## MASTERCLASS

Rational Consensus in Science and Society
(Lehrer and Wagner, 1981)
Department of Philosophy, Logic, and Scientific Method

## The London School of Economics and Political Science

## 20 October 2009

Second Session (14.30-16.00)

## THE AXIOMATICS OF AGGREGATION

Carl Wagner
Department of Mathematics
The University of Tennessee

## 1. Why weighted arithmetic means?

Answer: They furnish the simplest allocation aggregation methods.

The Allocation Aggregation Problem: Suppose that each of $n$ individuals is asked to assess the most appropriate values of some set of numerical decision variables $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}$. Values are constrained to be nonnegative, and to sum to some fixed positive real number s. How should their possibly differing individual assessments be aggregated into a single group assessment?

- Record their individual assessments in an $n \times m$ matrix $A=\left(a_{i j}\right)$ where $a_{i j}$ denotes the value assigned by individual $i$ to variable $x_{j}$. Any such matrix is called an s-allocation matrix. If $\mathrm{n}=1$, it is called an s-allocation row vector.

Reformulation of the allocation aggregation problem: Given an s-allocation matrix $A=\left(a_{i j}\right)$, produce an s-allocation row vector $a=\left(a_{1}, \ldots, a_{m}\right)$ that incorporates the assessments recorded in A in some reasonable way.

Two possible approaches, modeled on paradigms from social choice theory:

1. Single profile (following Bergson-Samuelson)-more on this in this evening's seminar.
2. Multi-profile (following Black and Arrow), which we pursue here.

- $\mathcal{A}(\mathrm{n}, \mathrm{m} ; \mathrm{s})=$ the set of all $\mathrm{n} \times \mathrm{m}$ s-allocation matrices.
- $\mathcal{A}(\mathrm{m} ; \mathrm{s})=$ the set of all m-dimensional $s$-allocation row vectors.
- Any function $\mathrm{F}: \mathcal{A}(\mathrm{n}, \mathrm{m} ; \mathrm{s}) \rightarrow \mathcal{A}(\mathrm{m} ; \mathrm{s})$ is called an allocation aggregation method (AAM). Each AAM F furnishes a method, applicable to every conceivable s-allocation matrix $A$, of reconciling the possibly different opinions recorded in $A$ in the form of the group assignment $F(A)=a=\left(a_{1}, \ldots, a_{m}\right)$.
- Notation
$A_{j}$ denotes the $j^{\text {th }}$ column of matrix $A$.
$a_{j}$ denotes the $j^{\text {th }}$ entry of row vector $a$.
c denotes the $\mathrm{n} \times 1$ column vector with all entries equal to $c$.
- Aggregation Axioms

Irrelevance of Alternatives (IA): For each $\mathrm{j}=1, \ldots, \mathrm{~m}$, and for all $\mathrm{A}, \mathrm{B}$ in $\mathcal{A}(\mathrm{n}, \mathrm{m} ; \mathrm{s})$, $A_{j}=B_{j} \Rightarrow F(A)_{j}=F(B)_{j}$.

Remark. IA is clearly equivalent to the existence of functions $f_{j}:[0, s]^{n} \rightarrow[0, s]$, $j=1, \ldots, m$, such that for all $A$ in $\mathcal{A}(n, m ; s)$,

$$
F(A)_{j}=f_{j}\left(A_{j}\right) \text { and } \underset{1 \leq j \leq m}{\sum f_{j}\left(A_{j}\right)=S .}
$$

Zero Preservation (ZP): For each $\mathrm{j}=1, \ldots, \mathrm{~m}$, and for all $A$ in $\mathcal{A}(n, m ; s), A_{j}=\underline{0}=>F(A)_{j}=0$, i.e., $f_{j}(\underline{0})=0$ for each $\mathrm{j}=1, \ldots, \mathrm{~m}$.

Theorem 1.1. ( $L \& W$ 1981) If $m \geq 3$, an $A A M$ $F$ satisfies IA and ZP if and only if there exists a single sequence $w_{1}, \ldots, w_{n}$ of weights, nonnegative and summing to 1 , such that for all $A=\left(a_{i j}\right)$ in $\mathcal{A}(n, m ; s)$ and $j=1, \ldots, m$,

$$
F(A)_{j}=f_{j}\left(A_{j}\right)=w_{1} a_{1 j}+w_{2} a_{2 j}+\cdots+w_{n} a_{n j} .
$$

Note that IA and ZP allow for dictatorial aggregation ( for some fixed d in $\{1, \ldots, \mathrm{n}\}$, $w_{d}=1$ and $w_{i}=0$ for $i \neq d$ ).

