On the Factorization of Some Polynomial Analogues of Binomial Coefficients

Bу

CARL G. WAGNER*)

In [4] Scheid proved that if 1 < k < n-1, then $\binom{n}{k}$ is not a power of a prime. He also stated a lower bound for the number of distinct prime divisors of $\binom{n}{k}$. In the present note we prove a similar theorem about the factorization of certain polynomials over a finite field.

Let GF[q, x] denote the ring of polynomials over the finite field GF(q) and let GF(q, x) be the quotient field of GF[q, x]. Define a sequence of polynomials $\psi_k(t)$ over GF[q, x] by

(1)
$$\psi_k(t) = \prod_{\deg m < k} (t-m)$$

where the product in (1) is taken over all $m \in GF[q, x]$ (including 0) of degree $\langle k$. In addition, define a sequence (F_k) in GF[q, x] by

(2)
$$F_k = \langle k \rangle \langle k-1 \rangle^q \langle k-2 \rangle^{q^2} \dots \langle 1 \rangle^{q^{k-1}}, \quad F_0 = 1,$$

where

(3)
$$\langle n \rangle = x^{q^n} - x$$
.

Carlitz [2] has proved that the sequence $(\psi_k(t)/F_k)$ is an ordered basis of the GF[q, x]module of linear, integral valued polynomials over GF(q, x). (A polynomial f(t) over GF(q, x) is called *integral valued* if $f(m) \in GF[q, x]$ whenever $m \in GF[q, x]$.) Hence,

the polynomials $\psi_k(t)/F_k$ are function field analogues of the Newton polynomials $\binom{t}{n}$,

and so the $\psi_k(m)/F_k$, for $m \in GF[q, x]$, may be regarded as polynomial analogues of binomial coefficients. The quantities $\psi_k(m)/F_k$ also occur in connection with the Carlitz ψ -function [1].

The proof of our main theorem is based on the following lemma:

Lemma. Let $\pi \in GF[q, x]$ be a monic irreducible polynomial. Let

 $k \ge 1$, $m^* \in GF[q, x]$, and $\deg m^* > k$.

^{*)} This work was supported by a grant from the University of Tennessee Faculty Research Fellowship Fund.

Vol. XXIV, 1975

Factorization

Let $m^* = m_0 + m_1 \pi + \cdots + m_s \pi^s$ be the π -adic expansion of m^* . For

 $m \in GF[q, x] - \{0\},\$

let $v_{\pi}(m)$ be the largest integer i for which $\pi^i | m$. Then $v_{\pi}(\psi_k(m^*)/F_k) \leq s$.

Proof. Let deg $\pi = d$ and deg $m^* = r$. Recall that π divides $\langle n \rangle$ exactly once in GF[q, x] if and only if $d \mid n$. Hence, by (2) and (3),

(4)
$$v_{\pi}(F_k) = \sum_{j=1}^{[k/d]} q^{k-jd},$$

where $\lfloor k/d \rfloor$ is the greatest integer in k/d.

To evaluate $v_{\pi}(\psi_k(m^*))$, define integers α_j for $j \ge 1$ by

(5)
$$\alpha_j = \operatorname{card} \left\{ m \in GF[q, x] : \deg m < k \quad \text{and} \quad m \equiv m^* (\operatorname{mod} \pi^j) \right\}.$$

Then

(6)
$$v_{\pi}(\psi_k(m^*)) = \sum_{\deg m < k} v_{\pi}(m^* - m) = \sum_{j=1}^{\infty} j(\alpha_j - \alpha_{j+1}) = \sum_{j=1}^{\infty} \alpha_j,$$

where, in the last two sums in (6), all but a finite number of terms vanish. To evaluate the α_i , note first that since k < r, $\alpha_i = 0$ for j > s. For $1 \leq j \leq \lfloor k/d \rfloor$, the set $S_k = \{m \in GF[q, x] : \deg m < k\}$ contains precisely q^{k-jd} complete residue systems $(\mod \pi^j)$ so that $\alpha_j = q^{k-jd}$ for such j. For [k/d] < j < s, however, $\alpha_j \leq 1$, since S_k contains only a fragment of a complete residue system (mod π^j). In view of the preceeding remarks,

