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ABSTRACT. We extend previous work of Lehrer and Wagner, and of McConway, on 
the consensus of probabilities, showing under axioms similar to theirs that (1) a belief 
function consensus of belief functions on a set with at least three members and (2) a 
belief function consensus of Bayesian belief functions on a set with at least four members 
must take the form of a weighted arithmetic mean. We observe that these results are 
unchanged when consensual uncertainty measures are allowed to take the form of 
Choquet capacities of low order monotonicity. 
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1. I N T R O D U C T I O N  

A belief function on a set 19 = {01 . . . Ok} is a mapping b" 20-+[0,  1] 
such that b(O)= O, b(19)= 1, and for all positive integers r and every 
collection A 1 . . . . .  A r of subsets of 19, 

(1.1) b ( A 1 U " ' U A r )  > - ~ (-1)l'l-lb(i~EzAi). 
I C{1 . . . . .  r} 

The theory of belief functions was introduced by Shafer (1976) in A 
Mathematical Theory of Evidence and provides, among other things, 
an abstract formulation of a certain class of lower probabilities, studied 
earlier by Dempster (1967). Every probability measure on the algebra 
2 ~ is clearly a belief function, and we follow Shafer in calling such 
probability measures Bayesian belief functions. 

Closely related to belief functions are mappings m" 2~ 1], 
called basic probability assignments (BPAs), defined by the properties 
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m(0) = 0  and ~'ACO re(A)= 1. Every BPA m on | induces a belief 
function b (m) on | by 

(1.2) b(r~)(A) = ~ re(H),  VA C |  
HCA 

and every belief function b on | induces a BPA m (b) on O by 

(1.3) m(b)(A) = ~', ( -1 )>-n lb (H) ,  
H~A 

YAC_O, 

with m (b~m~) = m and b ("~b)) = b (Shafer, 1976, pp. 38-40). To show 
that a mapping b : 2~ [0, 1] is a belief function one may thus avoid 
checking (1.1), either by exhibiting a BPA m such that b (m) = b, or by 
checking that b(0) = 0, b(O) = 1 and the quantities m(b)(A) defined by 
(1.3) are nonnegative for all A C_ O. Bayesian belief functions are 
precisely those belief functions whose associated BPAs are positive 
only on singleton subsets of O (Shafer 1976, p. 45). 

Denote by ~(O) ,  ~(O),  and ~ ( O ) ,  respectively, the set of all belief 
functions, Bayesian belief functions, and BPAs on O. We shall refer to 
elements of ~(O) ,  ~(O),  and ~ ( O )  generically as uncertainty mea- 
sures. For n I> 2, n-tuples B = ( b l , . . .  , bn) E ~n( |  P = 
( P l ,  �9 �9 �9 , P~) ~ ~ ( |  and M = (m~, . . . , m~) E tiC(O) are called 
n-profiles and may be regarded as registering the individual opinions of 
n experts as to 'where the truth lies' in O, cast in terms of the relevant 
uncertainty measure. In this note we consider the problem of aggregat- 
ing such opinions into a single consensual measure, subject to two 
simple axiomatic restrictions. With the exception of a few cases where 
| has small cardinality, these axioms are shown to imply aggregation 
by weighted arithmetic averaging, thus extending previous results of 
Lehrer and Wagner (1981) and McConway (1981) on the consensus of 
probabilities. 

2. C O N S E N S U S  F U N C T I O N S  

Informally, a consensus function is simply a method of deriving from 
each profile of uncertainty measures of some fixed type a consensual 
uncertainty measure of some fixed type. We shall be interested in four 
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types of consensus functions, corresponding to the (profile type, 
consensus type) pairs (~"(O), ~(O)), (M"(O), M(O)), (~"( |  ~ (0) ) ,  
and (~"(| ~(O)). For economy of exposition, the following discus- 
sion employs generic n-profiles U = ( u  1 . . . . .  u , ) ~  q/"(O), where 
(0//, U, u) ~ {(~, P, p), (M, M, m), (~ ,  B, b)} and generic (profile 
type, consensus type) pairs (q/"(O), ~ where (ad, 0/ / . )CA = 

6a, 

DEFINITION. A consensus  f unc t ion  is a mapping C: e//"(O)---~ 
0//.(| for fixed n~>2 and fixed (0//, o-//.) E A. 