Theorem 1.2. (Aczel, Mg, Wagner 1984) If $m \geq 3$, an AAM $F$ satisfies IA if and only if there exist "weights" $\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{n}} \varepsilon[-1,1]$ and real numbers $\beta_{1}, \ldots, \beta_{m} \varepsilon[0, s]$ satisfying
(1) $-s \Sigma^{-} w_{i} \leq \beta_{j} \leq s\left(1-\Sigma^{+} w_{i}\right), j=1, \ldots, m$,
where $\Sigma^{-}$indicates the sum of the negative weights and $\Sigma^{+}$the sum of the positive weights, and
(2) $\quad \sum \beta_{j}=\left(1-\Sigma w_{i}\right) \mathrm{s}$,

$$
1 \leq \mathrm{j} \leq m \quad 1 \leq \mathrm{i} \leq \mathrm{n}
$$

such that, for all $A=\left(a_{i j}\right)$ in $\mathcal{A}(n, m ; s)$,
(3) $F(A)_{j}=f_{j}\left(A_{j}\right)=w_{1} a_{1 j}+w_{2} a_{2 j}+\cdots+w_{n} a_{n j}+\beta_{j}$.

- If $w_{i} \equiv 0$, aggregation is imposed.
- The weights $w_{i}$ may be negative, subject to conditions (1) and (2). In particular, condition (1) implies that $\Sigma\left|w_{i}\right| \leq 1$, and hence that $\Sigma w_{i} \leq 1$.
- If $\sum w_{i}=1$, then $\beta_{j}=0$ for all $j$, and each $w_{i} \geq 0$. So an AAM $F$ satisfying IA differs from simple weighted arithmetic averaging if and only if $\Sigma w_{i}<1$. In such a case the formula for $F(A)_{j}=f_{j}\left(A_{j}\right)$ may be recast in the form
(4) $F(A)_{j}=f_{j}\left(A_{j}\right)=\sum_{i} w_{i}\left(a_{i j}-\sigma_{j}\right)+\sigma_{j}$

$$
=\sum_{i} w_{i} a_{i j}+\left[1-\Sigma_{i} w_{i}\right] \sigma_{j},
$$

where $\sigma_{j}=\beta_{j} /\left(1-\Sigma_{i} w_{i}\right) \geq 0$. Here, $\Sigma_{j} \sigma_{j}=s$.
Example with negative weights: In (4),
let $w_{1}=\cdots=w_{n-1}=0, w_{n}=-1 /(m-1)$, and
$\sigma_{1}=\cdots=\sigma_{m}=s / m \Rightarrow f_{j}\left(A_{j}\right)=\left(s-a_{n j}\right) /(m-1)$.

- A necessary and sufficient condition for all weights $w_{i}$ to be nonnegative: For all vectors $X, Y \in[0, s]^{n}$, and for each $j=1, \ldots, m$,

$$
X \geq Y \Rightarrow f_{j}(X) \geq f_{j}(Y) \text {. (weak dominance) }
$$

Exercise: Determine the consequences of requiring strong dominance, i.e.,
$X \geq Y=>f_{j}(X) \geq f_{k}(Y)$ for all $j, k \varepsilon\{1, \ldots, m\}$

- The case of infinitely many decision variables:

The above theorems also hold, with the very same proofs, when there are denumerably infinitely many decision variables $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots$

But in the infinite case, IA forces all weights $\mathrm{w}_{\mathrm{i}}$ to be nonnegative (exercise).

## 2. Aggregating Probability Measures.

- If $\Omega$ is a finite or denumerably infinite set, a function $p: \Omega \rightarrow[0,1]$ is called a probability mass function if $\Sigma p(\omega)=1$.
$\omega \varepsilon \Omega$
The above theorems apply to the aggregation of probability mass functions when $|\Omega| \geq 3$.

Each probability mass function $p$ on a countable set $\Omega$ gives rise to a set function $P: 2^{\Omega} \rightarrow[0,1]$ defined for all subsets $E$ of $\Omega$ by

$$
P(E):=\sum_{\omega \in E} p(\omega) .
$$

P is a discrete probability measure.

