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Rota’s calculus of finite differences for a locally finite poset employs a difference 
operator based on the Mobius function. We investigate the behavior of this 
operator on products and quotients and employ the lattice-of-subsets case of our 
results to show that r-monotonic&y is preserved under Bayesian conditioning of 
Choquet capacities. 0 1992 Academic Press, Inc. 

1. INTRODUCTION 

Let (P, I> be a locally finite poset with least element and let p be the 
Mobius function of P. As established by Rota [4], the operator V, defined 
for all F: P + R by 

VF(j) = C4i,j)f’(i), QjEP, (14 
i5j 

is the appropriate difference operator for functions on P, satisfying, as it 
does, the crucial inverse relation 

F(j) = cVF(i), QjEP, (1.2) 
i<j 

and reducing to the classical (backward) difference operator VF(j) = 
F(j) - F( j - 1) for the poset (N, I) of nonnegative integers ordered in 
the usual way. 
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For functions F, G: N --f [0, 03) it is, of course, trivial to show that 

VF( j) 2 0 and VG( j) 2 0, Vj > 0 - VFG( j) 2 0, vj > 0, 

(1.3) 

and 

VF( j) I 0 and VG( j) I 0, vj>O==+VFG(j) <O,Vj>O, 

(l-4) 

where FG(j) := F( j)G( j>, and, if G is positive, that 

and 

VG( j) 2 0, vj > 0 3 Vk( j) IO, Ifj > 0, (1.5) 

1 
VG( j) 5 0, Vj > 0 - V--G(j) 2 0, Vj > 0, (1.6) 

where (l/GX j) := l/G(j). 
Interestingly, none of the implications (1.3H1.6) holds in general for 

functions defined on a poset, the implications (1.4) and (1.5) failing to hold 
in general even for finite lattices. On the other hand, as we proveAbelow, 
(1.3) and (1.6) extend to all locally finite lattices with least element 0, from 
which it follows for such lattices L that if F: L + [O, m> and G: L -+ (0, w>, 
then 

VF( j) r 0 and VG( j) I 0, Vj EL - (8) 

= V:(j) 2 0, Vj EL - (6). (1.7) 

This modest result has striking consequences for the (Bayesizm) condi- 
tioning of a class of lower probabilities known as r-monotone Choquet 
capacities, i.e., functions c: 2x + [O, 11 such that c(4) = 0, c(X) = 1, and 

C(A, u ... UA,) 2 ,iIcF,,, r)o”elc( n 4). (l-8) 

T  , i=i 

for every sequence A r, . . . , A, of subsets of the finite set X. Specifically, if 
c(E) > 0 and one defines 

c(AJE) = inf{p(AlE): p is a probability measure on 2x and p 2 c}, 

(1.9) 
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then, as we prove in Theorem 4.1, c(* IE) inherits r-monotonicity from c. 
Remarkably, preservation of r-monotonicity under Bayesian conditioning 
turns out to be a natural and transparent consequence of the lattice-of- 
subsets case of (1.7). 

The remainder of this paper is organized as follows: In the next section 
we prove a preliminary lemma. In Section 3 we establish the aforemen- 
tioned lattice generalizations of (1.3) and (1.6), adducing examples to show 
that our results are best possible. In Section 4 the lattice-of-subsets case of 
these results is applied to the analysis of Choquet capacities under 
Bayesian conditioning. 

2. PRELIMINARIES 

In what follows the least and greatest element of a poset, should they 
exist, are denoted respectively by 8 and 1. For the requisite background on 
the Mobius function p of a locally finite poset the reader is referred to 
Rota’s classical paper [4] or Stanley’s book [6, Chapt. 31. Given elements 1 
and m of the poset P such that I I m, it follows from the definition of p 
that 

C k(i,m) = S(f,m), (2.1) 
Isism 

where 6 denotes the Kronecker delta function. In particular, if p is the 
Mobius function of the finite lattice (L, I>, then 

c /.L(i, i) = c p(i, i) = S(8,i) 2 0. (2.4 
iGL Bsici 

The simplest case of the following lemma is identical with (2.2). 