Since, for every n-profile U, C ( U )  is either a belief function, a 
Bayesian belief function, or a BPA on O, and since all these uncer- 
tainty measures assign 0 the measure zero, it is a consequence of the 
above definition that C(U)(f l )=0.  Similarly, when ~  
C ( U ) ( O )  = 1. We wish to study consensus functions which, for each 
subset A C_ | whose measure is not thus predetermined, assigns to A a 
consensual uncertainty measure which depends only on the measures 
assigned to A by the n experts. This restriction on aggregation is 
common in consensus studies and has been variously termed independ- 
ence, invariance, irrelevance of alternatives, and weak setwise func- 
tionality. (In the case of consensus for probabilities, such a restriction 
was shown by McConway (1981) to be equivalent to requiring the 
consensus function to commute with marginalization.) For our pur- 
poses the relevant axiomatic restriction is formalized as follows: 

(i) For all A E 2 ~ - {0, | and if a//= q/�9 = M, for A = O as 
well, there exists a function F m �9 [0, 1]" ~ [0, 1] such that for 
all U E e//"(O), C ( U ) ( A )  = F A ( U l ( A  ) . . . .  , Un(A)) .  

In addition, we shall be interested in the consequences of adopting 
one or more of an infinite number of possible 'unanimity preservation' 
axioms, (H(c)), where c ~ [0, 1], given by 

(H(c)) For all A C_ O and for all U E 0-//-(O), if U ( A )  = (c . . . . .  c),  

then C ( U ) ( A )  = c. 
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Our first theorem recapitulates results implicit in Lehrer and Wagner 
(1981) and McConway (1981). 

T H E O R E M  2.1. f f  q / =  o-//. = ~ and Iol t>3, or i f  ~ = ~ = d~ and 

Iol ~ 2, a consensus function C: U"(O)---~ U*(| satisfies axioms (I) 

and (H(1)) i f f  there exists a sequence o f  weights w l ,  �9 �9 �9 , w,  , nonnega- 
rive and summing to one, such that for all A C 0 and for all U E 
91"(0), C ( U) ( A)  = w , u , ( A )  + . . .  + w , u , ( A ) .  

We omit the minor details required to modify the aforementioned 
results to yield this theorem, except to note that the lower threshold 
lel = 2 for BPAs obtains because a consensus function in this case is an 
'allocation aggregation method'  (Lehrer  and Wagner, 1981, Theorem 
6.4) for the three 'decision variables' m({01}), m({02}), and 
m({01, 02} ). The case ~ = q/* = ~ and [| = 2 is essentially character- 
ized by Theorem 6.5 of Lehrer and Wagner (1981). 

3. C O N S E N S U S  IN T H E  F O R M  OF A B E L I E F  F U N C T I O N  

We now examine consensus functions C: q/"(O)---~ ~ *(O) constrained 
by axioms (I),  (II(1)), and ( I I (1/2)) ,  where (~ q/*) E {(@, @), 
(~ ,  @)}. In what follows X =  (x l ,  . . . , x , )  and Y =  (Yl ,  �9 �9 �9 , Y,) 
denote elements of [0, 1]", e denotes the n-dimensional vector 
( c , . . .  , c), and all inequalities between vectors are to be understood 
coordinatewise. We observe first that if lel/> 3, (I) and (H(1)) imply 
that the functions F A posited by (I)  must be identical. 

T H E O R E M  3.1. I f  ( q / , ~  ( ~ , @ ) } ,  Io11>3, and 
C: 9/"(0)---~ q/*(| satisfies axioms (I)  and (II(1)), then for all H and 
K ~ 2 ~ - {r O}, Fn = Fx ,  and C satisfies (11(0)). 

Proof. Suppose first that H is a proper subset of K. For every 
X ~  [0, 1]", there is obviously a profile P = ( P l ,  �9 �9 �9 , P , )  E ~"( |  C_ 
@"(| such that P ( H )  = ( p l ( H ) , . . . ,  p , ( H )  = X ,  P ( K -  H )  = O, 
and P(/~) = 1 - X. Let Aj - H and A 2 = K - H. Since C(P) ~ ~( |  
(1.1) and axiom (I)  yield 
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(3.1) C (P ) (A ,  tO A2) = F r ( X  ) >t FH(X ) + Fr_H(O ) -- C(P)(O) 

= F , ( X )  + F,,_,(O) >t F , ( X ) .  

