

arr(:) same as arr

arr(1:100) same as arr

arr(1:10) one-dimensional array containing first
10 elements of arr

arr(51:100) one-dimensional array containing sec-
ond half of arr

arr(51:) same as arr (51:100)

arr(10:1:-1) one-dimensional array containing first
10elementsof arr, butinreverse order

arr( (/10,99,1,6/) ) one-dimensional array containing ele-
ments 10, 99, 1, and 6 of arr, in that
order

arr (iarr) one-dimensional array containing ele-
ments 11, 22, 33, 44, 55, 66 of arr, in
that order
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944 Chapter 21.  Introduction to Fortran 90 Language Features

Now let’'s try some array sections of the two-dimensional array

REAL(SP), DIMENSION(100,100) :: barr

Array Section What It Means

barr(:,:) same as barr

barr(1:100,1:100) same as barr

barr(7,:) one-dimensional array containing the
7th row of barr

barr(7,1:100) same as barr (7, :)

barr(:,7) one-dimensional array containing the
7th column of barr

barr(21:30,71:90) two-dimensional array containing the

sub-block of barr with the indicated
ranges of indices;, the shape of this
array section is (10, 20)

barr(100:1:-1,100:1:-1) two-dimensional array formed by flip-
ping barr upside down and backwards
barr(2:100:2,2:100:2) two-dimensional array of shape (50, 50)

containing the elements of barr whose
row and column indices are both even

Some terminology: A construction like 2:100: 2, above, is called a subscript
triplet. Itsinteger pieces (which may be integer constants, or more general integer
expressions) are caled lower, upper, and stride Any of the three may be omitted.
An omitted stride defaults to the value 1. Notice that, if (upper— lower) has a
different sign from stride, then a subscript triplet defines an empty or zero-length
array, eg., 1:5:-1 or 10:1:1 (or its equivalent form, smply 10:1). Zero-length
arrays are not treated as errors in Fortran 90, but rather as “no-ops” That is, no
operation is performed in an expression or replacement statement among zero-length
arrays. (Thisis essentialy the same convention as in Fortran 77 for do-loop indices,
which array expressions often replace.)) [M&R, §6.10]

It isimportant to understand that array sections, when used in array expressions,
match elements with other parts of the expression according to shapenot according
to indices. (This is exactly the same principle that we applied, above, to arrays
with subscript lower bounds different from the default value of 1.) One frequently
exploits this feature in using array sections to carry out operations on arrays that
access neighboring elements.  For example,

carr(1:n-1,1:n-1) = barr(1:n-1,1:n-1)+barr(2:n,2:n)

constructsinthe (n — 1) x (n — 1) matrix carr the sum of each of the corresponding
elementsinn x n barr added to its diagonally lower-right neighbor.

Pointers are often used as aliases for array sections, especially if the same array
sections are used repeatedly. [M&R, §6.12] For example, with the setup

REAL(SP), DIMENSION(:,:), POINTER :: leftb,rightb
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21.4 Fortran 90 Intrinsic Procedures 945

leftb=>barr(1:n-1,1:n-1)
rightb=>barr(2:n,2:n)

the statement above can be coded as
carr(l:n-1,1:n-1)=leftb+rightb

We should also mention that array sections, while powerful and concise, are
sometimes not quite powerful enough. While any row or column of amatrix is easily
accessible as an array section, there is no good way, in Fortran 90, to access (e.g.)
the diagonal of amatrix, even though its elements are related by alinear progression
in the Fortran storage order (by columns). These so-called skew-sectiongiere much
discussed by the Fortran 90 standards committee, but they were not implemented.
We will see exampleslater in this volume of work-around programming tricks (none
totally satisfactory) for this omission. (Fortran 95 corrects the omission; see §21.6.)

CITED REFERENCES AND FURTHER READING:
Metcalf, M., and Reid, J. 1996, Fortran 90/95 Explained (Oxford: Oxford University Press).

21.4 Fortran 90 Intrinsic Procedures

Much of Fortran 90's power, both for parallel programming and for its concise
expression of algorithmicideas, comesfromitsrich set of intrinsic procedures. These
havethe effect of making thelanguage“large,” hence harder tolearn. However, effort
spent on learning to use the intrinsics — particularly some of their more obscure,
and more powerful, optional arguments — is often handsomely repaid.

This section summarizes the intrinsics that we find useful in numerical work.
We omit, here, discussion of intrinsicswhose exclusive useisfor character and string
manipulation. We intend only a summary, not a complete specification, which can
be found in M&R'’s Chapter 8, or other reference books.

If you find the sheer number of new intrinsic procedures daunting, you might
want to start with our list of the “top 10" (with the number of different Numerical
Recipes routines that use each shown in parentheses): size (254), sum (44),
dot_product (31), merge (27), all (25), maxval (23), matmul (19), pack (18),
any (17), and spread (15). (Later, in Chapter 23, you can compare these numbers
with our frequency of using the short utility functions that we define in a module
named nrutil — several of which we think ought to have been included as Fortran
90 intrinsic procedures.)