- Aggregating arbitrary probability measures:
- If $\Omega$ is a set of any cardinality, a family $\mathbf{A}$ of subsets (called events) of $\Omega$ is called a sigma algebra if
(i) $\Omega \varepsilon \mathbf{A}$,
(ii) $E \varepsilon A=>E^{C} \varepsilon A$, and
(iii) $E_{1}, E_{2} \ldots \varepsilon A \Rightarrow E_{1} \cup E_{2} \cup \cdots \varepsilon A$.
- A function $\mathrm{P}: \mathbf{A} \rightarrow[0,1]$ is called a probability measure on $\mathbf{A}$ if
(i) $\mathrm{P}(\Omega)=1$, and
(ii) If $E_{1}, E_{2}, \ldots$ is a sequence of pairwise disjoint events, then

$$
P\left(E_{1} \cup E_{2} \cup \cdots\right)=P\left(E_{1}\right)+P\left(E_{2}\right)+\cdots
$$

- $\Pi_{\mathrm{A}}$ : = the set of all probability measures on the sigma algebra $\mathbf{A}$.
- Any $F:\left(\Pi_{A}\right)^{n} \rightarrow \Pi_{A}$ is a probability aggregation method (PAM).

Here, IA takes the form : For each E ع A (except the empty set and $\Omega$ ) there exists a function $f_{E}:[0,1]^{n} \rightarrow[0,1]$ such that

$$
F\left(P_{1}, \ldots, P_{n}\right)(E)=f_{E}\left(P_{1}(E), \ldots, P_{n}(E)\right) \text {, and }
$$

ZP dictates that $\mathrm{f}_{\mathrm{E}}(0, \ldots, 0)=0$. The condition $m \geq 3$ is replaced by the requirement that $\mathbf{A}$ be tertiary, i.e., that there exist at least three nonempty, pairwise disjoint events in $\mathbf{A}$.

Then IA and ZP characterize the PAMs

$$
F\left(P_{1}, \ldots, P_{n}\right)=w_{1} P_{1}+\cdots+w_{n} P_{n}
$$

and IA alone characterizes the PAMs

$$
F\left(P_{1}, \ldots, P_{n}\right)=w_{1} P_{1}+\cdots+w_{n} P_{n}+\left(1-\sum w_{i}\right) Q
$$

where $Q$ is a probability measure on $\mathbf{A}$.
3. Remarks on Irrelevance of Alternatives.

- Kevin McConway (Marginalization and linear opinion pools, J.Amer.Statist. Assoc. 76
(1981), 410-414) proved that IA is equivalent to a certain marginalization property of probability aggregation:
- Let $\mathcal{S}(\Omega)$ denote the set of all sigma algebras on $\Omega$. For each $\mathbf{A} \varepsilon \delta(\Omega)$, let $\mathrm{F}_{\mathbf{A}}:\left(\Pi_{\mathbf{A}}\right)^{n} \rightarrow \Pi_{\mathrm{A}}$.
- A probability aggregation method (in the sense of McConway) is a family $\left\{\mathrm{F}_{\mathrm{A}}: \mathbf{A} \varepsilon \delta(\Omega)\right\}$ of such mappings.
- Given $\mathbf{A}$ and $\mathbf{B}$ in $\delta(\Omega)$, where $\mathbf{B}$ is a sub-sigma algebra of $\mathbf{A}$, and P a probability measure on $\mathbf{A}$, let $P_{(B)}$ denote the marginalization (i.e., the restriction) of $P$ to $B$.
- The family $\left\{\mathrm{F}_{\mathrm{A}}: \mathbf{A} \varepsilon \mathcal{S}(\Omega)\right\}$ has the marginalization property (MP) iff

$$
F_{B}\left(P_{1(\mathbf{B})}, \ldots, P_{n(\mathbf{B})}\right)=\left(F_{A}\left(P_{1}, \ldots, P_{n}\right)\right)_{(\mathbf{B})}
$$

for all $\left(P_{1}, \ldots, P_{n}\right) \varepsilon\left(\Pi_{A}\right)^{n}$.
MP $\Leftrightarrow$ marginalization commutes with aggregation.

Theorem 3.1 (McConway). The family $\left\{\mathrm{F}_{\mathbf{A}}: \mathbf{A} \varepsilon \delta(\Omega)\right\}$ has the MP iff, for each nonempty, proper subset E of $\Omega$, there exists a function $\mathrm{f}_{\mathrm{E}}:[0,1]^{\mathrm{n}} \rightarrow[0,1]$ such that, for all $\mathbf{A} \varepsilon \delta(\Omega)$, all $\left(\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{n}}\right) \varepsilon\left(\Pi_{\mathrm{A}}\right)^{n}$, and all $\mathrm{E} \varepsilon \mathbf{A}$,
(5) $F_{A}\left(P_{1}, \ldots, P_{n}\right)(E)=f_{E}\left(P_{1}(E), \ldots, P_{n}(E)\right)$.