Next let A~ = H U / ~  and A 2 = K. In this case (1.1) and axiom (I) 
yields 

C(P)(A  1 O A z )  = C(P)(O) = 1 

F . ~ ( 1 )  + F r ( X )  - F . ( X )  , 

which, with axiom (H(1)), yields 

(3.2) FH(X ) >1 FK(X ) . 

It follows from (3.1) and (3.2) that F x = F K whenever H c_ K. 
Suppose now that H and K are arbitrary nonempty proper subsets of 

| If H n K ~ 0, then by the preceding argument F/4 = F,~nr = F t .  If 
H n K = 0 and H U K is a proper subset of O, then F,~ = FHu K = F t .  
If H N K = O  and H U K = O  then since I01/>3, Inl~>2 or Igl~>2. 
Supposing, with no loss of generality, that IHI/> 2, and that 0 i E H, it 
follows that F x = F~oi~ = FKu~oi~ = F K. Thus F x = F K for all H,  K E 
2 ~  {0, | and aggregation is carried out by a single function 
F:  [0, 1) ~--) [0, 1]. Dropping subscripts and setting X = 0 in (3.1) then 
yields F(0)/> 2F(0). Hence, F(0) = 0 and C satisfies (II(0)). 

The preceding theorem fails to hold when ]OI = 2. For example, the 
function C, defined for all B E~n( {01 , 02} )  by C ( B ) ( 0 ) = 0 ,  
C(B)(O) = 1, C(B)({Oz} ) = m i n { b l ( { 0 1 } ) , . . . ,  bn({0~})} and 
C(B)({02} ) = max{b1({02}), . . .  , b,({02})} yields a belief function on 
{01, 02} for every profile B, and satisfies axioms (I) and (H(1)), while 

F{ol} -76 F{o~} �9 

T H E O R E M  3.2. I f  I| >1 3, a consensus function C: ~"(~))---~ ~( |  
satisfies axioms (I), (II(1)), and (I1(~)) i f f  there exists a sequence o f  
weights w I . . . .  , wn, nonnegative and summing to one, such that for 
all A C O  and all B E ~n(O),  C(B)(A)  = Wlb~(A ) + . . .  + w,,bn(A). ~ 
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Proof. Sufficiency: straightforward. Necessity: By Theorem 3.1 
there exists a function F:  [0, 1]"--~ [0, 1] such that for all B G ~" (O)  
and for all A C_ 19, C(B)(A) = F(b1(A ) . . . . .  bn(A)). We show that for 
all X , Y  such that 0 ~ < X , Y , X + Y ~ < I ,  F ( X + Y ) = F ( X ) + F ( Y ) ,  
which implies, by a standard result of functional equations along with 
F(I)  -- 1 (see Lehrer and Wagner, 1981, p. 122) that F is a weighted 
arithmetic mean. Suppose first that 0<~ X, Y<~ 1/2. Let M be the BPA 
profile defined by M({01})= X, M({02} ) = Y, M({O 1 , 03} ) = 1 / 2 -  X, 
M({02 , 03} ) = 1/2 - Y, and M(A) = 0 for all other A C_ 19. Let B be the 
belief function profile induced by M, as described in Section 1. Among 
other things, B({O1})=X, B({02})= Y, B({03})=0,  B({0~, 02})= 
X + Y, B({01 , 03} ) = B({O 2 , 03} ) = 1/2, and B({01, 02, 03}) = 1. Let- 
ting C ( B ) =  b, it follows, using axioms (H(1)) and (II(1/2)) where 
appropriate, that b({O1})= F(X ), b({Oz})= F(Y ), b({03})=0,  
b({O1,02})=F(X+ Y), b({O1,03})=b({02,03})=l/2, and 
b({01,02,03} ) = 1. Since b G ~(19) by hypothesis, it satisfies (1.1). 
Instantiating (1.1) for A 1 = {01} and A z = {02} yields F(X+ Y)>~ 
F(X) + F(Y); when A 1 = {01 , 02), A 2 = {01,03}, and A 3 = {02,03}, 
(1.1) yields 1 > /F(X + Y)+ �89 + ~ - F ( X ) -  F(Y), i.e., F(X + Y)<<- 
F(X) + F(Y). Hence F(X + Y) = F(X) + F(Y) whenever 0~<X, Y~< 
1/2, and so if O < - X , Y , X + Y < ~ I ,  F ( X + Y ) = 2 F ( � 8 9  
2F( �89 + �89 Y) = 2F(�89 + 2F(�89 Y) = F(X) + F(Y), as desired. 

