
S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).
Chapter 21. Introduction

to Fortran 90
Language Features

21.0 Introduction

Fortran 90 is in many respects a backwards-compatible modernization of the
long-used (and much abused) Fortran 77 language, but it is also, in other respects,
a new language for parallel programming on present and future multiprocessor
machines. These twin design goals of the language sometimes add confusion to the
process of becoming fluent in Fortran 90 programming.

In a certain trivial sense, Fortran 90 is strictly backwards-compatible with
Fortran 77. That is, any Fortran 90 compiler is supposed to be able to compile
any legacy Fortran 77 code without error. The reason for terming this compatibility
trivial, however, is that you have to tell the compiler (usually via a source file name
ending in “.f” or “.for”) that it is dealing with a Fortran 77 file. If you instead
try to pass off Fortran 77 code as native Fortran 90 (e.g., by naming the source file
something ending in “.f90”) it will not always work correctly!

It is best, therefore, to approach Fortran 90 as a new computer language, albeit
one with a lot in common with Fortran 77. Indeed, in such terms, Fortran 90 is a
fairly big language, with a large number of new constructions and intrinsic functions.
Here, in one short chapter, we do not pretend to provide a complete description
of the language. Luckily, there are good books that do exactly that. Our favorite
one is by Metcalf and Reid [1], cited throughout this chapter as “M&R.” Other good
starting points include [2] and [3].

Our goal, in the remainder of this chapter, is to give a good, working description
of those Fortran 90 language features that are not immediately self-explanatory
to Fortran 77 programmers, with particular emphasis on those that occur most
frequently in the Fortran 90 versions of the Numerical Recipes routines. This
chapter, by itself, will not teach you to write Fortran 90 code. But it ought to help
you acquire a reading knowledge of the language, and perhaps provide enough of
a head start that you can rapidly pick up the rest of what you need to know from
M&R or another Fortran 90 reference book.

CITED REFERENCES AND FURTHER READING:

Metcalf, M., and Reid, J. 1996, Fortran 90/95 Explained (Oxford: Oxford University Press). [1]

935

936 Chapter 21. Introduction to Fortran 90 Language Features

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

Kerrigan, J.F. 1993, Migrating to Fortran 90 (Sebastopol, CA: O’Reilly). [2]

Brainerd, W.S., Goldberg, C.H., and Adams, J.C. 1996, Programmer’s Guide to Fortran 90, 3rd
ed. (New York: Springer-Verlag). [3]

21.1 Quick Start: Using the Fortran 90
Numerical Recipes Routines

This section is for people who want to jump right in. We’ll compute a Bessel
function J0(x), where x is equal to the fourth root of the Julian Day number of the
200th full moon since January 1900. (Now there’sa useful quantity!)

First, locate the important files nrtype.f90, nrutil.f90, and nr.f90, as
listed in Appendices C1, C1, and C2, respectively. These contain modulesthat
either are (i) used by our routines, or else (ii) describe the calling conventions of our
routines to (your) user programs. Compile each of these files, producing (with most
compilers) a .mod file and a .o (or similarly named) file for each one.

Second, create this main program file:

PROGRAM hello_bessel
USE nrtype
USE nr, ONLY: flmoon, bessj0
IMPLICIT NONE
INTEGER(I4B) :: n=200,nph=2,jd
REAL(SP) :: x,frac,ans
call flmoon(n,nph,jd,frac)
x=jd**0.25_sp
ans=bessj0(x)
write (*,*) ’Hello, Bessel: ’, ans
END PROGRAM

Here is a quick explanation of some elements of the above program:

The first USE statement includes a module of ours named nrtype, whose purpose is to
give symbolic names to some kinds of data types, among them single-precision reals (“sp”)
and four-byte integers (“i4b”). The second USE statement includes a module of ours that
defines the calling sequences, and variable types, expected by (in this case) the Numerical
Recipes routines flmoon and bessj0.

The IMPLICIT NONE statement signals that we want the compiler to require us explicitly
to declare all variable types. We strongly urge that you always take this option.

The next two lines declare integer and real variables of the desired kinds. The variable n
is initialized to the value 200, nph to 2 (a value expected by flmoon).

We call flmoon, and take the fourth root of the answer it returns as jd. Note that the
constant 0.25 is typed to be single-precision by the appended sp.

We call the bessj0 routine, and print the answer.

Third, compile the main program file, and also the files flmoon.f90,
bessj0.f90. Then, link the resulting object files with also nrutil.o (or sim-
ilar system-dependent name, as produced in step 1). Some compilers will also
require you to link with nr.o and nrtype.o.

Fourth, run the resulting executable file. Typical output is:

Hello, Bessel: 7.3096365E-02

21.2 Fortran 90 Language Concepts 937

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

21.2 Fortran 90 Language Concepts

The Fortran 90 language standard defines and uses a number of standard terms
for concepts that occur in the language. Here we summarize briefly some of the
most important concepts. Standard Fortran 90 terms are shown in italics. While by
no means complete, the information in this section should help you get a quick start
with your favorite Fortran 90 reference book or language manual.

A note on capitalization: Outside a character context, Fortran 90 is not case-
sensitive, so you can use upper and lower case any way you want, to improve
readability. A variable like SP (see below) is the same variable as the variable sp. We
like to capitalize keywords whose use is primarily at compile-time (statements that
delimit program and subprogram boundaries, declaration statements of variables,
fixed parameter values), and use lower case for the bulk of run-time code. You can
adopt any convention that you find helpful to your own programming style; but we
strongly urge you to adopt and follow someconvention.

Data Types and Kinds

Data types(also called simply types) can be either intrinsic data types(the
familiar INTEGER, REAL, LOGICAL, and so forth) or else derived data typesthat are
built up in the manner of what are called “structures” or “records” in other computer
languages. (We’ll use derived data types very sparingly in this book.) Intrinsic data
types are further specified by their kind parameter(or simply kind), which is simply
an integer. Thus, on many machines, REAL(4) (with kind = 4) is a single-precision
real, while REAL(8) (with kind = 8) is a double-precision real. Literal constants
(or simply literals) are specified as to kind by appending an underscore, as 1.5 4
for single precision, or 1.5 8 for double precision. [M&R, §2.5–§2.6]

Unfortunately, the specific integer values that define the different kind types
are not specified by the language, but can vary from machine to machine. For
that reason, one almost never uses literal kind parameters like 4 or 8, but rather
defines in some central file, and imports into all one’s programs, symbolic names
for the kinds. For this book, that central file is the modulenamed nrtype, and the
chosen symbolic names include SP, DP (for reals); I2B, I4B (for two- and four-byte
integers); and LGT for the default logical type. You will therefore see us consistently
writing REAL(SP), or 1.5 sp, and so forth.

Here is an example of declaring some variables, including a one-dimensional
array of length 500, and a two-dimensional array with 100 rows and 200 columns:

USE nrtype
REAL(SP) :: x,y,z
INTEGER(I4B) :: i,j,k
REAL(SP), DIMENSION(500) :: arr
REAL(SP), DIMENSION(100,200) :: barr
REAL(SP) :: carr(500)

The last line shows an alternative form for array syntax. And yes, there are default
kind parameters for each intrinsic type, but these vary from machine to machine and
can get you into trouble when you try to move code. We therefore specify all kind
parameters explicitly in almost all situations.

938 Chapter 21. Introduction to Fortran 90 Language Features

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

Array Shapes and Sizes

The shapeof an array refers to both its dimensionality (called its rank), and
also the lengths along each dimension (called the extents). The shape of an array is
specified by a rank-one array whose elements are the extents along each dimension,
and can be queried with the shape intrinsic (see p. 949). Thus, in the above example,
shape(barr) returns an array of length 2 containing the values (100, 200).

