
Dobinski’s Formula                                                                         Carl Wagner    2013 

Recall that the exponential generating function of the Bell numbers is given by 
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Now, by basic analysis, along with formula (1), 
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The infinite series representation of nB  given in (2) above is called Dobinski’s Formula. 

A useful variant of this formula is given by 

(3)  For all nN,   
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   for all nN. Do you see why?) 

Special cases of (3) include 

(4)  
0

0

1
,

!k

B e e
k





   

(5)  
0 !k

k

k





  
1

1 0

1 1
( ) ,

( 1)! !k k

B e e
k k

 

 

   


   

(6) 
2

2

0

2 ,
!k

k
B e e

k





   etc. 

It follows from formula (3) that if ( )p k  is any polynomial in k , then the infinite series 
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is easily evaluated.  Suppose, for example, that  
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