On the Factorization of Some Polynomial Analogues of Binomial Coefficients

By
Carl G. Wagner *)

In [4] Scheid proved that if $1<k<n-1$, then $\binom{n}{k}$ is not a power of a prime. He also stated a lower bound for the number of distinct prime divisors of $\binom{n}{k}$. In the present note we prove a similar theorem about the factorization of certain polynomials over a finite field.

Let $G F[q, x]$ denote the ring of polynomials over the finite field $G F(q)$ and let $G F(q, x)$ be the quotient field of $G F[q, x]$. Define a sequence of polynomials $\psi_{k}(t)$ over $G F[q, x]$ by

$$
\begin{equation*}
\psi_{k}(t)=\prod_{\operatorname{deg} m<k}(t-m) \tag{1}
\end{equation*}
$$

where the product in (1) is taken over all $m \in G F[q, x]$ (including 0) of degree $<k$. In addition, define a sequence (F_{k}) in $G F[q, x]$ by

$$
\begin{equation*}
F_{k}=\langle k\rangle\langle k-1\rangle^{q}\langle k-2\rangle^{q^{2}} \ldots\langle 1\rangle^{q^{k-1}}, \quad F_{0}=1 \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\langle n\rangle=x^{q^{n}}-x . \tag{3}
\end{equation*}
$$

Carlitz [2] has proved that the sequence $\left(\psi_{k}(t) / F_{k}\right)$ is an ordered basis of the $G F[q, x]$ module of linear, integral valued polynomials over $G F(q, x)$. (A polynomial $f(t)$ over $G F(q, x)$ is called integral valued if $f(m) \in G F[q, x]$ whenever $m \in G F[q, x]$.) Hence, the polynomials $\psi_{k}(t) / F_{k}$ are function field analogues of the Newton polynomials $\binom{t}{n}$, and so the $\psi_{k}(m) / F_{k}$, for $m \in G F[q, x]$, may be regarded as polynomial analogues of binomial coefficients. The quantities $\psi_{k}(m) / F_{k}$ also occur in connection with the Carlitz ψ-function [1].

The proof of our main theorem is based on the following lemma:
Lemma. Let $\pi \in G F[q, x]$ be a monic irreducible polynomial. Let

$$
k \geqq 1, \quad m^{*} \in G F[q, x], \quad \text { and } \quad \operatorname{deg} m^{*}>k .
$$

[^0]Let $m^{*}=m_{0}+m_{1} \pi+\cdots+m_{s} \pi^{s}$ be the π-adic expansion of m^{*}. For

$$
m \in G F[q, x]-\{0\}
$$

let $v_{\pi}(m)$ be the largest integer i for which $\pi^{i} \mid m$. Then $v_{\pi}\left(\psi_{k}\left(m^{*}\right) / F_{k}\right) \leqq s$.
Proof. Let $\operatorname{deg} \pi=d$ and $\operatorname{deg} m^{*}=r$. Recall that π divides $\langle n\rangle$ exactly once in $G F[q, x]$ if and only if $d \mid n$. Hence, by (2) and. (3),

$$
\begin{equation*}
v_{\pi}\left(F_{k}\right)=\sum_{j=1}^{[k / a]} q^{k-j a} \tag{4}
\end{equation*}
$$

where $[k / d]$ is the greatest integer in k / d.
To evaluate $v_{\pi}\left(\psi_{k}\left(m^{*}\right)\right)$, define integers α_{j} for $j \geqq 1$ by

$$
\begin{equation*}
\alpha_{j}=\operatorname{card}\left\{m \in G F[q, x]: \operatorname{deg} m<k \quad \text { and } \quad m \equiv m^{*}\left(\bmod \pi^{j}\right)\right\} \tag{5}
\end{equation*}
$$

Then

$$
\begin{equation*}
v_{\pi}\left(\psi_{k}\left(m^{*}\right)\right)=\sum_{\operatorname{deg}} v_{m<k} v_{\pi}\left(m^{*}-m\right)=\sum_{j=1}^{\infty} j\left(\alpha_{j}-\alpha_{j+1}\right)=\sum_{j=1}^{\infty} \alpha_{j} \tag{6}
\end{equation*}
$$

where, in the last two sums in (6), all but a finite number of terms vanish. To evaluate the α_{j}, note first that since $k<r, \alpha_{j}=0$ for $j>s$. For $1 \leqq j \leqq[k / d]$, the set $S_{k}=\{m \in G F[q, x]: \operatorname{deg} m<k\}$ contains precisely $q^{k-j d}$ complete residue systems $\left(\bmod \pi^{j}\right)$ so that $\alpha_{j}=q^{k-j d}$ for such j. For $[k / d]<j<s$, however, $\alpha_{j} \leqq 1$, since S_{k} contains only a fragment of a complete residue system $\left(\bmod \pi^{j}\right)$. In view of the preceeding remarks,

