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BOOLEAN SUBTRACTΓVΈ ALGEBRAS

THOMAS M. HEARNE and CARL G. WAGNER

1 Introduction In a recent paper [2], R. Giiting has investigated structures
{K, -), called colonies, which possess a distinguished element 1 and satisfy
the following axioms:

Kl (α - b) - c = (a - c) - b
K2 1 - (1 - a) = a
K3 a - a = 1 - 1
K4 a - (a - b) = a - (1 - 6).

Gliting shows that the study of such structures is equivalent to the study of
Boolean algebras in the sense that every colony (K, -> gives r i se to a
Boolean algebra (K, v, Λ, f) via the definitions a'=l-a,aΛb = a-br, and
a v b = (a* - b)f, and every Boolean algebra (K, v, Λ, f> gives r i se to a colony
via the definition a - b = aλb\

In the present paper, we consider structures (S, -) which satisfy

51 (a - b) - c = (« - c) - b
52 a - (b - a) = a
53 Vα, £e S, 3ΛΓ€ S 52/C/Z that x - (a - b) = b and x - (b - a) = a,

and prove that the study of such structures is equivalent to the study of
generalized Boolean algebras. We call such structures Boolean subtractive
algebras since they are subtractive algebras in the sense of Crapo and Rota
([1], 3.7). Alternatively, such structures might be called generalized
colonies since, as we later prove, every colony is a Boolean subtractive
algebra.

As an example of a Boolean subtractive algebra which is not a colony,
we mention the set of all finite subsets of an infinite set, with set difference
as composition. This (infinite) model shows the consistency of our axioms.
There are also many finite models of SI, S2, and S3, all of which are
colonies.

The independence of these axioms is also easily demonstrated. Let S
be any two-element set and let x - y = x for all x, ye S. This composition
shows the independence of S3. If, on the other hand, one sets x - y = y for
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all x, yeS, the resulting composition shows the independence of SI.

F i n a l l y , l e t S = {a, b, c} a n d d e f i n e - b y a-a=a-b=b-b=c-a=c-b=

c - c = c, b-a = a-c = a, a n d b - c = b. T h i s s t r u c t u r e s a t i s f i e s S I a n d

S 3 , b u t n o t S 2 , s i n c e a-{b-a)~a-a = cφa.

2 Preliminaries Following Stone ([3],p. 721),we call a structure (S, v, Λ) a

generalized Boolean algebra if it satisfies the following axioms:

(i) avb ~ bva

(ii) ava = a

(iii) 30 e S such that Va e S, a v 0 = a

(iv) a Λ b ~ b A a

(v) a Λβ = a

(vi) a /\(b Λ c) = (a A b) A C

(vii) a Λ ( 6 V C) = {a A b) v (a A C)

(viii) Vα, be S such that a A b = a, 3xe S such that xva = b and XAa = 0.

It may be proved from (i)-(viii) that v is also associative and distributes

over Λ, and that the absorption identities a*(av b) = av (a*b) = a hold

([3], p. 725). Thus a generalized Boolean algebra is a distributive lattice and

therefore has the weak cancellation property: (xλa=yΛa and xva =

y va) =Φx = y. It follows from this property that the simultaneous equations

of (viii) have a unique solution. We may now prove the following theorem:

T h e o r e m 1. Let (S, v, Λ) be a generalized Boolean algebra. Vα, be S denote

by b - a the unique solution in S of the simultaneous equations xva = avb

and x Aa = 0. Then (S, -) is a Boolean subtractiυe algebra.

Proof: T h e e x i s t e n c e of a so lut ion to xva = avb and x*a = 0 fol lows f r o m

(viii) and t h e a b s o r p t i o n ident i ty ah{avb)-a. In o r d e r to p r o v e t h a t

(a - b) - c = {a - c) - b, i t suff ices to show t h a t (a - b) - c = a - (b v c) and

t h e n u s e b v c = c v b. L e t x = a - b, so t h a t x v b = a v b and x Λ b = 0. L e t

x = a - δ , so t h a t xvb = avb and x A b = 0. L e t y = x - c , so t h a t y v c = x v c

and y ΛC = 0. L e t z = a - (b v c), so t h a t z v (b v c) = av(bvc) and 2 Λ ( 5 V C ) =