We remark that when O = {01 , 02}, even if Fto~) = F(o2) = F (as need 
not be the case, by the remark following the proof of Theorem 3.1), F 
is not necessarily a weighted arithmetic mean. For, as is easily check- 
ed, setting C(B)(A) = min{bl(A ), . . . ,  b,(A)} for all A C {01,02} 
yields a belief function on {01 , 02} for all B E ~"({01 , 02} ), and C 
satisfies (H(1)) and (11(1/2)). 

Moreover,  axioms (I) and (H(1)) alone are not sufficient to guaran- 
tee the conclusion of Theorem 3.2 for, setting C(B)(A) = [bl(A)J ,  the 
greatest integer less than or equal to bl(A ), defines a mapping 
C: ~"(| ~ (O)  satisfying (I) and (H(1)), and C is not a weighted 
arithmetic mean. 

T H E O R E M  3.3. f f  [O[~4 ,  a consensus function C: ~"(0)--~:~(O) 
satisfies axioms (I), (H(1)), and (11(1/2)) if there exists a sequence of 
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weights w ~ . . . .  , w, ,  nonnegative and summing to one, such that for 
all P E ~ " ( |  and for all AC_O, C ( P ) ( A ) = w l p I ( A ) + ' " +  
w,p , (A) .  

Proof. Sufficiency: straightforward. Necessity: By Theorem 3.1 
there exists a function F :  [0, 1]"--* [0, 1] such that for all ~ E ~" (O)  
and for all A C_ O, C(P)(A) = F(p1(A ), . . . , p,(A)).  As in the proof 
of the preceding theorem, to establish that F is a weighted arithmetic 
mean we need only show that F(X + Y) = F(X) + F(Y) for all X and 
Y such that 0~< X, Y , X + Y ~ < I .  

For X and Y as above, consider the Bayesian belief function profile 
P for which P((O1})=X, P({02})= Y, P ( ( O 3 } ) = I - X - Y ,  and 
P ( { 0 i } ) = 0  for all i~>4. Letting C(P)=b ,  it follows, using axiom 
(II) where appropriate,  that b({O1})=F(X), b((O2})=F(Y),  
b({01,02}) = F ( X +  Y),b({O 2 , 03}) = F(1 - X),andb({8  I , 02, 03}) = 1. 
For A~ = (01} and A 2 = {02}, (1.1) implies that 

(3.3) F ( X + Y ) > ~ F ( X ) + F ( Y ) ,  O<~X, Y , X + Y < ~ I .  

For A 1 = (0~, 02} and A2 = {01,03}, (1.1) implies that 1 ~> F(X + Y) + 
F(1 - X)  - F(Y),  which is equivalent to 

(3.4) F(X) + F(Y) >i F(X + Y) + [F(X)  + F(1 - X)  - 1], 

O<~X, Y , X +  Y<<-I. 

Now suppose that X ~> 1/2 and let P be the Bayesian belief function 
profile for which P({81}) = P((83}) = X -  1/2, P({02} ) = P({84)) = 
1 - X, and P({0;))  = 0 for all i I>5. Letting C(P) = b, it follows, using 
axiom (11(1/2)) where appropriate, that b({82} ) = F ( 1 -  X) ,  
B({01,8z}) = b({82,03}) = 1/2, and b({8~, 82, 83} ) = F(X). For A 1 = 
{8~,82} and A2={02,83),  (1.1) implies that F ( X ) > ~ l / 2 + l / 2  - 
F ( I -  X) ,  i.e., that 

(3.5) F ( X ) + F ( 1 - X ) ~ I ,  1 / 2 ~ < X ~ < I ,  

which, with (3.3) for Y = 1 -  X, yields 
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(3.6) F ( X ) + F ( I - X ) = I ,  1 / 2 6 X < ~ 1 ,  

and hence, of course, 

(3.7) F ( X ) + F ( I - X ) = I ,  0~<X~<l /2 .  

Combining (3.3), (3.4), and (3.7), we see that 

(3.8) F(X + Y) = F(X) + r ( g ) ,  

O < . X , Y , X + Y < . I ;  X<~1/2. 