The type, kind, and shape of the value returned by intrinsic functions will
usually be clear from the short description that we give. As an additional hint
(though not necessarily a precise description), we adopt the following codes:
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946 Chapter 21.  Introduction to Fortran 90 Language Features

Hint What It Means
[Int] an INTEGER kind type
[Readl] aREAL kind type
[Cmplx] a COMPLEX kind type
[Num] anumerical type and kind
[Lgcl] aLOGICAL kind type
[larr] aone-dimensional INTEGER array
[argTS] same type and shape as the first
argument
[argT] same type as the first argument, but
not necessarily the same shape

Numerical Elemental Functions

Little needsto be said about the numerical functionswith identical counterparts
inFortran 77: abs, acos, aimag, asin, atan, atan2, conjg, cos, cosh, dim, exp,
log, logl0, max, min, mod, sign, sin, sinh, sqrt, tan, and tanh. In Fortran
90 these are all elementafunctions, so that any plausible type, kind, and shape of
argument may be used. Except for aimag, which returnsareal type from a complex
argument, these all return [argTS] (see table above).

Although Fortran 90 recognizes, for compatibility, Fortran 77'sso-called specific
namesfor these functions (e.g., iabs, dabs, and cabs for the generic abs), these
are entirely superfluous and should be avoided.

Fortran 90 corrects some ambiguity (or at least inconvenience) in Fortran 77's
mod (a,p) function, by introducing a new function modulo(a,p). The functions
are essentialy identical for positive arguments, but for negative a and positive p,
modulo gives results more compatible with one's mathematical expectation that the
answer should always be in the positive range 0 to p. E.g., modulo(11,5)=1, and
modulo(-11,5)=4. [M&R, §8.3.2]

Conversion and Truncation Elemental Functions

Fortran 90's conversion (or, in the language of C, casting) and truncation
functions are generally modeled on their Fortran 77 antecedents, but with the
addition of an optional second integer argument, kind, that determines the kind of
the result. Note that, if kind is omitted, you get a default kind — not necessarily
related to the kind of your argument. The kind of the argument is of course known
to the compiler by its previous declaration. Functionsin this category (see below for
explanation of arguments in slanted type) are:

[Real] aint(a, ki nd)
Truncate to integer value, return as a real kind.

[Real] anint(a, ki nd)
Nearest whole number, return as a rea kind.

[CmplX] cmplx (%, y, ki nd)
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21.4 Fortran 90 Intrinsic Procedures 947

Convert to complex kind. If y is omitted, it is taken to be 0.

[Int] int (a, ki nd)
Convert to integer kind, truncating towards zero.

[Int] nint (a, ki nd)
Convert to integer kind, choosing the nearest whole number.

[Real] real(a, kind)
Convert to real kind.

[Lgcl] logical(a, kind)
Convert one logical kind to another.

We must digress here to explain the use of optional argumentsnd keywords
as Fortran 90 language features. [M&R, §5.13] When a routine (either intrinsic
or user-defined) has arguments that are declared to be optional, then the dummy
names given to them also become keywords that distinguish — independent of their
positionin acalling list — which argument isintended to be passed. (Thereare some
additional rules about this that we will not try to summarize here.) In this section’s
tabular listings, we indicate optional argumentsin intrinsic routines by printing them
in smaller slanted type. For example, the intrinsic function

eoshift(array,shift, boundary, di m
has two required arguments, array and shift, and two optional arguments,
boundary and dim. Suppose we want to call this routine with the actual arguments
myarray, myshift, and mydim, but omitting the argument in the boundary dot.
We do this by the expression

eoshift(myarray,myshift,dim=mydim)

Conversely, if we wanted a boundary argument, but no dim, we might write
eoshift(myarray,myshift,boundary=myboundary)

It is always a good idea to use this kind of keyword construction when invoking

optional arguments, even though the rules allow keywords to be omitted in some

unambiguous cases. Now back to the lists of intrinsic routines.

A peculiarity of thereal function derivesfrom its use both asatype conversion
and for extracting the real part of complex numbers (related, but not identical,
usages): If the argument of real is complex, and kind is omitted, then the result
isn't a default real kind, but rather is (as one generally would want) the real kind
type corresponding to the kind type of the complex argument, that is, single-precision
real for single-precision complex, double-precision for double-precision, and so on.
[M&R, £§8.3.1] We recommend neverusing kind when you intend to extract the
real part of a complex, and alwaysusing kind when you intend conversion of a
real or integer value to a particular kind of REAL. (Use of the deprecated function
dble is not recommended.)

The last two conversion functions are the exception in that they don't allow
a kind argument, but rather return default integer kinds. (The X3J3 standards
committee has fixed this in Fortran 95.)

[Int] ceiling(a)
Convert to integer, truncating towards more positive.
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948 Chapter 21.  Introduction to Fortran 90 Language Features

[Int] floor(a)
Convert to integer, truncating towards more negative.