The sizeof an array is its total number of elements, so the intrinsic size(barr)
would return 20000 in the above example. More often one wants to know the
extents along each dimension, separately: size(barr,1) returns the value 100,
while size(barr,2) returns the value 200. [M&R, §2.10]

Section §21.3, below, discusses additional aspects of arrays in Fortran 90.

Memory Management

Fortran 90 is greatly superior to Fortran 77 in its memory-management capa-
bilities, seen by the user as the ability to create, expand, or contract workspace for
programs. Within subprograms(that is, subroutinesand functions), one can have
automatic arrays(or other automatic data objects) that come into existence each
time the subprogram is entered, and disappear (returning their memory to the pool)
when the subprogram is exited. The size of automatic objects can be specified
by arbitrary expressions involving values passed as actual argumentsin the calling
program, and thus received by the subprogram through its corresponding dummy
arguments. [M&R, §6.4]

Here is an example that creates some automatic workspace named carr:

SUBROUTINE dosomething(j,k)
USE nrtype
REAL(SP), DIMENSION(2*j,k**2) :: carr

Finer control on when workspace is created or destroyed can be achieved by
declaring allocatable arrays, which exist as names only, without associated memory,
until they are allocatedwithin the program or subprogram. When no longer needed,
they can be deallocated. The allocation statusof an allocatable array can be tested
by the program via the allocated intrinsic function (p. 952). [M&R, §6.5]

Here is an example in outline:

REAL(SP), DIMENSION(:,:), ALLOCATABLE :: darr
...
allocate(darr(10,20))
...
deallocate(darr)
...
allocate(darr(100,200))
...
deallocate(darr)

Notice that darr is originally declared with only “slots” (colons) for its dimensions,
and is then allocated/deallocated twice, with different sizes.

Yet finer control is achieved by the use of pointers. Like an allocatable array,
a pointer can be allocated, at will, its own associated memory. However, it has
the additional flexibility of alternatively being pointer associatedwith a target that

21.2 Fortran 90 Language Concepts 939

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

already exists under another name. Thus, pointers can be used as redefinable aliases
for other variables, arrays, or (see §21.3) array sections. [M&R, §6.12]

Here is an example that first associates the pointer parr with the array earr,
then later cancels that association and allocates it its own storage of size 50:

REAL(SP), DIMENSION(:), POINTER :: parr
REAL(SP), DIMENSION(100), TARGET :: earr
...
parr => earr
...
nullify(parr)
allocate(parr(50))
...
deallocate(parr)

Procedure Interfaces

When a procedure is referenced(e.g., called) from within a program or
subprogram (examples of scoping units), the scoping unit must be told, or must
deduce, the procedure’s interface, that is, its calling sequence, including the types
and kinds of all dummy arguments, returned values, etc. The recommended
procedure is to specify this interface via an explicit interface, usually an interface
block(essentially a declaration statement for subprograms) in the calling subprogram
or in some modulethat the calling program includes via a USE statement. In this
book all interfaces are explicit, and the module named nr contains interface blocks
for all of the Numerical Recipes routines. [M&R, §5.11]

Here is a typical example of an interface block:

INTERFACE
SUBROUTINE caldat(julian,mm,id,iyyy)
USE nrtype
INTEGER(I4B), INTENT(IN) :: julian
INTEGER(I4B), INTENT(OUT) :: mm,id,iyyy
END SUBROUTINE caldat

END INTERFACE

Once this interface is made known to a program that you are writing (by either
explicit inclusion or a USE statement), then the compiler is able to flag for you a
variety of otherwise difficult-to-find bugs. Although interface blocks can sometimes
seem overly wordy, they give a big payoff in ultimately minimizing programmer
time and frustration.

For compatibility with Fortran 77, the language also allows for implicit inter-
faces, where the calling program tries to figure out the interface by the old rules of
Fortran 77. These rules are quite limited, and prone to producing devilishly obscure
program bugs. We strongly recommend that implicit interfaces never be used.

Elemental Procedures and Generic Interfaces

Many intrinsic procedures(those defined by the language standard and thus
usable without any further definition or specification) are also generic. This means
that a single procedure name, such as log(x), can be used with a variety of types
and kind parameters for the argument x, and the result returned will have the same
type and kind parameter as the argument. In this example, log(x) allows any real
or complex argument type.

940 Chapter 21. Introduction to Fortran 90 Language Features

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

Better yet, most generic functions are also elemental. The argument of an
elemental function can be an array of arbitrary shape! Then, the returned result is
an array of the same shape, with each element containing the result of applying the
function to the corresponding element of the argument. (Hence the name elemental,
meaning “applied element by element.”) [M&R, §8.1] For example:

REAL(SP), DIMENSION(100,100) :: a,b
b=sin(a)

Fortran 90 has no facility for creating new, user-defined elemental functions.
It does have, however, the related facility of overloadingby the use of generic
interfaces. This is invoked by the use of an interface block that attaches a single
generic nameto a number of distinct subprograms whose dummy arguments have
different types or kinds. Then, when the generic name is referenced (e.g., called),
the compiler chooses the specific subprogram that matches the types and kinds of the
actual arguments used. [M&R, §5.18] Here is an example of a generic interface block:

INTERFACE myfunc
FUNCTION myfunc_single(x)
USE nrtype
REAL(SP) :: x,myfunc_single
END FUNCTION myfunc_single

FUNCTION myfunc_double(x)
USE nrtype
REAL(DP) :: x,myfunc_double
END FUNCTION myfunc_double

END INTERFACE

A program with knowledge of this interface could then freely use the function
reference myfunc(x) for x’s of both type SP and type DP.

We use overloading quite extensively in this book. A typical use is to provide,
under the same name, both scalar and vector versions of a function such as a
Bessel function, or to provide both single-precision and double-precision versions
of procedures (as in the above example). Then, to the extent that we have provided
all the versions that you need, you can pretend that our routine is elemental. In
such a situation, if you ever call our function with a type or kind that we have
not provided, the compiler will instantly flag the problem, because it is unable to
resolve the generic interface.

Modules

Modules, already referred to several times above, are Fortran 90’s generalization
of Fortran 77’s common blocks, INCLUDEd files of parameter statements, and (to
some extent) statement functions. Modules are program units, like main programs or
subprograms (subroutines and functions), that can be separately compiled. A module
is a convenient place to stash global data, named constants(what in Fortran 77
are called “symbolic constants” or “PARAMETERs”), interface blocks to subprograms
and/or actual subprograms themselves (module subprograms). The convenience is
that a module’s information can be incorporated into another program unit via a
simple, one-line USE statement. [M&R, §5.5]

Here is an example of a simple module that defines a few parameters, creates
some global storage for an array named arr (as might be done with a Fortran 77
common block), and defines the interface to a function yourfunc:

21.3 More on Arrays and Array Sections 941

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

MODULE mymodule
USE nrtype
REAL(SP), PARAMETER :: con1=7.0_sp/3.0_sp,con2=10.0_sp
INTEGER(I4B), PARAMETER :: ndim=10,mdim=9
REAL(SP), DIMENSION(ndim,mdim) :: arr
INTERFACE

FUNCTION yourfunc(x)
USE nrtype
REAL(SP) :: x,yourfunc
END FUNCTION yourfunc

END INTERFACE
END MODULE mymodule

As mentioned earlier, the module nr contains INTERFACE declarations for all
the Numerical Recipes. When we include a statement of the form

USE nr, ONLY: recipe1

it means that the program uses the additional routine recipe1. The compiler is
able to use the explicit interface declaration in the module to check that recipe1 is
invoked with arguments of the correct type, shape, and number. However, a weakness
of Fortran 90 is that there is no fail-safe way to be sure that the interface module
(here nr) stays synchronized with the underlying routine (here recipe1). You might
think that you could accomplish this by putting USE nr, ONLY: recipe1 into the
recipe1 program itself. Unfortunately, the compiler interprets this as an erroneous
double definition of recipe1’s interface, rather than (as would be desirable) as an
opportunity for a consistency check. (To achieve this kind of consistency check, you
can put the procedures themselves, not just their interfaces, into the module.)