0. Then y v (b v c) = (yvc)vb = {x v c) v b = (x vb) v c = (av b) v c = a v (b v c) =

zv(bvc). Also, p ( δ v c ) = ()Ά(3)vc))Λ(δvc) = (y A(X VC))A (b v c) = (yAXAb)v

(y AX AC) v (y A c A b) v (y A c) = 0 = z A (b VC). Hence y - z by weak cancel la-

t i o n . T o p r o v e t h a t a - (b - a ) = a f i t s u f f i c e s t o o b s e r v e t h a t a v ( b - a ) =

(b - ά)v a and a A (b - a) = (b - #)Λ β = 0.

F i n a l l y , we r e m a r k t h a t x=avb i s a so lut ion of t h e s i m u l t a n e o u s

e q u a t i o n s x - {a - b) = b a n d x - {b - a ) = a. F o r bv(a-b) = (a-b)vb =

δ v α = (bva)va = ( δ v ( α - b))va = (a - b) v(avb), a n d δ Λ ( α - b) = (a - b) A

b = 0. Hence (av b) - (a - b) = b. Similarly, ( α v δ ) - ( 6 - f l ) = α.

We call (S, -), as defined in Theorem 1, the Boolean subtractive

algebra associated to the generalized Boolean algebra (S, v, Λ).

3 A Sequence of Lemmas We now prove a sequence of lemmas which lead

to a theorem complementary to Theorem 1. Throughout this section (S, -)

is a Boolean subtractive algebra, α, b, c, d, x, and y are elements of S, and
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these variables are understood to be universally quantified unless other-

wise indicated. We define a composition Λ in S by a Λ b = a - {a - b).

Lemma 1. aΛ b = b A<Z.

Proof: Let x be any solution of the simultaneous equations x - (a - b) = b

and x - (b - a) = a of S3. Then

a - (a - b) = (x - (b - a)) - (a - b)

= (x- (a- b)) - (b -a) = b - (b - a ) , (SI)

Lemma 2. (a - b) - (b - a) = a - b.

Proof: (a - b) - (b - a) = (a - (b - a)) - b = a - b. (SI); (S2)

Lemma 3. a - a = b - b.

Proof: a - a = (a - a) - (((a - a) - (b - b)) - (a - a)) (S2)

= ( « - « ) - (((a - a ) - ( a - a ) ) - (b - b)) (SI)
= (a - a) - ((a - a) - (b - b)). (Lemma 2)

S i m i l a r l y , b - b = (b - b) - ((b - b) - (a - a ) ) . H e n c e a - a = b - b b y

Lemma 1.

In view of Lemma 3, there is a distinguished element of S (which we

denote by 0) with the property a - a = 0 for all a e S.

Lemma 4. a - 0 = a and 0 - a = 0.

Proof: a - 0 = a - {a - a) = a by S2. By S2 and the preceding line, 0 - a =

0 - (a - 0) = 0.

It follows from Lemma 4 that a structure (S, -) satisfying SI, S2, and

S3 is a subtractive algebra in the sense of Crapo and Rota (i.e., a structure

(S, -) with distinguished element 0 satisfying I. a - a = 0 and II. a - 0 =

0=Φa = 0), cf. [1], 3.7.

Lemma 5. «Λ a -a.

Proof: aΛa = a-(a-a)=a-0 = a. (Lemma 4)

Lemma 6. If a - b = b - a, then a = δ.

Proof: a = a - (b - a) =a - (a - b) = b - (b - a) (S2); (Lemma 1)

= b - (a - b) = b. (S2)

L e m m a Ί.Ifx-c = y - c and c - x = c - y, then x = y.

Proof: x - y = (x - y) - ((y - c) - (x - y)) (S2)

= (χ-y) - ((y - (χ-y)) - C) (SI)

= (* - y) - (y - c) = (* - 3θ - (* - c) (S2)

= (* - (# - c)) - y (SI)

= (c - (c - ΛΓ)) - y (Lemma 1)

= (c - y) - (c - x) = 0. (SI)

Similarly, y - # = 0 and so x = y by Lemma 6.
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Lemma 8. The simultaneous equations x - (a - δ) = b and x - (b - a) - a of
(S3) have a unique solution in S.