Reduction and Inquiry Functions on Arrays

These are mostly the so-called transformational functionghat accept array
argumentsand return either scalar values or else arrays of lesser rank. [M&R, §8.11]
With no optional arguments, such functions act on all the elements of their single
array argument, regardlessof its shape, and produceascalar result. Whentheoptional
argument dim is specified, they instead act on all one-dimensional sections that span
the dimension dim, producing an answer one rank lower than the first argument (that
is, omitting the dim dimension from its shape). When the optional argument mask is
specified, only the elements with a corresponding true value in mask are scanned.

[Lgcl] all(mask, di m
Returnstrue if all elements of mask are true, false otherwise.

[Lgcl] any(mask, dim
Returnstrueif any of the elements of mask are true, false otherwise.

[Int] count (mask, di m
Counts the true elements in mask.

[Num] maxval(array, di m mask)
Maximum value of the array elements.

[Num] minval(array, di m nask)
Minimum value of the array elements.

[Num] product(array, di m mask)
Product of the array elements.

[Int] size(array, di m
Size (total number of elements) of array, or itsextent along dimension
dim.

[Num] sum(array, di m mask)
Sum of the array elements.

The use of the dim argument can be confusing, so an example may be helpful.
Suppose we have

1 2 3 4
myarray= (5 6 7 8
9 10 11 12

where, as aways, the i index in array (i, j) numbers the rows while the j index
numbers the columns. Then

sum(myarray,dim=1) = (15,18, 21, 24)
that is, the i indices are “summed away” leaving only a j index on the result; while

sum(myarray,dim=2) = (10, 26,42)
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21.4 Fortran 90 Intrinsic Procedures 949

that is, the j indices are “summed away” leaving only an i index on the result.
Of course we also have

sum(myarray) = 78

Two related functions return the location of particular elementsin an array. The
returned valueis a one-dimensional integer array containing the respective subscript
of the element along each dimension. Note that when the argument object is a
onedimensional array, the returned object is an integer array of length 1 not simply
an integer. (Fortran 90 distinguishes between these.)

[larr]  maxloc(array, mask)
Location of the maximum value in an array.

[larr]  minloc(array, mask)
Location of the minimum value in an array.

Similarly returning a one-dimensional integer array are

[larr]  shape(array)
Returns the shape of array as a one-dimensional integer array.

[larr]  1lbound(array, di m
When dim is absent, returns an array of lower bounds for each
dimension of subscripts of array. When dim is present, returns the
value only for dimension dim, as a scalar.

[larr]  ubound(array, di m
When dim is absent, returns an array of upper bounds for each
dimension of subscripts of array. When dim is present, returns the
value only for dimension dim, as a scalar.

Array Unary and Binary Functions

The most powerful array operations are simply built into the language as
operators. All the usual arithmetic and logical operators (+, -, *, /, **, .not.,
.and., .or., .eqv., .neqv.) can be applied to arrays of arbitrary shape or (for
the binary operators) between two arrays of the same shape, or between arrays and
scalars. Thetypes of the arrays must, of course, be appropriate to the operator used.
Theresultin al casesisto perform the operation el ement by element on the arrays.

We aso have the intrinsic functions,

[Num] dot_product(veca,vecb)
Scalar dot product of two one-dimensional vectors veca and vecb.

[Num] matmul (mata,matb)
Result of matrix-multiplying the two two-dimensional matrices mata
andmatb. Theshapeshaveto be such asto allow matrix multiplication.
Vectors (one-dimensional arrays) are additionally allowed as either the
first or second argument, but not both; they are treated as row vectors
in the first argument, and as column vectors in the second.

You might wonder how to form the outerproduct of two vectors, since matmul
specifically excludes this case. (See §22.1 and §23.5 for answer.)
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Array Manipulation Functions

These include many powerful features that a good Fortran 90 programmer
should master.

[argTS] cshift(array,shift, di m

If dim is omitted, it is taken to be 1. Returns the result of circularly
left-shifting every one-dimensional section of array (in dimension
dim) by shift (which may be negative). That is, for positive shift,
values are moved to smaller subscript positions. Consult a Fortran 90
reference (e.g., [M&R, §8.13.5]) for the case where shift isan array.

[argTS] merge (tsource,fsource,mask)

Returns same shape object as tsource and fsource containing the
former’s componentswhere mask is true, the latter’s where it is false.

[argTS] eoshift(array,shift, boundary, di m

[argT]

[argT]

[argT]

[argT]

[argT]

If dim is omitted, it is taken to be 1. Returns the result of end-off |eft-
shifting every one-dimensional section of array (in dimension dim)
by shift (which may be negative). That is, for positive shift, values
are moved to smaller subscript positions. If boundary is present as a
scalar, it supplies elementsto fill in the blanks; if it is not present, zero
values are used. Consult aFortran 90 reference (e.g., [M&R, §8.13.5])
for the case where boundary and/or shift is an array.

pack(array,mask, vect or)
Returns a one-dimensional array containing the elements of array
that pass the mask. Components of optional vector are used to pad
out the result to the size of vector with specified values.

reshape (source, shape, pad, order)
Takes the elements of source, in normal Fortran order, and returns
them (as many as will fit) as an array whose shape is specified by
the one-dimensional integer array shape. If there is space remaining,
then pad must be specified, and is used (as many sequential copies
as necessary) to fill out the rest. For description of order, consult a
Fortran 90 reference, e.g., [M&R, 8.13.3].