CITED REFERENCES AND FURTHER READING:

Metcalf, M., and Reid, J. 1996, Fortran 90/95 Explained (Oxford: Oxford University Press).

21.3 More on Arrays and Array Sections

Arrays are the central conceptual core of Fortran 90 as a parallel programming
language, and thus worthy of some further discussion. We have already seen that
arrays can “come into existence” in Fortran 90 in several ways, either directly
declared, as

REAL(SP), DIMENSION(100,200) :: arr

or else allocated by an allocatablevariable or a pointer variable,

REAL(SP), DIMENSION(:,:), ALLOCATABLE :: arr
REAL(SP), DIMENSION(:,:), POINTER :: barr
...
allocate(arr(100,200),barr(100,200))

or else (not previously mentioned) passed into a subprogram through a dummy
argument:

SUBROUTINE myroutine(carr)
USE nrtype
REAL(SP), DIMENSION(:,:) :: carr
...
i=size(carr,1)

942 Chapter 21. Introduction to Fortran 90 Language Features

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

j=size(carr,2)

In the above example we also show how the subprogram can find out the size of
the actual array that is passed, using the size intrinsic. This routine is an example
of the use of an assumed-shape array, new to Fortran 90. The actual extents along
each dimension are inherited from the calling routine at run time. A subroutine
with assumed-shape array arguments musthave an explicit interface in the calling
routine, otherwise the compiler doesn’t know about the extra information that must
be passed. A typical setup for calling myroutine would be:

PROGRAM use_myroutine
USE nrtype
REAL(SP), DIMENSION(10,10) :: arr
INTERFACE

SUBROUTINE myroutine(carr)
USE nrtype
REAL(SP), DIMENSION(:,:) :: carr
END SUBROUTINE myroutine

END INTERFACE
...
call myroutine(a)

Of course, for the recipes we have provided all the interface blocks in the file nr.f90,
and you need only a USE nr statement in your calling program.

Conformable Arrays

Two arrays are said to be conformableif their shapes are the same. Fortran 90
allows practically all operations among conformable arrays and elemental functions
that are allowed for scalar variables. Thus, if arr, barr, and carr are mutually
conformable, we can write,

arr=barr+cos(carr)+2.0_sp

and have the indicated operations performed, element by corresponding element,
on the entire arrays. The above line also illustrates that a scalar (here the constant
2.0 sp, but a scalar variable would also be fine) is deemed conformable with any
array — it gets “expanded” to the shape of the rest of the expression that it is
in. [M&R, §3.11]

In Fortran 90, as in Fortran 77, the default lower bound for an array subscript is
1; however, it can be made some other value at the time that the array is declared:

REAL(SP), DIMENSION(100,200) :: farr
REAL(SP), DIMENSION(0:99,0:199) :: garr
...
farr = 3.0_sp*garr + 1.0_sp

Notice that farr and garr are conformable, since they have the same shape, in
this case (100, 200). Also note that when they are used in an array expression,
the operations are taken between the corresponding elements of their shapes, not
necessarily the corresponding elements of their indices. [M&R, §3.10] In other
words, one of the components evaluated is,

farr(1,1) = 3.0_sp*garr(0,0) + 1.0_sp

This illustrates a fundamental aspect of array (or data) parallelism in Fortran 90.
Array constructions should not be thought of as merely abbreviations for do-loops

21.3 More on Arrays and Array Sections 943

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

over indices, but rather as genuinely parallel operations on same-shaped objects,
abstracted of their indices. This is why the standard makes no statement about the
order in which the individual operations in an array expression are executed; they
might in fact be carried out simultaneously, on parallel hardware.

By default, array expressions and assignments are performed for all elements
of the same-shaped arrays referenced. This can be modified, however, by use of
a where construction like this:

where (harr > 0.0_sp)
farr = 3.0_sp*garr + 1.0_sp

end where

Here harrmust also be conformable tofarrand garr. Analogously with the Fortran
if-statement, there is also a one-line form of the where-statement. There is also
a where ... elsewhere ... end where form of the statement, analogous to
if ... else if ... end if. A significant language limitation in Fortran 90
is that nested where-statements are not allowed. [M&R, §6.8]

Array Sections

Much of the versatility of Fortran 90’s array facilities stems from the availability
of array sections. An array section acts like an array, but its memory location, and
thus the values of its elements, is actually a subset of the memory location of an
already-declared array. Array sections are thus “windows into arrays,” and they can
appear on either the left side, or the right side, or both, of a replacement statement.
Some examples will clarify these ideas.

Let us presume the declarations

REAL(SP), DIMENSION(100) :: arr
INTEGER(I4B), DIMENSION(6) :: iarr=(/11,22,33,44,55,66/)

Note that iarr is not only declared, it is also initialized by an initialization expression
(a replacement for Fortran 77’s DATA statement). [M&R, §7.5] Here are some array
sections constructed from these arrays:

Array Section What It Means

arr(:) same as arr

arr(1:100) same as arr

arr(1:10) one-dimensional array containing first
10 elements of arr

arr(51:100) one-dimensional array containing sec-
ond half of arr

arr(51:) same as arr(51:100)

arr(10:1:-1) one-dimensional array containing first
10 elements of arr, but in reverse order

arr((/10,99,1,6/)) one-dimensional array containing ele-
ments 10, 99, 1, and 6 of arr, in that
order

arr(iarr) one-dimensional array containing ele-
ments 11, 22, 33, 44, 55, 66 of arr, in
that order

944 Chapter 21. Introduction to Fortran 90 Language Features

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

Now let’s try some array sections of the two-dimensional array

REAL(SP), DIMENSION(100,100) :: barr

Array Section What It Means

barr(:,:) same as barr

barr(1:100,1:100) same as barr

barr(7,:) one-dimensional array containing the
7th row of barr

barr(7,1:100) same as barr(7,:)

barr(:,7) one-dimensional array containing the
7th column of barr

barr(21:30,71:90) two-dimensional array containing the
sub-block of barr with the indicated
ranges of indices; the shape of this
array section is (10, 20)

barr(100:1:-1,100:1:-1) two-dimensional array formed by flip-
ping barr upside down and backwards

barr(2:100:2,2:100:2) two-dimensional array of shape (50, 50)
containing the elements of barr whose
row and column indices are both even

Some terminology: A construction like 2:100:2, above, is called a subscript
triplet. Its integer pieces (which may be integer constants, or more general integer
expressions) are called lower, upper, and stride. Any of the three may be omitted.
An omitted stride defaults to the value 1. Notice that, if (upper− lower) has a
different sign from stride, then a subscript triplet defines an empty or zero-length
array, e.g., 1:5:-1 or 10:1:1 (or its equivalent form, simply 10:1). Zero-length
arrays are not treated as errors in Fortran 90, but rather as “no-ops.” That is, no
operation is performed in an expression or replacement statement among zero-length
arrays. (This is essentially the same convention as in Fortran 77 for do-loop indices,
which array expressions often replace.) [M&R, §6.10]

It is important to understand that array sections, when used in array expressions,
match elements with other parts of the expression according to shape, not according
to indices. (This is exactly the same principle that we applied, above, to arrays
with subscript lower bounds different from the default value of 1.) One frequently
exploits this feature in using array sections to carry out operations on arrays that
access neighboring elements. For example,

carr(1:n-1,1:n-1) = barr(1:n-1,1:n-1)+barr(2:n,2:n)

constructs in the (n−1)× (n−1) matrix carr the sum of each of the corresponding
elements in n × n barr added to its diagonally lower-right neighbor.