Proof: Suppose that x - (a - b) = y - (a - b) = b and x - (b - a) = y - (b - a) =

a. Then

(a- b) - x=((x- {b - a)) - b) - x
= ((x - δ) - (δ - « ) ) - * (SI)
= ((* - δ) - *) - (δ - a) (SI)
= ((# - x) - b) - (b - σ) = 0. (SI); (Lemma 4)

Similarly, (α - b) - y = 0, and so x = 3; by Lemma 7.

In view of Lemma 8 we may introduce a composition v in S by letting
α v δ b e the unique solution of the simultaneous equations x - (a - b) = b and
x - (b - a) = a.

Lemma 9. The following hold:

(i) a v δ = b v β

(ii) a\ι a - a

(iii) α v θ = α.

Proof: The first two assertions are clear. The third follows from
α - ( α - 0 ) = t f - < 2 = 0 and a - (0 - a) = α - 0 = a.

L e m m a 10. The statements a - b = 0, a ̂ b = a, and avb = b are all equiva-

lent.

Proof: If a - b = 0, then a hb = a - (α - δ) = a - 0 = a. li a λb = a, then by
Lemma 1 b/^a = a, i.e., b - (b - a) = a. By (S2) b - (a - b) = b. Hence a v b =
δ. Finally, if a v δ = δ, then δ - (δ - a) = a and, by Lemma 1, a - (a - b) = a.
Hence α - δ = (α - (α - δ)) - δ = (a - b) - (a - b) = 0, by (SI) and Lemma 3.

Lemma 11. (a - δ) - δ = a - δ.

Proo/: (α - δ) - δ = (α - δ) - (δ - (a - b)) (S2)
= α - δ . (S2)

Lemma 12. a - (a - (a - b)) = a - b<.

Proof: Let x = a v (a - δ). Then A: - ((α - δ) - α) = α and by (SI) and Lemmas
3 and 4, AT - ((α - a) - b) - x - (0 - δ) = x = a. Also, x - (a - (a - b)) - a - b
and so α - {a - (a - δ)) = a - δ.

Lemma 13. (a Λ δ) ΛC = α Λ (δ Λ C).

Proof: It suffices to prove that ((α Λ δ) Λ C) - (α Λ (δ Λ C)) = 0, for this implies
by Lemma 1 that (ch(b*a)) - ( ( C A 5 ) A « ) = 0 and, hence, that {a A (δ Λ C)) -
((a Λ δ) Λ c) = 0. The desired result then follows by Lemma 6. Now

((a Λ δ) Λ c) - {a A (δ Λ C)) = ((a Λ δ) - ((β Λ δ) - c)) - (a A (δ Λ C))

= ((«Λδ) - (flA(δAc))) - ( ( « A 6 ) - c) (SI)
= ((* - (a - δ)) - (a - (0 - (δΛc)))) - ((«Aδ) - c)

= (fa - (α - to - (δAc)))) - to " δ)) - (toAδ) - c) (SI)
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= ((a - (6ΛC)) - (a - b)) - {(a A b) - c) (Lemma 12)

= {{a - (a - b)) - (bΛc)) - ((«Λδ) - c) (SI)

= ((b - (b - a)) - (b - (b - c))) - {(a Λb) - c) (Lemma 1)

= ((b - (b - (b - c))) - (6 - α)) - ((flAδ) - c) (SI)

= ((b - c) - (b - a)) - ((flΛδ) - c) (Lemma 12)

= ((6 - (6 - a)) - c) - ((a A b) - c) (SI)

= ((δΛfl) - c) - ((βΛ 6) - c) = 0. (Lemma 1)

Lemma 14. J/ α - d = 07 ί/zβ/2 a - (a - b) = a - (d - b) for all b.