spread(source,dim,ncopies)
Returns an array whose rank is one greater than source, and whose
dim dimension is of length ncopies. Each of the result’s ncopies
array sections having a fixed subscript in dimension dim is a copy of
source. (That is, it spreads source into the dimth dimension.)

transpose (matrix)
Returns the transpose of matrix, which must be two-dimensional.

unpack(vector,mask,field)
Returns an array whose type is that of vector, but whose shape is
that of mask. The components of vector are put, in order, into the
positions where mask is true. Where mask is false, components of
field (which may be a scalar or an array with the same shape as
mask) are used instead.
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Bitwise Functions

Most of the bitwise functions should be familiar to Fortran 77 programmers

as longstanding standard extensions of that language. Note that the bit positions

number from zero to one less than the value returned by the bit _size function.
Also note that bit positions number from right to left Except for bit_size, the
following functions are all elemental.

[Int]

[Locl]

[Int]

[Int]

[Int]

[Int]

[Int]

[Int]

[Int]

[Int]

[Int]

bit_size(i)
Number of bits in the integer type of i.

btest (i, pos)

True if bit position pos is 1, false otherwise.
iand(i,j)

Bitwise logical and.
ibclr(i,pos)

Returns i but with bit position pos set to zero.

ibits(i,pos,len)
Extracts len consecutive bits starting at position pos and puts them
in the low bit positions of the returned value. (The high positions
are zero.)

ibset (i, pos)
Returns i but with bit position pos set to 1.
ieor(i,j)
Bitwise exclusive or.
ior(i,j)
Bitwise logical or.
ishft(i,shift)

Bitwiseleft shift by shift (which may be negative) with zeros shifted
in from the other end.

ishftc(i,shift)
Bitwise circularly left shift by shift (which may be negative).

not (i)
Bitwise logical complement.

Some Functions Relating to Numerical Representations

[Redl]

epsilon(x)
Smallest nonnegligible quantity relative to 1 in the numerical model
of x.

[Num] huge(x)

[Int]

Largest representable number in the numerical model of x.

kind(x)
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Returns the kind value for the numerica model of x.

[Real] nearest(x,s)
Real number nearest to x in the direction specified by the sign of s.

[Red] tiny(x)
Smallest positive number in the numerical model of x.

Other Intrinsic Procedures

[Lgcl] present(a)
True, within asubprogram, if an optional argument is actually present,
otherwise false.

[Lgcl] associated(pointer, target)
Trueif pointer is associated with target or (if target is absent)
with any target, otherwise false.

[Lgcl] allocated(array)
Trueif the alocatable array is alocated, otherwise false.

There are some pitfals in using associated and allocated, having to do
with arrays and pointers that can find themselves in undefinedstatus [see §21.5,
and also M&R, §3.3 and §6.5.1]. For example, pointers are aways “born” in an
undefined status, where the associated function returns unpredictable values.

For completeness, hereis alist of Fortran 90's intrinsic procedures not already
mentioned:

Other Numerical Representation Functions: digits, exponent, fraction,
rrspacing, scale, set_exponent, spacing, maxexponent, minexponent,
precision, radix, range, selected_int_kind, selected_real_kind.

Lexical comparison: 1lge, 1gt, 1le, 11t.

Character functions.  ichar, char, achar, iachar, index, adjustl,
adjustr, len_trim, repeat, scan, trim, verify.

Other: mvbits, transfer, date_and_time, system_clock, random_seed,
random_number. (We will discuss random numbersin some detail in Chapter B7.)

CITED REFERENCES AND FURTHER READING:
Metcalf, M., and Reid, J. 1996, Fortran 90/95 Explained (Oxford: Oxford University Press).
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21.5 Advanced Fortran 90 Topics

Pointers, Arrays, and Memory Management

One of the biggest improvementsin Fortran 90 over Fortran 77 isin the handling
of arrays, which arethe cornerstone of many numerical algorithms. In this subsection
we will take a closer look at how to use some of these new array features effectively.
We will look at how to code certain commonly occurring elements of program
design, and we will pay particular attention to avoiding “memory leaks,” where —
usually inadvertently — we keep cumulatively allocating new storage for an array,
every time some piece of code is invoked.

Let's first review some of the rules for using alocatable arrays and pointers to
arrays. Recall that a pointer is born with an undefined status. Its status changes
to “associated” when you make it refer to a target, and to “disassociated” when
you nullify the pointer. [M&R, §3.3] You can aso use nullify on a newly
born pointer to change its status from undefined to disassociated; this allows you to
test the status with the associated inquiry function. [M&R, §6.5.4] (While many
compilers will not produce a run-time error if you test an undefined pointer with
associated, you can't rely on this laissez-fairein your programming.)