Pointers are often used as aliases for array sections, especially if the same array
sections are used repeatedly. [M&R, §6.12] For example, with the setup

REAL(SP), DIMENSION(:,:), POINTER :: leftb,rightb

21.4 Fortran 90 Intrinsic Procedures 945

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

leftb=>barr(1:n-1,1:n-1)
rightb=>barr(2:n,2:n)

the statement above can be coded as

carr(1:n-1,1:n-1)=leftb+rightb

We should also mention that array sections, while powerful and concise, are
sometimes not quite powerful enough. While any row or column of a matrix is easily
accessible as an array section, there is no good way, in Fortran 90, to access (e.g.)
the diagonal of a matrix, even though its elements are related by a linear progression
in the Fortran storage order (by columns). These so-called skew-sectionswere much
discussed by the Fortran 90 standards committee, but they were not implemented.
We will see examples later in this volume of work-around programming tricks (none
totally satisfactory) for this omission. (Fortran 95 corrects the omission; see §21.6.)

CITED REFERENCES AND FURTHER READING:

Metcalf, M., and Reid, J. 1996, Fortran 90/95 Explained (Oxford: Oxford University Press).

21.4 Fortran 90 Intrinsic Procedures

Much of Fortran 90’s power, both for parallel programming and for its concise
expression of algorithmic ideas, comes from its rich set of intrinsic procedures. These
have the effect of making the language “large,” hence harder to learn. However, effort
spent on learning to use the intrinsics — particularly some of their more obscure,
and more powerful, optional arguments — is often handsomely repaid.

This section summarizes the intrinsics that we find useful in numerical work.
We omit, here, discussion of intrinsics whose exclusive use is for character and string
manipulation. We intend only a summary, not a complete specification, which can
be found in M&R’s Chapter 8, or other reference books.

If you find the sheer number of new intrinsic procedures daunting, you might
want to start with our list of the “top 10” (with the number of different Numerical
Recipes routines that use each shown in parentheses): size (254), sum (44),
dot product (31), merge (27), all (25), maxval (23), matmul (19), pack (18),
any (17), and spread (15). (Later, in Chapter 23, you can compare these numbers
with our frequency of using the short utility functions that we define in a module
named nrutil — several of which we think ought to have been included as Fortran
90 intrinsic procedures.)

The type, kind, and shape of the value returned by intrinsic functions will
usually be clear from the short description that we give. As an additional hint
(though not necessarily a precise description), we adopt the following codes:

946 Chapter 21. Introduction to Fortran 90 Language Features

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

Hint What It Means

[Int] an INTEGER kind type

[Real] a REAL kind type

[Cmplx] a COMPLEX kind type

[Num] a numerical type and kind

[Lgcl] a LOGICAL kind type

[Iarr] a one-dimensional INTEGER array

[argTS] same type and shape as the first
argument

[argT] same type as the first argument, but
not necessarily the same shape

Numerical Elemental Functions

Little needs to be said about the numerical functions with identical counterparts
in Fortran 77: abs, acos, aimag, asin, atan, atan2, conjg, cos, cosh, dim, exp,
log, log10, max, min, mod, sign, sin, sinh, sqrt, tan, and tanh. In Fortran
90 these are all elementalfunctions, so that any plausible type, kind, and shape of
argument may be used. Except for aimag, which returns a real type from a complex
argument, these all return [argTS] (see table above).

Although Fortran 90 recognizes, for compatibility, Fortran 77’s so-called specific
namesfor these functions (e.g., iabs, dabs, and cabs for the generic abs), these
are entirely superfluous and should be avoided.

Fortran 90 corrects some ambiguity (or at least inconvenience) in Fortran 77’s
mod(a,p) function, by introducing a new function modulo(a,p). The functions
are essentially identical for positive arguments, but for negative a and positive p,
modulo gives results more compatible with one’s mathematical expectation that the
answer should always be in the positive range 0 to p. E.g., modulo(11,5)=1, and
modulo(-11,5)=4. [M&R, §8.3.2]

Conversion and Truncation Elemental Functions

Fortran 90’s conversion (or, in the language of C, casting) and truncation
functions are generally modeled on their Fortran 77 antecedents, but with the
addition of an optional second integer argument, kind, that determines the kind of
the result. Note that, if kind is omitted, you get a default kind — not necessarily
related to the kind of your argument. The kind of the argument is of course known
to the compiler by its previous declaration. Functions in this category (see below for
explanation of arguments in slanted type) are:

[Real] aint(a,kind)
Truncate to integer value, return as a real kind.

[Real] anint(a,kind)
Nearest whole number, return as a real kind.

[Cmplx] cmplx(x,y,kind)

21.4 Fortran 90 Intrinsic Procedures 947

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

Convert to complex kind. If y is omitted, it is taken to be 0.

[Int] int(a,kind)
Convert to integer kind, truncating towards zero.

[Int] nint(a,kind)
Convert to integer kind, choosing the nearest whole number.

[Real] real(a,kind)
Convert to real kind.

[Lgcl] logical(a,kind)
Convert one logical kind to another.

We must digress here to explain the use of optional argumentsand keywords
as Fortran 90 language features. [M&R, §5.13] When a routine (either intrinsic
or user-defined) has arguments that are declared to be optional, then the dummy
names given to them also become keywords that distinguish — independent of their
position in a calling list — which argument is intended to be passed. (There are some
additional rules about this that we will not try to summarize here.) In this section’s
tabular listings, we indicate optional arguments in intrinsic routines by printing them
in smaller slanted type. For example, the intrinsic function

eoshift(array,shift,boundary,dim)
has two required arguments, array and shift, and two optional arguments,
boundary and dim. Suppose we want to call this routine with the actual arguments
myarray, myshift, and mydim, but omitting the argument in the boundary slot.
We do this by the expression

eoshift(myarray,myshift,dim=mydim)
Conversely, if we wanted a boundary argument, but no dim, we might write

eoshift(myarray,myshift,boundary=myboundary)
It is always a good idea to use this kind of keyword construction when invoking
optional arguments, even though the rules allow keywords to be omitted in some
unambiguous cases. Now back to the lists of intrinsic routines.

A peculiarity of the real function derives from its use both as a type conversion
and for extracting the real part of complex numbers (related, but not identical,
usages): If the argument of real is complex, and kind is omitted, then the result
isn’t a default real kind, but rather is (as one generally would want) the real kind
type corresponding to the kind type of the complex argument, that is, single-precision
real for single-precision complex, double-precision for double-precision, and so on.
[M&R, §8.3.1] We recommend neverusing kind when you intend to extract the
real part of a complex, and alwaysusing kind when you intend conversion of a
real or integer value to a particular kind of REAL. (Use of the deprecated function
dble is not recommended.)

The last two conversion functions are the exception in that they don’t allow
a kind argument, but rather return default integer kinds. (The X3J3 standards
committee has fixed this in Fortran 95.)

[Int] ceiling(a)
Convert to integer, truncating towards more positive.

948 Chapter 21. Introduction to Fortran 90 Language Features

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

[Int] floor(a)
Convert to integer, truncating towards more negative.