LEMMA 2.1. For every finite lattice (L, I), every family (2,: k E L) of 
nonnegative real numbers such that Cz, < 1, and every p > 0, 

Proof. We prove (2.3) by induction on IL 1, the cases IL I 7 1,2 being 
obvious. Since, by (2.21, (2.3) holds when zk = 0 for all k # 0, (2.3) will 
follow if we can show that for every j E L - {6), the derivative with 
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respect to zi of the left-hand side of (2.3) is nonnegative, i.e., that 

I I 

-p-l 

pCp((i,i) 1 - c Zk 2 0. (2.4) 
irj ksi 

keL 

Consider the sublattice q = {k E L: k 2 j) of L, and the family 
{uk: k E L$) defined by 

U k= c zh. P-5) 
he-L: 

hvj=k 

Since the Mijbius functions of L and q coincide on q. 14, Proposition 41, 
(2.4) is equivalent to 

which is true by the inductive hypothesis, since 1 q.I < IL I. 0 

3. GENERALIZED FINITE DIFFERENCES 

THEOREM 3.1. Let (L, I) be a locally finite lattice with least element. Zf 
F, G: L -+ R satisfy 

VF(j) := cp(i, j)F(i) 2 0, Vj’iL, 
isj 

and 

then 

VG(j) := cp(i, j)G(i) 2 0, Vj E L, 
isj 

VFG( j) := cp(i, j)F(i)G(i) 2 0, VjEL. 
i<j 

Proof. By (3.31, (1.2), (2.0, (3.Q and (3.21, 

VFG(j) = cp(i,i) c VF(k) CVG(l) 
isj ksi lsi 

= k~jWk)l~,W4 c 4iJ) 
kvlsisj 

= c VF(k) xVG(l)G(k V 1, j) 2 0. III 
ksj lsj 

(3.1) 

(3.2) 

P-3) 

(3.4) 
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THEOREM 3.2. Let CL, I > be a locally finite lattice with least element. Zf 
G: L --) (0, CCJ) satisfies 

VG(j) := cp(i, j)G(i) I 0, Vj E L - (6), (3.5) 
i<j 

then 

V&i) := Zp(i,j)& 2 0, Vj EL - (8). (3.6) 
i<j 

Proof. For each j E L - {8} consider the finite lattice Lj = {k E L: 
k I j) and the family (2,: k E Lj}, where z6 = 0, and zk = -VG(k)/G(& 
otherwise, recalling that the Mobius functions of L and L, coincide on Lj. 
By (3.9, zk 2 0, Vk E L,, and by (1.1) and the fact that VG(0) = G(O), 

c - VG(k) = G(6) - G(j) < G(8), (3.7) 
ksj 

k#6 

whence C krLj~k < 1. It follows from Lemma 2.1, with p = 1, that 

-1 

2 0, WV 

and multiplying (3.8) by l/G&, and again using (1.1) yields 

$4bi)[ &VW)]-1 = ~,di9.0& 2 0, 0 (3.9) 

Combining Theorems 3.1 and 3.2 yields the following obvious corollary: 

COROLLARY 3.1. Let (L, I) be a locally finite lattice with least element. 
Zf F: L +,[O,m) and G: L + (0, m) satisfy OAF(j) 2 0 and VG(j) I 0, 
Vj E L - (01, then V(F/GXj) L 0, Vj E L - (01. 

To see that Theorems 3.1 and 3.2 fail to hold in general for locally finite 
posets, consider the poset (P, 5 ) with Hasse diagram (Fig. 1). The Mobius 

FIGURE I 
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function p of P is easily calculated from the defining conditions (1) 
p(i, i> = 1 and (2) p(i, j) = - Cilk <jpL(i, k) if i < j. 

Consider first the function F: P + [O, 03) defined by F(b) = a, F(u) = 
F(b) = i, and F(c) = F(d) = F(i) = 3. It is easy to check that VF( j) 2 0, 
Vj E P. On the other hand, VF*(i> = i - 2(i) + 2($) - & = 2, so that 
Theorem 3.1 fails to hold here. 

Consider next function G: P + (0,031 defined by G(6) = 1, G(a) = 
G(b) = z, and G(c) = G(d) = G(i) = $. One checks easily that VG(j) I 
0, Yj E P - {6}. On the other hand, V(l/G)@ = 5 - 26) + 2(g) - 1 = 
2, so that Theorem 3.2 fails to hold here. 