Theinitial status of an allocatable array is “not currently allocated.” Its status
changes to “allocated” when you give it storage with allocate, and back to “not
currently allocated” when you use deallocate. [M&R, §6.5.1] You can test the
status with the allocated inquiry function. Note that while you can also give a
pointer fresh storage with allocate, you can't test this with allocated — only
associated isallowed with pointers. Note also that nullifying an allocated pointer
leaves its associated storage in limbo. You must instead deallocate, which gives
the pointer a testable “disassociated” status.

Whileallocating an array that isalready allocated givesan error, you areallowed
to allocate a pointer that already has a target. This breaks the old association, and
could leave the old target inaccessible if there is no other pointer associated with
it. [M&R, §6.5.2] Dedlocating an array or pointer that has not been allocated is
always an error.

Allocated arrays that are local to a subprogram acquire the “undefined” status
on exit from the subprogram unless they have the SAVE attribute. (Again, not all
compilers enforce this, but be warned!) Such undefined arrays cannot be referenced
in any way, so you should explicitly dealocate all allocated arrays that are not
saved before returning from a subprogram. [M&R, §6.5.1] The same rule applies
to arrays declared in modules that are currently accessed only by the subprogram.
While you can reference undefined pointers (e.g., by first nullifying them), it is good
programming practice to deall ocate explicitly any allocated pointers declared locally
before leaving a subprogram or module.

Now let’s turn to using these features in programs. The simplest example is
when we want to implement global storage of an array that needs to be accessed by
two or more different routines, and we want the size of the array to be determined
at run time. As mentioned earlier, we implement global storage with a MODULE
rather than a COMMON block. (We ignore here the additional possibility of passing
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global variables by having one routine CONTAINed within the other.) There are
two good ways of handling the dynamical allocation in a MODULE. Method 1 uses
an allocatable array:

MODULE a
REAL(SP), DIMENSION(:), ALLOCATABLE :: x
END MODULE a

SUBROUTINE b(y)
USE a
REAL(SP), DIMENSION(:) :: y

allocate(x(size(y)))
[other routines using called here] . . .
END SUBROUTINE b

Here the global variable x gets assigned storage in subroutine b (in this case,
the same as the length of y). The length of y is of course defined in the procedure
that callsb. The array x is made available to any other subroutine called by b by
including a USE a statement. The status of x can be checked with an allocated
inquiry function on entry into either b or the other subroutine if necessary. As
discussed above, you must be sure to deallocate x before returning from subroutine
b. If you want x to retain its values between calls to b, you add the SAVE attribute
to its declaration in a, and don'’t deallocate it on returning from b. (Alternatively,
you could put aUSE a in your main program, but we consider that bug-prone, since
forgetting to do so can create all manner of difficult-to-diagnose havoc.) To avoid
allocating x more than once, you test it on entry into b:

if (.not. allocated(x)) allocate(x(size(y)))

The second way to implement this type of global storage (Method 2) uses
a pointer:
MODULE a

REAL(SP), DIMENSION(:), POINTER :: x
END MODULE a

SUBROUTINE b(y)

USE a

REAL(SP), DIMENSION(:) :: y

REAL(SP), DIMENSION(size(y)), TARGET :: xx

X=>XX
[other routines using called here] . . .
END SUBROUTINE b

Here the automatic arrayxx gets its temporary storage automatically on entry
into b, and automatically gets deallocated on exit fromb. [M&R, §6.4] The global
pointer x can access this storage in any routine with a USE a that is called by b.
You can check that things are in order in such a called routine by testing x with
associated. If you are going to use x for some other purpose as well, you should
nullify it on leaving b so that it doesn’'t have undefined status. Note that this
implementation does not alow values to be saved between calls. You can’t SAVE
automatic arrays — that’s not what they’re for. You would have to SAVE x in
the module, and allocate it in the subroutine instead of pointing it to a suitable
automatic array. But thisisessentially Method 1 with the added complication of using
a pointer, so Method 1 is ssmpler when you want to save values. When you don’t
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need to save values between calls, we lean towards Method 2 over Method 1 because
we like the automatic allocation and deallocation, but either method works fine.

An example of Method 1 (allocatable array) isin routine rkdumb on page 1297.
An example of Method 1 with SAVE is in routine pwtset on p. 1265. Method
2 (pointer) shows up in routines newt (p. 1196), broydn (p. 1199), and fitexy
(p. 1286). A variationisshowninroutineslinmin (p. 1211) and dlinmin (p. 1212):
When the array that needs to be shared is an argument of one of the routines,
Method 2 is better.

An extension of these ideas occurs if we alocate some storage for an array
initially, but then might need to increase the size of the array later without losing
the already-stored values. The function reallocate in our utility module nrutil
will handle this for you, but it expects a pointer argument as in Method 2. Since
no automatic arrays are used, you are free to SAVE the pointer if necessary. Here
is a simple example of how to use reallocate to create a workspace array that
is local to a subroutine:

SUBROUTINE a
USE nrutil, ONLY : reallocate
REAL(SP), DIMENSION(:), POINTER, SAVE :: wksp
LOGICAL(LGT), SAVE :: init=.true.
if (init) then
init=.false.
nullify(wksp)
wksp=>reallocate (wksp,100)
end if

if (nterm > size(wksp)) wksp=>reallocate(wksp,2*size (wksp))
END SUBROUTINE a

Here the workspace is initially allocated a size of 100. If the number of elements
used (nterm) ever exceeds the size of the workspace, the workspaceis doubled. (In
a realistic example, one would of course check that the doubled size is in fact big
enough.) Fortran 90 experts can note that the SAVE on init isnot strictly necessary:
Any local variable that is initialized is automatically saved. [M&R, §7.5]

You canfind similar examplesof reallocate (with somefurther discussion) in
eulsum (p. 1070), hufenc (p. 1348), and arcode (p. 1350). Examples of reallocate
used with global variables in modules are in odeint (p. 1300) and ran_state
(p. 1144).