(7)
$$v_{\pi}(\psi_k(m^*)/F_k) = v_{\pi}(\psi_k(m^*)) - v_{\pi}(F_k) =$$

= $\sum_{j=1}^{[k/d]} \alpha_j + \sum_{j=[k/d]+1}^s \alpha_j - \sum_{j=1}^{[k/d]} q^{k-jd} \leq s$,

as desired.

Note. The restriction deg $m^* > k$ in the above does not exclude any interesting cases, for $\psi_k(m^*) = 0$ if deg $m^* < k$, and if deg $m^* = k$, $\psi_k(m^*) = \alpha F_k$, where α is the leading coefficient of m^* [3, p. 140].

Theorem. Let $k \geq 1$, $m \in GF[q, x]$, and $\deg m^* = r > k$. Let $\pi_1, \pi_2, \ldots, \pi_{\omega}$ be the distinct monic irreducible divisors of $\psi_k(m^*)/F_k$. Then $\omega \geq (r-k)q^k/r$.

Proof. Let deg $\pi_i = d_i$ and let $m^* = m_0^i + m_1^i \pi_i + \cdots + m_{s_i}^i \pi_i^{s_i}$ be the π_i -adic expansion of m^* for $1 \leq i \leq \omega$. It follows that $s_i d_i \leq r$, and so

$$s_1d_1 + \dots + s_{\omega}d_{\omega} \leq r\,\omega$$

Suppose that $\psi_k(m^*)/F_k = \lambda \pi_1^{e_1} \cdots \pi_m^{e_m}$, where $\lambda \in GF(q)$. By the lemma, $e_i \leq s_i$ for $1 \leq i \leq \omega$. Hence,

$$\deg \psi_k(m^*)/F_k = (r-k)q^k = e_1d_1 + \dots + e_{\omega}d_{\omega} \le \le s_1d_1 + \dots + s_{\omega}d_{\omega} \le r\omega,$$

and $\omega \ge (r-k)q^k/r$ or, if a cruder estimate not involving r is desired, $\omega \ge q^k/k + 1$. 4*

Corollary. Let k and m* be as in the preceding theorem. Then, unless q = 2, k = 1, and r = 2, $\psi_k(m^*)/F_k$ is not simply a power of an irreducible polynomial.

Proof. If $q \ge 3$ and $k \ge 1$, or if q = 2 and $k \ge 2$, then $q^k > k + 1$ and $\omega \ge 2q^k/k + 1 > 1$. If q = 2, k = 1, and $r \ge 3$, then $(r - k)q^k > r$ and $\omega \ge (r - k) \times q^k/r > 1$. In the remaining case we have $\psi_1(x^2)/F_1 = \psi_1(x^2 + 1)/F_1 = x(x + 1)$ and, as exceptions to the general rule,

$$\psi_1(x^2+x)/F_1 = \psi_1(x^2+x+1)F_1 = x^2+x+1$$
.

Reference

- [1] L. CARLITZ, A class of polynomials. Duke Math. J. 6, 486-504 (1940).
- [2] L. CARLITZ, A set of polynomials. Trans. Amer. Math. Soc. 43, 167-182 (1938).
- [3] L. CARLITZ, On certain functions connected with polynomials in a Galois field. Duke Math. J. 1, 137-168 (1935).
- [4] H. SCHEID, Die Anzahl der Primfaktoren in $\binom{n}{k}$. Arch. Math. 20, 581-582 (1969).

Eingegangen am 11. 10. 1971

Anschrift des Autors: Carl G. Wagner Department of Mathematics University of Tennessee Knoxville, Tennessee 37916, USA