$$
\begin{align*}
v_{\pi}\left(\psi_{k}\left(m^{*}\right) / F_{k}\right) & =v_{\pi}\left(\psi_{k}\left(m^{*}\right)\right)-v_{\pi}\left(F_{k}\right)= \tag{7}\\
& =\sum_{j=1}^{[k / d]} \alpha_{j}+\sum_{j=[k / \bar{d}]+1}^{s} \alpha_{j}-\sum_{j=1}^{[k / d]]} q^{k-j a} \leqq s,
\end{align*}
$$

as desired.
Note. The restriction $\operatorname{deg} m^{*}>k$ in the above does not exclude any interesting cases, for $\psi_{k}\left(m^{*}\right)=0$ if $\operatorname{deg} m^{*}<k$, and if $\operatorname{deg} m^{*}=k, \psi_{k}\left(m^{*}\right)=\alpha F_{k}$, where α is the leading coefficient of m^{*} [3, p. 140].

Theorem. Let $k \geqq 1, m \in G F[q, x]$, and $\operatorname{deg} m^{*}=r>k$. Let $\pi_{1}, \pi_{2}, \ldots, \pi_{\omega}$ be the distinct monic irreducible divisors of $\psi_{k}\left(m^{*}\right) / F_{k}$. Then $\omega \geqq(r-k) q^{k} / r$.

Proof. Let $\operatorname{deg} \pi_{i}=d_{i}$ and let $m^{*}=m_{0}^{i}+m_{1}^{i} \pi_{i}+\cdots+m_{s_{i}}^{i} \pi_{i}^{s_{t}}$ be the π_{i}-adic expansion of m^{*} for $1 \leqq i \leqq \omega$. It follows that $s_{i} d_{i} \leqq r$, and so

$$
s_{1} d_{1}+\cdots+s_{\omega} d_{\omega} \leqq r \omega
$$

Suppose that $\psi_{k}\left(m^{*}\right) / F_{k}=\lambda \pi_{1}^{e_{1}} \cdots \pi_{\omega}^{e_{\omega}}$, where $\lambda \in G F(q)$. By the lemma, $e_{i} \leqq s_{i}$ for $1 \leqq i \leqq \omega$. Hence,

$$
\begin{aligned}
\operatorname{deg} \psi_{k}\left(m^{*}\right) / F_{k} & =(r-k) q^{k}=e_{1} d_{1}+\cdots+e_{\omega} d_{\omega} \leqq \\
& \leqq s_{1} d_{1}+\cdots+s_{\omega} d_{\omega} \leqq r \omega,
\end{aligned}
$$

and $\omega \geqq(r-k) q^{k} / r$ or, if a cruder estimate not involving r is desired, $\omega \geqq q^{k} / k+1$.

Corollary. Let k and m^{*} be as in the preceding theorem. Then, unless $q=2, k=1$, and $r=2, \psi_{k}\left(m^{*}\right) / F_{k}$ is not simply a power of an irreducible polynomial.

Proof. If $q \geqq 3$ and $k \geqq 1$, or if $q=2$ and $k \geqq 2$, then $q^{k}>k+1$ and $\omega \geqq$ $\geqq q^{k} / k+1>1$. If $q=2, k=1$, and $r \geqq 3$, then $(r-k) q^{k}>r$ and $\omega \geqq(r-k) \times$ $\times q^{k} / r>1$. In the remaining case we have $\psi_{1}\left(x^{2}\right) / F_{1}=\psi_{1}\left(x^{2}+1\right) / F_{1}=x(x+1)$ and, as exceptions to the general rule,

$$
\psi_{1}\left(x^{2}+x\right) / F_{1}=\psi_{1}\left(x^{2}+x+1\right) F_{1}=x^{2}+x+1
$$

Reference

[1] L. Carlitz, A class of polynomials. Duke Math. J. 6, 486-504 (1940).
[2] L. Carlitz, A set of polynomials. Trans. Amer. Math. Soe. 43, 167-182 (1938).
[3] L. Carlitz, On certain functions connected with polynomials in a Galois field. Duke Math. J. 1, 137-168 (1935).
[4] H. Schemb, Die Anzahl der Primfaktoren in $\binom{n}{k}$. Arch. Math. 20, 581-582 (1969).

Anschrift des Autors:
Carl G. Wagner
Department of Mathematics
University of Tennessee
Knoxville, Tennessee 37916, USA

[^0]: *) This work was supported by a grant from the University of Tennessee Faculty Research Fellowship Fund.