Another situation where we have to use pointers and not allocatable arrays
is when the storage is required for components of a derived type, which are not
allowed to have the alocatable attribute. Examples are in hufmak (p. 1346) and
arcmak (p. 1349).

Turning away from issues relating to global variables, we now consider several
other important programming situations that are nicely handled with pointers. The
first case is when we want a subroutine to return an array whose size is not known
in advance. Since dummy arguments are not allocatable, we must use a pointer.
Here is the basic construction:

SUBROUTINE a(x,nx)

REAL(SP), DIMENSION(:), POINTER :: x
INTEGER(I4B), INTENT(OUT) :: nx
LOGICAL(LGT), SAVE :: init=.true.

if (init) then
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init=.false.

nullify(x)
else

if (associated(x)) deallocate(x)
end if

nx=...
allocate(x(nx))

x(1:nx)=...
END SUBROUTINE a

Sincethelength of x can befound from size (x), it is not absolutely necessary
to pass nx as an argument. Note the use of the initial logic to avoid memory
leaks. If a higher-level subroutine wants to recover the memory associated with x
from the last call to SUBROUTINE a, it can do so by first deallocating it, and then
nullifying the pointer. Examples of this structure are in zbrak (p. 1184), period
(p. 1258), and fasper (p. 1259). A related situation is where we want a function
to return an array whose size is not predetermined, such asin voltra on (p. 1326).
The discussion of voltra also explains the potential pitfalls of functions returning
pointers to dynamically alocated arrays.

A final useful pointer construction enables us to set up a data structure that is
essentially an array of arrays, independently allocatable on each part. We are not
allowed to declare an array of pointers in Fortran 90, but we can do this indirectly
by defining a derived type that consists of a pointer to the appropriate kind of array.
[M&R, §6.11] We can then define a variable that is an allocatable array of the new
type. For example,

TYPE ptr_to_arr
REAL(SP), DIMENSION(:), POINTER :: arr
END TYPE
TYPE(ptr_to_arr), DIMENSION(:), ALLOCATABLE :: x

e-xi]-.ocate (x(n))

do i=1,n
allocate(x(i)%arr(m))
end do

sets up a set x of n arrays of lengthm. See also the exampleinmglin (p. 1334).

Thereis apotential problem with dynamical memory allocation that we should
mention. The Fortran 90 standard does not require that the compiler perform
“garbage collection,” that is, it is not required to recover deallocated memory into
nice contiguous pieces for reuse. If you enter and exit a subroutine many times,
and each time a large chunk of memory gets allocated and deallocated, you could
run out of memory with a “dumb” compiler. You can often alleviate the problem
by deallocating variables in the reverse order that you allocated them. Thistendsto
keep a large contiguous piece of memory free at the top of the heap.

Scope, Visibility, and Data Hiding

An important principle of good programming practice is modularization the
idea that different parts of a program should be insulated from each other as much
as possible. An important subcase of modularization is data hiding the principle
that actions carried out on variables in one part of the code should not be able to
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affect the values of variables in other parts of the code. When it is necessary for
one “island” of code to communicate with another, the communication should be
through a well-defined interface that makes it obvious exactly what communication
is taking place, and prevents any other interchange from occurring. Otherwise,
different sections of code should not have access to variables that they don’t need.

The concept of data hiding extends not only to variables, but also to the names
of procedures that manipulate the variables: A program for screen graphics might
give the user access to a routine for drawing a circle, but it might “hide” the
names (and methods of operation) of the primitive routines used for calculating
the coordinates of the points on the circumference. Besides producing code that
is easier to understand and to modify, data hiding prevents unintended side effects
from producing hard-to-find errors.

In Fortran, the principal language construction that effects data hiding is the
use of subroutines. If al subprograms were restricted to have no more than ten
executable statements per routine, and to communicate between routines only by
an explicit list of arguments, the number of programming errors might be greatly
reduced! Unfortunately few tasks can be easily coded in this style. For this and
other reasons, we think that too much procedurization is a bad thing; one wants
to find the right amount. Fortunately Fortran 90 provides several additional tools
to help with data hiding.