Proof: By (S2), (a - b) - (a - {a - b)) = a - b. Also,

a - b = (α - (a - d)) - b (Lemma 4)

= ( d - (d- a)) - b = (d - b) - (d -a) ( L e m m a 1 ) ; ( S I )

and so

(a-b)-(a-(d- b)) = ((d - b) - (d - α)) - (α - (d - δ))

= ( ^ - b) - (a - (rf - b))) -(d-a) (SI)

= (d - δ) - (rf - a) (S2)
= (d - (d - α)) - 6 (SI)

= (a - (a - d)) - b (Lemma 1)

= (<z - 0) - b = a - b. (Lemma 4)

Furthermore, (a - (a - b)) - (a - b) = a - (a - b) by Lemma 11, and

( a - ( d - b)) - ( a - b) = ( a - ( a - b)) - ( d - b) (SI)

= {b - (b - a)) - (d - b) (Lemma 1)

= (b - (d - b)) - ( b - a ) (SI)

= b - (b - a) (S2)

= a - (a - b). (Lemma 1)

Hence, a - (a - b) = a - (d - b) by Lemma 7.

L e m m a 1 5 . (d - c) A b = (d A b) - (c A b).

Proof: S i n c e (d-c)-d=(d-d)-c = 0-c = 0,it f o l l o w s f r o m L e m m a 14

that

(d - c) A b = (d - c) - ({d - c) - b) = (d - c) - (d - b)

= (d- (d - b)) - c = (b - (b - ά)) - c (SI); (Lemma 1)

= (b - c) - (b - d) (SI)

= (b - (b - (b - c))) - (b - d) (Lemma 12)

= (b - (b - d)) - ( & - ( & - c)) (SI)

= (b A d) - (b A c ) - (d A b) - (c A b ) . (Lemma 1)

Lemma 16. « Λ ( 5 V C ) = {a A b) v {a A C).

Proof: We have

{a A (b v c)) - ((α Λ b) - (αΛ C)) = ((6 VC)Λ«) - ((b A a) - (CA a)) (Lemma 1)

= ( ( 6 V C ) Λ « ) - ((b - C)AO) (Lemma 15)

= {(bye) - (b - C))ACI (Lemma 15)

= a A ((b v c) - (b - c)) = a A c. (Lemma 1)
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Similar ly, {ah{b vc)) - ((CIΛC) - (a A &)) - a hb, and so a A (b vc) = ( « Λ b) V ( « Λ C)

by the definition of v.

Lemma 17. If asb-a, then the equations xva = b and XΛCI = 0 admit
x = b - a as a simultaneous solution.

Proof: By Lemmas 11 and 1, we have b - ((b - a) - a) = b - (b - a) = b A a =
a Λ b = a; by S2, b - {a - (b - a)) = b - a. Hence b = (b - a) v b by the defini-
tion of v. Also, (b - a) A a - (b AO) - (a A a) = (a A b) - (a A a) = a - a = 0, by
Lemmas 15, 1, 5, and 3.

Lemmas 1, 5, 9, 13, 16, and 17 imply the following theorem.

Theorem 2. Let (S, -) be a Boolean subtractiυe algebra. For alia, beS,
let a Λ 6 = a - (a - b) and let av b be the unique solution of the simultaneous
equations x - {a - b) = b and x - (b - a) = a. Then (S, v, Λ) is a generalized
Boolean algebra.

We call (S, v, Λ), as defined in the preceding theorem, the generalized
Boolean algebra associated to (S, -) . In the next two theorems, we
demonstrate a one-to-one correspondence between generalized Boolean
algebras and Boolean subtractive algebras.

Theorem 3. Let (S, ~) be the Boolean subtractiυe algebra associated to the
generalized Boolean algebra (S, v, A) associated to the Boolean subtractiυe
algebra (S, - ) . Then a ~ b = a - b for all a, b e S.

Proof: By the definition of ~, a ~ b is the unique solution in S of the
simultaneous equations xvb = by a and XAb = 0. It therefore suffices to
show thatα - b is also a solution of these equations. By the definition of A
and Lemma 11, (a - b) A b = (a - b) - ((a - b) - b) = (a - b) - (a - b) = 0.