We noted in the introduction that generalizations of (1.4) and (1.5), 
which are, essentially, Theorems 3.1 and 3.2 with all the inequalities 
reversed, fail to hold even in finite lattices. To see this, consider the lattice 
(L, 51, where L = 16, a, b, c} and I is inherited from (P, I) above. 
The restriction of the above function G to L satisfies VG(j) < 
0, vj E L - {6}. On the other hand, VG*(c) = & - 2(q) + 1 = &, so 
that a generalization of (1.4) fails to hold here. Finally, the function H: 
L + (0, m> defined by H(6) = 1, H(a) = H(b) = 2, and H(c) = 4 satisfies 
VH(j) 2 0, vj E L - {8>. On the other hand, V&(c) = a - 2(i) + 1 = f, 
so that a generalization of (1.5) fails to hold here. 

4. BAYESIAN CONDITIONING OF CHOQUET CAPACITIES 

For a fixed integer r 2 2 and finite set X, a mapping c: 2x -+ [0, l] is 
called an r-monotone capacity [l] if c(g) = 0, c(X) = 1, and for every 
sequence A i, . . . , A, of subsets of X, 

C(A, u *-. UA,) 2 c (-I)~? nAi , 
( 1 

(4-l) 
I&l iEI 

I+@ 

where [r] := 11,. . . , r). If c is r-monotone, then it is clearly s-monotone 
for 2 I s I r. If c is 2-monotone, it is superadditive (A n B = 4 a 
c(A U B) 2 c(A) + c(B)), hence monotone (A c B * c(A) I c(B)). If c 
is r-monotone for all r 2 2, c is called an infinitely monotone capacity. As 
proved by Shapley [5], any 2-monotone capacity c admits a dominating 
probability measure, and so a natural way to condition c on a subset 
E c X with c(E) > 0 is to set 

c( AE) := p$ (P( AIE)) , (4.2) 
c 

where 9c is the set of all probability measures on 2x such that p(A) 2 
c(A) for all A c X. 
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In establishing the aforementioned result, Shapely proved that for every 
nested pair Hi c Hz of subsets of X, there exists a p E YC such that 
p(H,) = c(Hi), i = 1,2. It follows immediately that 

c(AlE) = 
c(A n E) 

c(A n E) + 1 - c(A u E) ’ 

since, for all p E gc, 

p(AIE) = 
P(A n El 

p(AnE)+1-p(AUE) 

c(A n E) 

’ c(A nE) + 1 -p(A uE) 

c(A n E) 

’ c(AnE)+l-c(Au@’ 

(4.3) 

(4.4) 

and there exists a p E PC such that p(A n E) = c(A n El and 
p(A u E> = CL4 u 8). 

Walley [7] has shown, by an ad hoc argument, that if c is 2-monotone, 
then c(. ]E) is also 2-monotone. Fagin and Halpern [2] and Jaffray [3] have 
shown that if c is infinitely monotone, then so is c(. JE), but their proofs 
are quite complicated and make use of special properties of infinitely 
monotone capacities, over and above their satisfying the inequalities (4.1). 
In fact, for every r r 2, r-monotonicity is preserved under Bayesian 
conditioning, as a natural and transparent consequence of the following 
lattice-of-subsets case of Corollary 3.1: 

LEMMA 4.1. Zf r 2 2, [r] := (1,. . . , r), and F: 2’4 + [O, 00) and G: 
21rl + (0, m> sut@jJ 

VF(J) = c (-l)‘f-J’F(Z) L 0, VJ s bl (4.5) 
I3J 

and 

VG( J) = c ( - I)‘~-~‘G( I) I 0, VJ s [r], (4.6) 
i3J 

then V(F/GXC#J) 2 0, i.e., 

F(4) 

3% 2 bzlc[r] 
c (+-’ 32. (4.7) 
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Proof. Apply Corollary 3.1 to the lattice (2tr1, 2) of subsets of [I], 
noting that the Mobius function of this poset is given by p(Z, J) = ( - 1)“-” 
[6, Ex. 3.8.3 and 4, Proposition 31. 0 

THEOREM 4.1. For every integer r 2 2, if c is an r-monotone capacity on 
the Jinite set X, E c X, and c(E) > 0, then c(. IE), as dejined by (4.3), is 
r-monotone. 