Global variables and routine names are important, but potentially dangerous,
things. In Fortran 90, global variablesare typically encapsulated in modules. Access
is granted only to routines with an appropriate USE statement, and can be restricted
to specific identifiers by the ONLY option. [M&R, §7.10] In addition, variable and
routine names within the module can be designated as PUBLIC or PRIVATE (seeg,
e.g., quad3d on p. 1065). [M&R, §7.6]

The other way global variables get communicated is by having one routine
CONTAINed within another. [M&R, §5.6] This usage is potentially lethal, however,
because all the outer routine's variables are visible to the inner routine. You can
try to control the problem somewhat by passing some variables back and forth as
arguments of the inner routine, but that still doesn’t prevent inadvertent side effects.
(The most common, and most stupid, is inadvertent reuse of variables named i or j
in the CONTAINed routine.) Also, along list of arguments reduces the convenience
of using an internal routine in the first place. We advise that internal subprograms
be used with caution, and only to carry out simple tasks.

There are some good ways to use CONTAINS, however. Several of our recipes
have the following structure: A principal routine is invoked with several arguments.
It calls a subsidiary routine, which needs to know some of the principal routine's
arguments, some global variables, and some values communicated directly as
arguments to the subsidiary routine. In Fortran 77, we have usually coded this by
passing the global variablesin a COMMON block and all other variables as arguments
to the subsidiary routine. If necessary, we copied the arguments of the primary
routine before passing them to the subsidiary routine. In Fortran 90, thereis a more
elegant way of accomplishing this, as follows:

SUBROUTINE recipe(arg)
REAL(SP) :: arg
REAL(SP) :: global_var

call recipe_private
CONTAINS
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SUBROUTINE recipe_private
call subsidiary(local_arg)

END SUBROUTINE recipe_private
SUBROUTINE subsidiary(local_arg)

END SUBROUTINE subsidiary
END SUBROUTINE recipe

Notice that the principal routine (recipe) has practically nothing in it — only dec-
larations of variables intended to be visible to the subsidiary routine (subsidiary).
All the real work of recipe is done in recipe_private. This latter routine
has visibility on all of recipe’s variables, while any additional variables that
recipe_private defines are not visible to subsidiary — which is the whole
purpose of this way of organizing things. Obviously arg and global _var can
be much more general data types than the example shown here, including function
names. For examples of this construction, see amoeba (p. 1208), amebsa (p. 1222),
mrqmin (p. 1292), and medfit (p. 1294).

Recursion

A subprogram is recursive if it cals itself. While forbidden in Fortran
77, recursion is allowed in Fortran 90. [M&R, §5.16-§5.17] You must supply the
keyword RECURSIVEin front of the FUNCTION or SUBROUTINE keyword. Inaddition,
if aFUNCTION callsitself directly, as opposed to calling another subprogram that in
turn callsit, you must supply avariable to hold the result with the RESULT keyword.
Typical syntax for this case is:

RECURSIVE FUNCTION f(x) RESULT(g)
REAL(SP) :: x,g
if ...
g=...
else
g=f(...)
end if
END FUNCTION f

When a function calls itself directly, as in this example, there always has to be a
“base case” that does not call the function; otherwise the recursion never terminates.
We have indicated this schematically withthe if. . .else...end if structure.

On serial machines we tend to avoid recursive implementations because of the
additional overhead they incur at execution time. Occasionally there are algorithms
for whichtherecursion overheadisrelatively small, and therecursiveimplementation
is simpler than an iterative version. Examplesin this book are quad_3d (p. 1065),
miser (p. 1164), and mglin (p. 1334). Recursion is much more important when
parallelization is the goal. We will encounter in Chapter 22 numerous examples of
algorithms that can be parallelized with recursion.

SAVE Usage Style

A quirk of Fortran 90 is that any variable with initial values acquires the
SAVE attribute automatically. [M&R, §7.5 and §7.9] As a help to understanding
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an algorithm, we have elected to put an explicit SAVE on al variables that really
do need to retain their values between calls to a routine. We do this even if it is
redundant because the variables are initialized. Note that we generally prefer to
assign initial values with initialization expressions rather than with DATA statements.
We reserve DATA statements for cases where it is convenient to use the repeat count
feature to set multiple occurrences of avalue, or when binary, octal, or hexadecimal
congtants are used. [M&R, §2.6.1]

Named Control Structures

Fortran 90 allows control structures such as do loops and if blocks to be
named. [M&R, §4.3-§4.5] Typical syntax is
name:do i=1,n
end'c.lc; name
One use of naming contral structures is to improve readability of the code,
especialy when there are many levels of nested loops and if blocks. A more
important use isto alow exit and cycle statements, which normally refer to the
innermost do loop in which they are contained, to transfer execution to the end
of some outer loop. This is effected by adding the name of the outer loop to the
statement: exit name Or cycle name.
There is great potential for misuse with named control structures, since they
share some features of the much-maligned goto. We recommend that you use them

sparingly. For agood exampleof their use, contrast the Fortran 77 version of simplx
with the Fortran 90 version on p. 1216.

CITED REFERENCES AND FURTHER READING:
Metcalf, M., and Reid, J. 1996, Fortran 90/95 Explained (Oxford: Oxford University Press).

21.6 And Coming Soon: Fortran 95

One of the more positive effects of Fortran 90’s long gestation period has been
the general recognition, both by the X3J3 committee and by the community at large,
that Fortran needs to evolve over time. Indeed, as we write, the process of bringing
forth a minor, but by no means insignificant, updating of Fortran 90 — named
Fortran 95 — is well under way.