Reduction and Inquiry Functions on Arrays

These are mostly the so-called transformational functionsthat accept array
arguments and return either scalar values or else arrays of lesser rank. [M&R, §8.11]
With no optional arguments, such functions act on all the elements of their single
array argument, regardless of its shape, and produce a scalar result. When the optional
argument dim is specified, they instead act on all one-dimensional sections that span
the dimension dim, producing an answer one rank lower than the first argument (that
is, omitting the dim dimension from its shape). When the optional argument mask is
specified, only the elements with a corresponding true value in mask are scanned.

[Lgcl] all(mask,dim)
Returns true if all elements of mask are true, false otherwise.

[Lgcl] any(mask,dim)
Returns true if any of the elements of mask are true, false otherwise.

[Int] count(mask,dim)
Counts the true elements in mask.

[Num] maxval(array,dim,mask)
Maximum value of the array elements.

[Num] minval(array,dim,mask)
Minimum value of the array elements.

[Num] product(array,dim,mask)
Product of the array elements.

[Int] size(array,dim)
Size (total number of elements) of array, or its extent along dimension
dim.

[Num] sum(array,dim,mask)
Sum of the array elements.

The use of the dim argument can be confusing, so an example may be helpful.
Suppose we have

myarray =




1 2 3 4
5 6 7 8
9 10 11 12




where, as always, the i index in array(i,j) numbers the rows while the j index
numbers the columns. Then

sum(myarray,dim=1)= (15, 18, 21, 24)

that is, the i indices are “summed away” leaving only a j index on the result; while

sum(myarray,dim=2)= (10, 26, 42)

21.4 Fortran 90 Intrinsic Procedures 949

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

that is, the j indices are “summed away” leaving only an i index on the result.
Of course we also have

sum(myarray) = 78

Two related functions return the location of particular elements in an array. The
returned value is a one-dimensional integer array containing the respective subscript
of the element along each dimension. Note that when the argument object is a
one-dimensional array, the returned object is an integer array of length 1, not simply
an integer. (Fortran 90 distinguishes between these.)

[Iarr] maxloc(array,mask)
Location of the maximum value in an array.

[Iarr] minloc(array,mask)
Location of the minimum value in an array.

Similarly returning a one-dimensional integer array are

[Iarr] shape(array)
Returns the shape of array as a one-dimensional integer array.

[Iarr] lbound(array,dim)
When dim is absent, returns an array of lower bounds for each
dimension of subscripts of array. When dim is present, returns the
value only for dimension dim, as a scalar.

[Iarr] ubound(array,dim)
When dim is absent, returns an array of upper bounds for each
dimension of subscripts of array. When dim is present, returns the
value only for dimension dim, as a scalar.

Array Unary and Binary Functions

The most powerful array operations are simply built into the language as
operators. All the usual arithmetic and logical operators (+, -, *, /, **, .not.,
.and., .or., .eqv., .neqv.) can be applied to arrays of arbitrary shape or (for
the binary operators) between two arrays of the same shape, or between arrays and
scalars. The types of the arrays must, of course, be appropriate to the operator used.
The result in all cases is to perform the operation element by element on the arrays.

We also have the intrinsic functions,

[Num] dot product(veca,vecb)
Scalar dot product of two one-dimensional vectors veca and vecb.

[Num] matmul(mata,matb)
Result of matrix-multiplying the two two-dimensional matrices mata
and matb. The shapes have to be such as to allow matrix multiplication.
Vectors (one-dimensional arrays) are additionally allowed as either the
first or second argument, but not both; they are treated as row vectors
in the first argument, and as column vectors in the second.

You might wonder how to form the outerproduct of two vectors, since matmul
specifically excludes this case. (See §22.1 and §23.5 for answer.)

950 Chapter 21. Introduction to Fortran 90 Language Features

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

Array Manipulation Functions

These include many powerful features that a good Fortran 90 programmer
should master.

[argTS] cshift(array,shift,dim)
If dim is omitted, it is taken to be 1. Returns the result of circularly
left-shifting every one-dimensional section of array (in dimension
dim) by shift (which may be negative). That is, for positive shift,
values are moved to smaller subscript positions. Consult a Fortran 90
reference (e.g., [M&R, §8.13.5]) for the case where shift is an array.

[argTS] merge(tsource,fsource,mask)
Returns same shape object as tsource and fsource containing the
former’s components where mask is true, the latter’s where it is false.

[argTS] eoshift(array,shift,boundary,dim)
If dim is omitted, it is taken to be 1. Returns the result of end-off left-
shifting every one-dimensional section of array (in dimension dim)
by shift (which may be negative). That is, for positive shift, values
are moved to smaller subscript positions. If boundary is present as a
scalar, it supplies elements to fill in the blanks; if it is not present, zero
values are used. Consult a Fortran 90 reference (e.g., [M&R, §8.13.5])
for the case where boundary and/or shift is an array.

[argT] pack(array,mask,vector)
Returns a one-dimensional array containing the elements of array
that pass the mask. Components of optional vector are used to pad
out the result to the size of vector with specified values.

[argT] reshape(source,shape,pad,order)
Takes the elements of source, in normal Fortran order, and returns
them (as many as will fit) as an array whose shape is specified by
the one-dimensional integer array shape. If there is space remaining,
then pad must be specified, and is used (as many sequential copies
as necessary) to fill out the rest. For description of order, consult a
Fortran 90 reference, e.g., [M&R, 8.13.3].

[argT] spread(source,dim,ncopies)
Returns an array whose rank is one greater than source, and whose
dim dimension is of length ncopies. Each of the result’s ncopies
array sections having a fixed subscript in dimension dim is a copy of
source. (That is, it spreads source into the dimth dimension.)

[argT] transpose(matrix)
Returns the transpose of matrix, which must be two-dimensional.

[argT] unpack(vector,mask,field)
Returns an array whose type is that of vector, but whose shape is
that of mask. The components of vector are put, in order, into the
positions where mask is true. Where mask is false, components of
field (which may be a scalar or an array with the same shape as
mask) are used instead.

21.4 Fortran 90 Intrinsic Procedures 951

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

Bitwise Functions

Most of the bitwise functions should be familiar to Fortran 77 programmers
as longstanding standard extensions of that language. Note that the bit positions
number from zero to one less than the value returned by the bit size function.
Also note that bit positions number from right to left. Except for bit size, the
following functions are all elemental.

[Int] bit size(i)
Number of bits in the integer type of i.

[Lgcl] btest(i,pos)
True if bit position pos is 1, false otherwise.

[Int] iand(i,j)
Bitwise logical and.

[Int] ibclr(i,pos)
Returns i but with bit position pos set to zero.

[Int] ibits(i,pos,len)
Extracts len consecutive bits starting at position pos and puts them
in the low bit positions of the returned value. (The high positions
are zero.)

[Int] ibset(i,pos)
Returns i but with bit position pos set to 1.

[Int] ieor(i,j)
Bitwise exclusive or.

[Int] ior(i,j)
Bitwise logical or.

[Int] ishft(i,shift)
Bitwise left shift by shift (which may be negative) with zeros shifted
in from the other end.

[Int] ishftc(i,shift)
Bitwise circularly left shift by shift (which may be negative).

[Int] not(i)
Bitwise logical complement.

Some Functions Relating to Numerical Representations

[Real] epsilon(x)
Smallest nonnegligible quantity relative to 1 in the numerical model
of x.

[Num] huge(x)
Largest representable number in the numerical model of x.

[Int] kind(x)

952 Chapter 21. Introduction to Fortran 90 Language Features

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

Returns the kind value for the numerical model of x.

[Real] nearest(x,s)
Real number nearest to x in the direction specified by the sign of s.

[Real] tiny(x)
Smallest positive number in the numerical model of x.

Other Intrinsic Procedures

[Lgcl] present(a)
True, within a subprogram, if an optional argument is actually present,
otherwise false.