It follows from (3.8) that for all X, Y such that 0<~ X, Y, X + Y ~  1, 
F(X+ Y) = F( �89189  Y)) = F( �89189 Y) = F(�89 
F(1X) + F(Y) = F(X) + F(Y), which completes the proof. 

The condition l| I ~> 4 in the preceding theorem is essential. When 
[0[ = 3, for example, setting C(p 1 . . . . .  p,)(A) = min{pl(A),  p2(A)} 
for all A C_@ defines a mapping C: ~"(0)--~ ~(@) for which axioms 
(I), (H(1)), and (H(1/2)) hold, and C is not a weighted arithmetic 
mean. 

4. DISCUSSION 

At the outset of this investigation we had hoped that enlarging the 
co-domain of a consensus function C: ~n(@)__~ ~(|  to ~ ( 0 )  might 
allow for some interesting ways of resolving disagreement in a 
Bayesian profile by means of a non-Bayesian consensus. Since, how- 
ever, any weighted arithmetic mean of Bayesian belief functions is 
again Bayesian, Theorem (3.2) demonstrates that Axioms (I), (II(1)) 
and (II(1/2)) vitiate this hope. 

Might we evade this limitation by allowing a yet broader class of 
consensual uncertainty measures? While substantially generalizing the 
class of probability measures, belief functions are, after all, still highly 
structured uncertainty measures. Indeed ~ ( O ) =  ~ r~2 ~r(O), where 
ca,(O) denotes the set of ' r-monotone Choquet capacities' on O, i.e., 
mappings b: 2~ [0, 1] such that b($)  = 0, b(| = 1, and (1.1) holds 
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for the fixed integer r. An examination of the proofs of Theorems 3.1, 
3.2, and 3.3 reveals that (1.1) was invoked only for small r. In 
particular, with no change in their proofs, Theorems 3.1 and 3.3 hold 
with ~( |  replaced by c~2(| ) and Theorem 3.2 holds with ~(O) 
replaced by c~3(O ). Thus even allowing consensus in the form of a 
Choquet capacity of low order monotonicity does not enlarge the set of 
consensus functions if one continues to stipulate Axioms (I), (II(1)), 
and (11(1/2)). 

As shown by the example C(P)(A)= [pl(A)J,  the greatest integer 
less than or equal to pl(A),  deleting (11(1/2)) as a restriction on 
consensus formation makes room for at least one (admittedly crude) 
non-Bayesian consensus. While it would be interesting to delete (II(1)) 
as well, and to try to characterize consensus functions, regulated only 
by Axiom (I), results of Acz61, Ng, and Wagner (1984) and Genest 
(1984) on consensual probability without unanimity preservation 2 sug- 
gest that it is not unanimity axioms, but rather Axiom (I) that is 
primarily responsible for circumscribing the class of acceptable con- 
sensus functions. We have thus begun a study of consensual uncertain- 
ty measures which may, for each A C_ O, depend on the individual 
uncertainty measures assigned to A as well as to subsets H C_ | in 
certain classes naturally related to A such as {H: A CH} and 
{H: HNA~O}. 

N O T E S  

A cursory reading of Theorem 3.2 might tempt one to think that it is a simple corollary 
of Theorems 2.1 and 3.1. After all, any consensus function C: ~"(O)---> ~(O)  induces a 
consensus function C': ~n(O)---~ ~ ( O )  by the formula 

C ' ( M )  = rn tc~B~b) , 

where B tMJ= (b t'~) . . . .  , b~'n)). Since, correspondingly, 

C ( B )  = b t c '~ tBb)  , 

where M ~a) = (m ~~  . . . . .  mt~)),  if C' is based on weighted arithmetic averaging (as 
Theorem 2.1 assures us it is, given that it satisfies I and H(1), then by (1.2), C will also 
be based on weighted arithmetic averaging. But from the fact that C satisfies I and 11(1) 
it follows from Theorem 3.1 only that 
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C'(M)(A)= E~A ~ ( -  1)lA-elF(n~-~em~(H) . . . . .  nce~" m,(H)) . 

Until one shows that F is linear (precisely the point of Theorem 3.2), it is not at all clear 
that C' satisfies 1, 
2 Regulated only by Axiom (1), a consensus of n probability measures must take the 
form of a linear combination of those measures and some fixed, but arbitrary, 'external' 
probability measure. Interestingly, subject to certain restrictions, some weights may be 
negative. 
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