Proof Since c(AIE) = c(A n EIE) for all A c X, it suffices to show 
that for every sequence A,, . . . , A, of subsets of E, 

c(A,) 44) 
c(A,& + 1 - c(A+ u B) c( A,) + 1 - c( A, u E) ’ 

(4.8) 

where A, := A, u * * * u A, and A, := n i E, Ai for all nonempty I c [r]. 
Define F, G: 2rr1 * R by 

F(4) := c ( -l)‘l’-lc(A,), (4.9) 
4+ra1 

F(I) := c( A,), 4 + z c [r], (4.10) 

G(4) := 1 - c (-1)“‘-‘&(A, uB) - c(A,)), (4.11) . 
&#ICbl 

and 

with 

G(Z) := c( A,) + 1 - c( A, u E), 

VF(J) := c ( -l)“-J’F(Z), 
I3J 

and 

VG(J) := c (-1)“-“G(I), 
IZU 

4 #Zc[rl, (4.12) 

V.J C [r] (4.13) 

VJ C [r], (4.14) 

Now VF([r]) = c(ArT1> 2 0 and VFW 2 0 if IJI = r - 1 by monotonic- 
ity of c. If 0 + IJI I r - 2, then by monotonicity and r - (JI-monotonicity 
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of c. 

c(A,) 2 c A, n 
( u 

i=[r]-J 
4) = c( u (A, WI) 

ie[r]-J 

2 c 
$J#Kc[rl-J 

(-w-‘c k;K(4 “A,)) ( 

= ,f;( -l)“-J’-lc(A,), (4.15) 
f 

and so W(J) 2 0 for such .Z. Finally, it is easy to check that W(4) = 0, 
so that 

W(J) 2 0, VJ c [r]. (4.16) 

Since by (1.2) 

F(Z) = c WJ), VI c [r], (4.17) 
J3I 

it follows that 

F(Z) 2 0, vz c [r]. (4.18) 

By (4.16), (4.17), and (4.18), if F(4) = 0, then W(J) = 0, VJ c [rl, and 
so F(Z) = c(A,) = 0 if 4 # Z c [r], whence (4.8) holds trivially. In what 
follows we shall hence assume that F(4) > 0. 

Now by (4.9), (4.11), and the r-monotonicity of c, applied to the 
sequence A, U E, . . . , A, U E, 

G(4) = F(4) + 1 - c (-1)“‘-‘c&4, u I?) 

4+1c[rl 

2 F(f$) + c(A, u B) - c (-l)“‘-‘c(A, u E) 
dJ +Idrl 

2 F(4) > 0. (4.19) 

Since, by 2-monotonicity of c, c(A,) + 1 - c(A, U E) 2 c(E) > 0, it 
follows from (4.12) that G(Z) > 0 if 4 # Z c [r], and so 

G(Z) > 0, vz c [r]. (4.20) 

Next we show that 

VG( J) I 0, VJ 5 [r]. (4.21) 
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It is easy to check that VG(+) = 0. If J is a nonempty proper subset of 
[I], we may suppose with no loss of generality that [ rl - J = [ sl, for some 
positive integer s < r. Let B, := CA, n Ai) U E for all i E [sl, Bsil := 
A,n(A, u -. - uA,), B,:=B, u v-0 uB,+,, and B,= nieKBi for 
all nonempty K c [s + 11. Since s + 1 I r, c is s + l-monotone, and so 

c t -l)‘K’CtBK) = c(B,) - C(B{s+l)) 
Kc[s+ 11 

+ KL-slt -P(C(BK) - C(BK”{s+l)))~o- 

(4.22) 

One checks easily that B, = [A, n (A, U a*. U A,)1 U E, Be+1j = 

B s+l =A,ri (A, u '- . u A,), and for all nonempty K c [sl, that BK = 
A JuK u E and BKuts+lj =AJuK. 

By 2-monotonicity of c, it follows from the above that c(A, U E> - 

c(A,) 2 c(B,) - c@+,, ), and so (4.22) implies that 

c (-l)‘K’(+Lu~ “E‘) -C(A,ud) 

= zJ( -l)r’-J’(c(A, u E) - c(A, n E)) 

= -VG(J) L 0, (4.23) 

establishing (4.21) when 4 # J 5 [r]. 
By (4.18), (4.20), (4.X), and (4.21), it follows from Lemma 4.1, (4.10), 

and (4.12) that 

= ]( - 1Y’ 
C(AI) (4.24) 

r c(A,)+ l- c(A, uE)’ 

But by r-monotonicity of c, c(A,) 2 F(4) and c(A, U E> 2 1 - G(4) + 
F(4), and so 

c(A+J F(4) F(4) 
c(A,)+ l- c(A+ vi%) 2 F(4) + 1 - c(A+ U E) 2 m’ 

(4.25) 

where the first inequality above follows from the fact that x/(x + a) is a 
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nondecreasing function of x if x > 0 and a 2 0. Combining (4.25) and 
(4.24) yields (4.8), as desired. 0 
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