[Lgcl] associated(pointer,target)
True if pointer is associated with target or (if target is absent)
with any target, otherwise false.

[Lgcl] allocated(array)
True if the allocatable array is allocated, otherwise false.

There are some pitfalls in using associated and allocated, having to do
with arrays and pointers that can find themselves in undefinedstatus [see §21.5,
and also M&R, §3.3 and §6.5.1]. For example, pointers are always “born” in an
undefined status, where the associated function returns unpredictable values.

For completeness, here is a list of Fortran 90’s intrinsic procedures not already
mentioned:

Other Numerical Representation Functions: digits, exponent, fraction,
rrspacing, scale, set exponent, spacing, maxexponent, minexponent,
precision, radix, range, selected int kind, selected real kind.

Lexical comparison: lge, lgt, lle, llt.
Character functions: ichar, char, achar, iachar, index, adjustl,

adjustr, len trim, repeat, scan, trim, verify.
Other: mvbits, transfer, date and time, system clock, random seed,

random number. (We will discuss random numbers in some detail in Chapter B7.)

CITED REFERENCES AND FURTHER READING:

Metcalf, M., and Reid, J. 1996, Fortran 90/95 Explained (Oxford: Oxford University Press).

21.5 Advanced Fortran 90 Topics 953

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

21.5 Advanced Fortran 90 Topics

Pointers, Arrays, and Memory Management

One of the biggest improvements in Fortran 90 over Fortran 77 is in the handling
of arrays, which are the cornerstone of many numerical algorithms. In this subsection
we will take a closer look at how to use some of these new array features effectively.
We will look at how to code certain commonly occurring elements of program
design, and we will pay particular attention to avoiding “memory leaks,” where —
usually inadvertently — we keep cumulatively allocating new storage for an array,
every time some piece of code is invoked.

Let’s first review some of the rules for using allocatable arrays and pointers to
arrays. Recall that a pointer is born with an undefined status. Its status changes
to “associated” when you make it refer to a target, and to “disassociated” when
you nullify the pointer. [M&R, §3.3] You can also use nullify on a newly
born pointer to change its status from undefined to disassociated; this allows you to
test the status with the associated inquiry function. [M&R, §6.5.4] (While many
compilers will not produce a run-time error if you test an undefined pointer with
associated, you can’t rely on this laissez-fairein your programming.)

The initial status of an allocatable array is “not currently allocated.” Its status
changes to “allocated” when you give it storage with allocate, and back to “not
currently allocated” when you use deallocate. [M&R, §6.5.1] You can test the
status with the allocated inquiry function. Note that while you can also give a
pointer fresh storage with allocate, you can’t test this with allocated — only
associated is allowed with pointers. Note also that nullifying an allocated pointer
leaves its associated storage in limbo. You must instead deallocate, which gives
the pointer a testable “disassociated” status.

While allocating an array that is already allocated gives an error, you are allowed
to allocate a pointer that already has a target. This breaks the old association, and
could leave the old target inaccessible if there is no other pointer associated with
it. [M&R, §6.5.2] Deallocating an array or pointer that has not been allocated is
always an error.

Allocated arrays that are local to a subprogram acquire the “undefined” status
on exit from the subprogram unless they have the SAVE attribute. (Again, not all
compilers enforce this, but be warned!) Such undefined arrays cannot be referenced
in any way, so you should explicitly deallocate all allocated arrays that are not
saved before returning from a subprogram. [M&R, §6.5.1] The same rule applies
to arrays declared in modules that are currently accessed only by the subprogram.
While you can reference undefined pointers (e.g., by first nullifying them), it is good
programming practice to deallocate explicitly any allocated pointers declared locally
before leaving a subprogram or module.

Now let’s turn to using these features in programs. The simplest example is
when we want to implement global storage of an array that needs to be accessed by
two or more different routines, and we want the size of the array to be determined
at run time. As mentioned earlier, we implement global storage with a MODULE
rather than a COMMON block. (We ignore here the additional possibility of passing

954 Chapter 21. Introduction to Fortran 90 Language Features

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

global variables by having one routine CONTAINed within the other.) There are
two good ways of handling the dynamical allocation in a MODULE. Method 1 uses
an allocatable array:

MODULE a
REAL(SP), DIMENSION(:), ALLOCATABLE :: x
END MODULE a

SUBROUTINE b(y)
USE a
REAL(SP), DIMENSION(:) :: y
...
allocate(x(size(y)))
... [other routines usingx called here] ...
END SUBROUTINE b

Here the global variable x gets assigned storage in subroutine b (in this case,
the same as the length of y). The length of y is of course defined in the procedure
that calls b. The array x is made available to any other subroutine called by b by
including a USE a statement. The status of x can be checked with an allocated
inquiry function on entry into either b or the other subroutine if necessary. As
discussed above, you must be sure to deallocate x before returning from subroutine
b. If you want x to retain its values between calls to b, you add the SAVE attribute
to its declaration in a, and don’t deallocate it on returning from b. (Alternatively,
you could put a USE a in your main program, but we consider that bug-prone, since
forgetting to do so can create all manner of difficult-to-diagnose havoc.) To avoid
allocating x more than once, you test it on entry into b:

if (.not. allocated(x)) allocate(x(size(y)))

The second way to implement this type of global storage (Method 2) uses
a pointer:

MODULE a
REAL(SP), DIMENSION(:), POINTER :: x
END MODULE a

SUBROUTINE b(y)
USE a
REAL(SP), DIMENSION(:) :: y
REAL(SP), DIMENSION(size(y)), TARGET :: xx
...
x=>xx
... [other routines usingx called here] ...
END SUBROUTINE b

Here the automatic arrayxx gets its temporary storage automatically on entry
into b, and automatically gets deallocated on exit from b. [M&R, §6.4] The global
pointer x can access this storage in any routine with a USE a that is called by b.
You can check that things are in order in such a called routine by testing x with
associated. If you are going to use x for some other purpose as well, you should
nullify it on leaving b so that it doesn’t have undefined status. Note that this
implementation does not allow values to be saved between calls: You can’t SAVE
automatic arrays — that’s not what they’re for. You would have to SAVE x in
the module, and allocate it in the subroutine instead of pointing it to a suitable
automatic array. But this is essentially Method 1 with the added complication of using
a pointer, so Method 1 is simpler when you want to save values. When you don’t

21.5 Advanced Fortran 90 Topics 955

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

need to save values between calls, we lean towards Method 2 over Method 1 because
we like the automatic allocation and deallocation, but either method works fine.

An example of Method 1 (allocatable array) is in routine rkdumb on page 1297.
An example of Method 1 with SAVE is in routine pwtset on p. 1265. Method
2 (pointer) shows up in routines newt (p. 1196), broydn (p. 1199), and fitexy
(p. 1286). A variation is shown in routines linmin (p. 1211) and dlinmin (p. 1212):
When the array that needs to be shared is an argument of one of the routines,
Method 2 is better.

An extension of these ideas occurs if we allocate some storage for an array
initially, but then might need to increase the size of the array later without losing
the already-stored values. The function reallocate in our utility module nrutil
will handle this for you, but it expects a pointer argument as in Method 2. Since
no automatic arrays are used, you are free to SAVE the pointer if necessary. Here
is a simple example of how to use reallocate to create a workspace array that
is local to a subroutine:

SUBROUTINE a
USE nrutil, ONLY : reallocate
REAL(SP), DIMENSION(:), POINTER, SAVE :: wksp
LOGICAL(LGT), SAVE :: init=.true.
if (init) then

init=.false.
nullify(wksp)
wksp=>reallocate(wksp,100)

end if
...
if (nterm > size(wksp)) wksp=>reallocate(wksp,2*size(wksp))
...
END SUBROUTINE a

Here the workspace is initially allocated a size of 100. If the number of elements
used (nterm) ever exceeds the size of the workspace, the workspace is doubled. (In
a realistic example, one would of course check that the doubled size is in fact big
enough.) Fortran 90 experts can note that the SAVE on init is not strictly necessary:
Any local variable that is initialized is automatically saved. [M&R, §7.5]

You can find similar examples of reallocate (with some further discussion) in
eulsum (p. 1070), hufenc (p. 1348), and arcode (p. 1350). Examples of reallocate
used with global variables in modules are in odeint (p. 1300) and ran state
(p. 1144).