Fortran 95 will differ from Fortran 90 in about a dozen features, only a handful
of which are of any importance to this book. Generaly these are extensions that
will make programming, especially parallel programming, easier. In this section we
give a summary of the anticipated language changes. In §22.1 and §22.5 we will
comment further on the implications of Fortran 95 to some parallel programming
tasks; in §23.7 we comment on what differences Fortran 95 will maketo our nrutil
utility functions.

No programs in Chapters B1 through B20 of this book edition use any Fortran
95 extensions.
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960 Chapter 21.  Introduction to Fortran 90 Language Features

FORALL Statements and Blocks

Fortran 95 introduces a new forall control structure, somewhat akin to the
where construct, but allowing for greater flexibility. It is something like a do-loop,
but with the proviso that the indices looped over are allowed to be done in any order
(idedlly, in parallel). The forall construction comes in both single-statement and
block variants. Instead of using the do-loop’s comma-separated triplets of lower-
value, upper-value, and increment, it borrows its syntax from the colon-separated
form of array sections. Some examples will give you the idea.

Here is a simple example that could alternatively be done with Fortran 90's
array sections and transpose intrinsic:

forall (i=1:20, j=1:10:2) x(i,j)=y(j,i)
The block form allows more than one executable statement:

forall (i=1:20, j=1:10:2)
x(i,j)=y(j,1)
z(i,j)=y(i,j)**2

end forall

Here is an example that cannot be done with Fortran 90 array sections:
forall (i=1:20, j=1:20) a(i,j)=3*i+j**2

forall statements can also take optional masks that restrict their action to a
subset of the loop index combinations:

forall (i=1:100, j=1:100, (i>=j .and. x(i,3j)/=0.0) ) x(i,j)=1.0/x(i,j)

forall constructions can be nested, or nested inside where blocks, or have
where constructions inside them. An additional new feature in Fortran 95 is that
where blocks can themselves be nested.

PURE Procedures

Because the inside iteration of a forall block can be donein any order, or in
paralel, thereisalogica difficulty in alowing functions or subroutines inside such
blocks: If the function or subroutine has side effectgthat is, if it changes any data
elsewhere in the machine, or in its own saved variables) then the result of aforall
calculation could depend on the order in which the iterations happen to be done.
This can’t be tolerated, of course; hence a new PURE attribute for subprograms.

While the exact stipulations are somewhat technical, the basic ideaisthat if you
declare a function or subroutine as PURE, with a syntax like,

PURE FUNCTION myfunc(x,y,z)
or
PURE SUBROUTINE mysub(x,y,z)

then you are guaranteeing to the compiler (and it will enforce) that the only values
changed by mysub or myfunc arereturned function val ues, subroutine argumentswith
the INTENT (OUT) attribute, and automatic (scratch) variables within the procedure.

You can then use your pure procedures within forall constructions. Pure
functions are also allowed in some specification statements.
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ELEMENTAL Procedures

Fortran 95 removes Fortran 90's nagging restriction that only intrinsic functions
are elemental. The way this works is that you write a pure procedure that operates
on scalar values, but include the attribute ELEMENTAL (which automatically implies
PURE). Then, as long as the function has an explicit interface in the referencing
program, you can call it with any shape of argument, and it will act elementally.
Here's an example:

ELEMENTAL FUNCTION myfunc(x,y,z)
REAL :: x,y,z,myfunc

myfunc = ...
END

In a program with an explicit interface for myfunc you could now have

REAL, DIMENSION(10,20) :: x,y,z,w

w=myfunc(x,y,z)

Pointer and Allocatable Improvements

Fortran 95, unlike Fortran 90, requires that any allocatable variables (except
those with SAVE attributes) that are all ocated within a subprogram be automatically
deallocated by the compiler when the subprogramis exited. Thiswill remove Fortran
90's “undefined allocation status’ bugaboo.

Fortran 95 also provides a method for pointer variables to be born with
disassociated association status, instead of the default (and often inconvenient)
“undefined” status. Thesyntax istoadd aninitializing=> NULL () to thedeclaration,
as.

REAL, DIMENSION(:,:), POINTER :: mypoint => NULL()

This does not, however, eliminate the possibility of undefined association status,
because you have to remember to use the null initializer if want your pointer to
be disassociated.

Some Other Fortran 95 Features

In Fortran 95, maxloc and minloc have the additional optional argument DIV,
which causes them to act on all one-dimensional sections that span through the
named dimension. This provides a means for getting the locations of the values
returned by the corresponding functions maxval and minval in the case that their
DIM argument is present.

The sign intrinsic can now distinguish a negative from a positive rea zero
value: sign(2.0,-0.0) is —2.0.

Thereisanew intrinsic subroutine cpu—time (time) that returnsasareal value
time a process's elapsed CPU time.

There are some minor changes in the namelist facility, in defining minimum
field widthsfor thel, B, O, Z, and F edit descriptors, and in resolving minor conflicts
with some other standards.
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