We prove that (a-b)vb=avb = bva by showing that (I) (avb)-
((α - b) - b)r = b and (II) (a v6) - (b - (a - b)) = a - 6: (I). By L e m m a 11 and
the definition of v, (avb) - ((a - b) - b) = (a vb) - (a - b) = b. (II) By S2 it
s u f f i c e s t o s h o w t h a t (avb)-b=a-b. Now ((a v b) - b) - {a - b) = ((a vb) -

(a - b)) - b = b - b = 0 by SI and the definition of v. Also, since a = (a v b) -
(b - a), it follows that a - b = ((avb) - (b - a)) - b = ((avb) - b) - (b - a).
Hence, (a - b) - ((a v b) - b) = ((α v 6) - 6) - (6 - α) - ((α v 5) - δ)- = (((α v b) -
b) - ((« v b) - b)) - (b -a) = 0 - (b -a) = 0. Thus (« v δ) - δ = « - 5 by Lemma 6.

Theorem 4. L^ί (S, u, Π) &£ the generalized Boolean algebra associated to
the Boolean subtractiυe algebra (S9 -) associated to the generalized Boolean
algebra (S, v, A). Then a A 6 = a Π b and a vb = a u b for all α, be S.

Proof: By definition o Π δ = α - (c • δ). We prove that # Λ 6 = a - (a - b) by
showing that a A b is a solution of the equations ΛΓ A (a - b) = 0 and x v (a - b) =

(α - b) v a. First, (a A b) A (a - b) = a A (b A(a - b)) = a A 0 = 0. Next, note that
(a - b) v a = a . F o r ( ( α - δ ) v α ) v δ = ( ( « - δ ) v δ ) v β = ( f l v δ ) v α = α v δ , a n d
((a - b) va) A b = ((a - b) A b) v (a A b) = 0 v (a A b) - a A b. Hence (a - b) va = a
by weak cancellation in (S, v, A). Finally, we have (a A b) v (a - b) = (a v (a -
b)) A(b v(a - b)) = a A(a vb) = a = (a - b)va, as desired.
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Now α u H s the unique solution of the equations x - (a - b) = b and

x - (b - a) = a. To show that avb also satisfies these equations, note that

avb = (a-b)vb and hence (a v b) - (a - b) = ((a - b) vb) - (a - b). But ((a -

b) v b) - {a - b) = b, for b v (a - b) = (a - b) v ((a - b) v b) and 6 Λ (α - 6) = 0.

Similar ly, ( α v δ ) - (δ - α) = α.

We conclude by r e m a r k i n g that the notion of an ideal I in the gen-

era l ized Boolean a lgebra (S, V , Λ ) may be reformulated in subtract ive

terminology by

(i) ae\ and be S=Φa - be \

and

(ii) a e I and x - a e I => x e I.

4 Colonies, Boolean Subtractive Algebras, and Difference Domains We

remarked in the Introduction that every colony (K, -) is a Boolean

subtractive algebra. This may be proved easily by passing to the Boolean

algebra associated to (K, -), for SI is Kl; and a - (b - a) = a A (b ΛCI')' =

a h(br va) = a, so S2 holds. Finally a v b is easily shown to be a solution of

the simultaneous equations x - (a - b) = b and x - (b - a) = a, so that S3

holds. The following theorem gives a simple criterion for a Boolean

subtractive algebra to be a colony.

Theorem 5. A Boolean subtractive algebra (S, -) is a colony if and only if it

contains a distinguished element 1 such that a - 1 = 0 for all a e S.

Proof: Necessity. ([2], p. 214, Lemma 4). Sufficiency. Kl is SI. To prove

K 2 , n o t e t h a t s i n c e a - l = 0 , a - ( a - l ) = a - Q = a . But by Lemma 1,

a - (a - 1) = 1 - (1 - a) = a. Also α-Λ = l - l = 0, so K3 holds. Finally,

K4 is a special case of Lemma 14.

In conclusion we mention that Guting [2] has also studied a class of

structures called difference domains (defined by axioms Kl, K2, and S2),

and has related their study to that of the class of lattices with Boolean

involution ([2], p. 219). Difference domains represent a generalization of

of colonies in an essentially different direction from that of Boolean

subtractive algebras, for it may easily be shown that the intersection of the

class of difference domains with the class of Boolean subtractive algebras

is precisely the class of colonies.
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