Another situation where we have to use pointers and not allocatable arrays
is when the storage is required for components of a derived type, which are not
allowed to have the allocatable attribute. Examples are in hufmak (p. 1346) and
arcmak (p. 1349).

Turning away from issues relating to global variables, we now consider several
other important programming situations that are nicely handled with pointers. The
first case is when we want a subroutine to return an array whose size is not known
in advance. Since dummy arguments are not allocatable, we must use a pointer.
Here is the basic construction:

SUBROUTINE a(x,nx)
REAL(SP), DIMENSION(:), POINTER :: x
INTEGER(I4B), INTENT(OUT) :: nx
LOGICAL(LGT), SAVE :: init=.true.
if (init) then

956 Chapter 21. Introduction to Fortran 90 Language Features

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

init=.false.
nullify(x)

else
if (associated(x)) deallocate(x)

end if
...
nx=...
allocate(x(nx))
x(1:nx)=...
END SUBROUTINE a

Since the length of x can be found from size(x), it is not absolutely necessary
to pass nx as an argument. Note the use of the initial logic to avoid memory
leaks. If a higher-level subroutine wants to recover the memory associated with x
from the last call to SUBROUTINE a, it can do so by first deallocating it, and then
nullifying the pointer. Examples of this structure are in zbrak (p. 1184), period
(p. 1258), and fasper (p. 1259). A related situation is where we want a function
to return an array whose size is not predetermined, such as in voltra on (p. 1326).
The discussion of voltra also explains the potential pitfalls of functions returning
pointers to dynamically allocated arrays.

A final useful pointer construction enables us to set up a data structure that is
essentially an array of arrays, independently allocatable on each part. We are not
allowed to declare an array of pointers in Fortran 90, but we can do this indirectly
by defining a derived type that consists of a pointer to the appropriate kind of array.
[M&R, §6.11] We can then define a variable that is an allocatable array of the new
type. For example,

TYPE ptr_to_arr
REAL(SP), DIMENSION(:), POINTER :: arr

END TYPE
TYPE(ptr_to_arr), DIMENSION(:), ALLOCATABLE :: x
...
allocate(x(n))
...
do i=1,n

allocate(x(i)%arr(m))
end do

sets up a set x of n arrays of length m. See also the example in mglin (p. 1334).
There is a potential problem with dynamical memory allocation that we should

mention. The Fortran 90 standard does not require that the compiler perform
“garbage collection,” that is, it is not required to recover deallocated memory into
nice contiguous pieces for reuse. If you enter and exit a subroutine many times,
and each time a large chunk of memory gets allocated and deallocated, you could
run out of memory with a “dumb” compiler. You can often alleviate the problem
by deallocating variables in the reverse order that you allocated them. This tends to
keep a large contiguous piece of memory free at the top of the heap.

Scope, Visibility, and Data Hiding

An important principle of good programming practice is modularization, the
idea that different parts of a program should be insulated from each other as much
as possible. An important subcase of modularization is data hiding, the principle
that actions carried out on variables in one part of the code should not be able to

21.5 Advanced Fortran 90 Topics 957

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

affect the values of variables in other parts of the code. When it is necessary for
one “island” of code to communicate with another, the communication should be
through a well-defined interface that makes it obvious exactly what communication
is taking place, and prevents any other interchange from occurring. Otherwise,
different sections of code should not have access to variables that they don’t need.

The concept of data hiding extends not only to variables, but also to the names
of procedures that manipulate the variables: A program for screen graphics might
give the user access to a routine for drawing a circle, but it might “hide” the
names (and methods of operation) of the primitive routines used for calculating
the coordinates of the points on the circumference. Besides producing code that
is easier to understand and to modify, data hiding prevents unintended side effects
from producing hard-to-find errors.

In Fortran, the principal language construction that effects data hiding is the
use of subroutines. If all subprograms were restricted to have no more than ten
executable statements per routine, and to communicate between routines only by
an explicit list of arguments, the number of programming errors might be greatly
reduced! Unfortunately few tasks can be easily coded in this style. For this and
other reasons, we think that too much procedurization is a bad thing; one wants
to find the right amount. Fortunately Fortran 90 provides several additional tools
to help with data hiding.

Global variables and routine names are important, but potentially dangerous,
things. In Fortran 90, global variables are typically encapsulated in modules. Access
is granted only to routines with an appropriate USE statement, and can be restricted
to specific identifiers by the ONLY option. [M&R, §7.10] In addition, variable and
routine names within the module can be designated as PUBLIC or PRIVATE (see,
e.g., quad3d on p. 1065). [M&R, §7.6]

The other way global variables get communicated is by having one routine
CONTAINed within another. [M&R, §5.6] This usage is potentially lethal, however,
because all the outer routine’s variables are visible to the inner routine. You can
try to control the problem somewhat by passing some variables back and forth as
arguments of the inner routine, but that still doesn’t prevent inadvertent side effects.
(The most common, and most stupid, is inadvertent reuse of variables named i or j
in the CONTAINed routine.) Also, a long list of arguments reduces the convenience
of using an internal routine in the first place. We advise that internal subprograms
be used with caution, and only to carry out simple tasks.

There are some good ways to use CONTAINS, however. Several of our recipes
have the following structure: A principal routine is invoked with several arguments.
It calls a subsidiary routine, which needs to know some of the principal routine’s
arguments, some global variables, and some values communicated directly as
arguments to the subsidiary routine. In Fortran 77, we have usually coded this by
passing the global variables in a COMMON block and all other variables as arguments
to the subsidiary routine. If necessary, we copied the arguments of the primary
routine before passing them to the subsidiary routine. In Fortran 90, there is a more
elegant way of accomplishing this, as follows:

SUBROUTINE recipe(arg)
REAL(SP) :: arg
REAL(SP) :: global_var
call recipe_private
CONTAINS

958 Chapter 21. Introduction to Fortran 90 Language Features

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

SUBROUTINE recipe_private
...
call subsidiary(local_arg)
...
END SUBROUTINE recipe_private

SUBROUTINE subsidiary(local_arg)
...
END SUBROUTINE subsidiary
END SUBROUTINE recipe

Notice that the principal routine (recipe) has practically nothing in it — only dec-
larations of variables intended to be visible to the subsidiary routine (subsidiary).
All the real work of recipe is done in recipe private. This latter routine
has visibility on all of recipe’s variables, while any additional variables that
recipe private defines are not visible to subsidiary — which is the whole
purpose of this way of organizing things. Obviously arg and global var can
be much more general data types than the example shown here, including function
names. For examples of this construction, see amoeba (p. 1208), amebsa (p. 1222),
mrqmin (p. 1292), and medfit (p. 1294).

