Recall that the exponential generating function of the Bell numbers is given by

$$
\begin{equation*}
\sum_{n=0}^{\infty} B_{n} \frac{x^{n}}{n!}=e^{e^{x}-1}=e^{-1} e^{e^{x}}=e^{-1} \sum_{k=0}^{\infty} \frac{\left(e^{x}\right)^{k}}{k!}=e^{-1} \sum_{k=0}^{\infty} \frac{e^{k x}}{k!} . \tag{1}
\end{equation*}
$$

Now, by basic analysis, along with formula (1),
(2) $\quad B_{n}=\left.D^{n} e^{e^{x}-1}\right|_{x=0}=\left.e^{-1} \sum_{k=0}^{\infty} D^{n}\left(\frac{e^{k x}}{k!}\right)\right|_{x=0}=e^{-1} \sum_{k=0}^{\infty} \frac{k^{n}}{k!}$.

The infinite series representation of B_{n} given in (2) above is called Dobinski's Formula.
A useful variant of this formula is given by
(3) For all $n \in \mathrm{~N}, \sum_{k=0}^{\infty} \frac{k^{n}}{k!}=B_{n} e$. (By contrast, $\sum_{k=0}^{\infty} \frac{k^{n}}{k!}=e$ for all $n \in \mathrm{~N}$. Do you see why?)

Special cases of (3) include
(4) $\sum_{k=0}^{\infty} \frac{1}{k!}=B_{0} e=e$,
(5) $\sum_{k=0}^{\infty} \frac{k}{k!}\left(=\sum_{k=1}^{\infty} \frac{1}{(k-1)!}=\sum_{k=0}^{\infty} \frac{1}{k!}\right)=B_{1} e=e$,
(6) $\sum_{k=0}^{\infty} \frac{k^{2}}{k!}=B_{2} e=2 e$, etc.

It follows from formula (3) that if $p(k)$ is any polynomial in k, then the infinite series
(7) $\sum_{k=0}^{\infty} \frac{p(k)}{k!}$
is easily evaluated. Suppose, for example, that
(8) $p(k)=c_{0}+c_{1} k+c_{2} k^{2}+\cdots+c_{r} k^{r}$. Then, clearly,
(9) $\sum_{k=0}^{\infty} \frac{c_{0}+c_{1} k+c_{2} k^{2}+\cdots+c_{r} k^{r}}{k!}=\left(c_{0} B_{0}+c_{1} B_{1}+c_{2} B_{2}+\cdots+c_{r} B_{r}\right) e$.