Recursion

A subprogram is recursive if it calls itself. While forbidden in Fortran
77, recursion is allowed in Fortran 90. [M&R, §5.16–§5.17] You must supply the
keyword RECURSIVE in front of the FUNCTION or SUBROUTINEkeyword. In addition,
if a FUNCTION calls itself directly, as opposed to calling another subprogram that in
turn calls it, you must supply a variable to hold the result with the RESULT keyword.
Typical syntax for this case is:

RECURSIVE FUNCTION f(x) RESULT(g)
REAL(SP) :: x,g
if ...

g=...
else

g=f(...)
end if
END FUNCTION f

When a function calls itself directly, as in this example, there always has to be a
“base case” that does not call the function; otherwise the recursion never terminates.
We have indicated this schematically with the if...else...end if structure.

On serial machines we tend to avoid recursive implementations because of the
additional overhead they incur at execution time. Occasionally there are algorithms
for which the recursion overhead is relatively small, and the recursive implementation
is simpler than an iterative version. Examples in this book are quad 3d (p. 1065),
miser (p. 1164), and mglin (p. 1334). Recursion is much more important when
parallelization is the goal. We will encounter in Chapter 22 numerous examples of
algorithms that can be parallelized with recursion.

SAVE Usage Style

A quirk of Fortran 90 is that any variable with initial values acquires the
SAVE attribute automatically. [M&R, §7.5 and §7.9] As a help to understanding

21.6 And Coming Soon: Fortran 95 959

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

an algorithm, we have elected to put an explicit SAVE on all variables that really
do need to retain their values between calls to a routine. We do this even if it is
redundant because the variables are initialized. Note that we generally prefer to
assign initial values with initialization expressions rather than with DATA statements.
We reserve DATA statements for cases where it is convenient to use the repeat count
feature to set multiple occurrences of a value, or when binary, octal, or hexadecimal
constants are used. [M&R, §2.6.1]

Named Control Structures

Fortran 90 allows control structures such as do loops and if blocks to be
named. [M&R, §4.3–§4.5] Typical syntax is

name:do i=1,n
...

end do name

One use of naming control structures is to improve readability of the code,
especially when there are many levels of nested loops and if blocks. A more
important use is to allow exit and cycle statements, which normally refer to the
innermost do loop in which they are contained, to transfer execution to the end
of some outer loop. This is effected by adding the name of the outer loop to the
statement: exit name or cycle name.

There is great potential for misuse with named control structures, since they
share some features of the much-maligned goto. We recommend that you use them
sparingly. For a good example of their use, contrast the Fortran 77 version of simplx
with the Fortran 90 version on p. 1216.

CITED REFERENCES AND FURTHER READING:

Metcalf, M., and Reid, J. 1996, Fortran 90/95 Explained (Oxford: Oxford University Press).

21.6 And Coming Soon: Fortran 95

One of the more positive effects of Fortran 90’s long gestation period has been
the general recognition, both by the X3J3 committee and by the community at large,
that Fortran needs to evolve over time. Indeed, as we write, the process of bringing
forth a minor, but by no means insignificant, updating of Fortran 90 — named
Fortran 95 — is well under way.

Fortran 95 will differ from Fortran 90 in about a dozen features, only a handful
of which are of any importance to this book. Generally these are extensions that
will make programming, especially parallel programming, easier. In this section we
give a summary of the anticipated language changes. In §22.1 and §22.5 we will
comment further on the implications of Fortran 95 to some parallel programming
tasks; in §23.7 we comment on what differences Fortran 95 will make to our nrutil
utility functions.

No programs in Chapters B1 through B20 of this book edition use any Fortran
95 extensions.

960 Chapter 21. Introduction to Fortran 90 Language Features

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

FORALL Statements and Blocks

Fortran 95 introduces a new forall control structure, somewhat akin to the
where construct, but allowing for greater flexibility. It is something like a do-loop,
but with the proviso that the indices looped over are allowed to be done in any order
(ideally, in parallel). The forall construction comes in both single-statement and
block variants. Instead of using the do-loop’s comma-separated triplets of lower-
value, upper-value, and increment, it borrows its syntax from the colon-separated
form of array sections. Some examples will give you the idea.

Here is a simple example that could alternatively be done with Fortran 90’s
array sections and transpose intrinsic:

forall (i=1:20, j=1:10:2) x(i,j)=y(j,i)

The block form allows more than one executable statement:

forall (i=1:20, j=1:10:2)
x(i,j)=y(j,i)
z(i,j)=y(i,j)**2

end forall

Here is an example that cannot be done with Fortran 90 array sections:

forall (i=1:20, j=1:20) a(i,j)=3*i+j**2

forall statements can also take optional masks that restrict their action to a
subset of the loop index combinations:

forall (i=1:100, j=1:100, (i>=j .and. x(i,j)/=0.0)) x(i,j)=1.0/x(i,j)

forall constructions can be nested, or nested inside where blocks, or have
where constructions inside them. An additional new feature in Fortran 95 is that
where blocks can themselves be nested.

PURE Procedures

Because the inside iteration of a forall block can be done in any order, or in
parallel, there is a logical difficulty in allowing functions or subroutines inside such
blocks: If the function or subroutine has side effects(that is, if it changes any data
elsewhere in the machine, or in its own saved variables) then the result of a forall
calculation could depend on the order in which the iterations happen to be done.
This can’t be tolerated, of course; hence a new PURE attribute for subprograms.

While the exact stipulations are somewhat technical, the basic idea is that if you
declare a function or subroutine as PURE, with a syntax like,

PURE FUNCTION myfunc(x,y,z)

or
PURE SUBROUTINE mysub(x,y,z)

then you are guaranteeing to the compiler (and it will enforce) that the only values
changed by mysubor myfuncare returned function values, subroutine arguments with
the INTENT(OUT) attribute, and automatic (scratch) variables within the procedure.

You can then use your pure procedures within forall constructions. Pure
functions are also allowed in some specification statements.

21.6 And Coming Soon: Fortran 95 961

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

ELEMENTAL Procedures

Fortran 95 removes Fortran 90’s nagging restriction that only intrinsic functions
are elemental. The way this works is that you write a pure procedure that operates
on scalar values, but include the attribute ELEMENTAL (which automatically implies
PURE). Then, as long as the function has an explicit interface in the referencing
program, you can call it with any shape of argument, and it will act elementally.
Here’s an example:

ELEMENTAL FUNCTION myfunc(x,y,z)
REAL :: x,y,z,myfunc
...
myfunc = ...
END

In a program with an explicit interface for myfunc you could now have

REAL, DIMENSION(10,20) :: x,y,z,w
...
w=myfunc(x,y,z)

Pointer and Allocatable Improvements

Fortran 95, unlike Fortran 90, requires that any allocatable variables (except
those with SAVE attributes) that are allocated within a subprogram be automatically
deallocated by the compiler when the subprogram is exited. This will remove Fortran
90’s “undefined allocation status” bugaboo.

Fortran 95 also provides a method for pointer variables to be born with
disassociated association status, instead of the default (and often inconvenient)
“undefined” status. The syntax is to add an initializing => NULL() to the declaration,
as:

REAL, DIMENSION(:,:), POINTER :: mypoint => NULL()

This does not, however, eliminate the possibility of undefined association status,
because you have to remember to use the null initializer if want your pointer to
be disassociated.

Some Other Fortran 95 Features

In Fortran 95, maxloc and minloc have the additional optional argument DIM,
which causes them to act on all one-dimensional sections that span through the
named dimension. This provides a means for getting the locations of the values
returned by the corresponding functions maxval and minval in the case that their
DIM argument is present.

The sign intrinsic can now distinguish a negative from a positive real zero
value: sign(2.0,-0.0) is −2.0.

There is a new intrinsic subroutine cpu time(time) that returns as a real value
time a process’s elapsed CPU time.

There are some minor changes in the namelist facility, in defining minimum
field widths for the I, B, O, Z, and F edit descriptors, and in resolving minor conflicts
with some other standards.