Note that (5), which McConway calls the strong setwise functionality property (SSFP) implies $I A$ for each $F_{A}$, where $\mathbf{A} \varepsilon \delta(\Omega)$. Morever,
if $\mathbf{A}, \mathbf{B} \varepsilon \mathcal{S}(\Omega), E \varepsilon \mathbf{A} \cap \mathbf{B},\left(\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{n}}\right) \varepsilon\left(\Pi_{\mathbf{A}}\right)^{\mathrm{n}}$, $\left(Q_{1}, \ldots, Q_{n}\right) \varepsilon\left(\Pi_{B}\right)^{n}$, and $P_{i}(E)=Q_{i}(E), i=1, \ldots, n$, then

$$
F_{A}\left(P_{1}, \ldots, P_{n}\right)(E)=F_{B}\left(Q_{1}, \ldots, Q_{n}\right)(E) .
$$

4. Weighted Arithmetic Aggregation and Conditionalization.

Let $F:\left(\Pi_{A}\right)^{n} \rightarrow \Pi_{A}$ be given by the formula
$F\left(P_{1}, \ldots, P_{n}\right)=w_{1} P_{1}+\cdots+w_{n} P_{n}$.
If $E \varepsilon \mathbf{A}$, then, in general,
$F\left(P_{1}, \ldots, P_{n}\right)(\cdot \mid E) \neq w_{1} P_{1}(\cdot \mid E)+\cdots+w_{n} P_{n}(\cdot \mid E)$.
"Weighted arithmetic aggregation does not commute with conditionalization."

In fact, Dalkey (1975) showed that such commutativity holds iff aggregation is dictatorial. Is this a problem?

Note that $F\left(P_{1}, \ldots, P_{n}\right)(A \mid E):=$

$$
\begin{aligned}
& F\left(P_{1}, \ldots, P_{n}\right)(A \cap E) / F\left(P_{1}, \ldots, P_{n}\right)(E) \\
= & \sum w_{i} P_{i}(A \cap E) / \sum w_{i} P_{i}(E) \\
= & u_{1} P_{1}(A \mid E)+\cdots+u_{n} P_{n}(A \mid E), \quad \text { where } \\
& u_{i}=w_{i} P_{i}(E) / \sum w_{i} P_{i}(E) .
\end{aligned}
$$

McConway: No problem if aggregation "applies only to distributions conditional on a fixed amount of knowledge."

But

$$
\left(P_{1}, \ldots, P_{n}\right) \varepsilon\left(\Pi_{A}\right)^{n}=>\left(P_{1}(\cdot \mid E), \ldots, P_{n}(\cdot \mid E)\right) \varepsilon\left(\Pi_{A}\right)^{n}
$$

and the domain of the PAM F is assumed to be all of $\left(\Pi_{A}\right)^{n}$.

## - Commutativity of aggregation and

 conditionalization can be achieved ifi. a weaker form of IA is adopted; and
ii. the probability measures are discrete, and aggregated via their associated mass functions.

Theorem 4.1. If $\Omega=\left\{\omega_{1}, \omega_{2}, \ldots\right\}, M_{\Omega}=$ the set of all probability mass functions on $\Omega$. For all $\left(p_{1}, \ldots, p_{n}\right) \varepsilon\left(M_{\Omega}\right)^{n}$, and each $j=1,2, \ldots$, let
$\mathrm{F}\left(\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}}\right)\left(\omega_{\mathrm{j}}\right):=$

$$
\Pi_{1 \leq i \leq n} p_{i}\left(\omega_{j}\right)^{w(i)} / \sum_{j}\left(\Pi_{1 \leq i \leq n} p_{i}\left(\omega_{j}\right)^{w(i)}\right),
$$

the normalized weighted geometric mean of $p_{1}\left(\omega_{j}\right), \ldots, p_{n}\left(\omega_{j}\right)$. Then the PAM F commutes with conditionalization (and also with Jeffrey conditionalization, parameterized, following H . Field, in terms of Bayes factors).

- Theorem 4.1 also holds for probability measures $P_{i}$ on a sigma algebra $\mathbf{A}$ for which there exists a measure $\mu$ on $\mathbf{A}$ and $\mu$ measurable "density functions" $\varphi_{i}$ on $\Omega$ such that for all $\mathrm{E} \varepsilon \mathbf{A}$,

$$
P_{i}(E)=\int_{E} \varphi_{i} d \mu .
$$

Here, $\quad \mathrm{F}\left(\varphi_{1}, \ldots, \varphi_{\mathrm{n}}\right)=\Pi_{i} \varphi_{i}{ }^{\text {wi) }} / \int \Pi_{i} \varphi_{i}{ }^{w(i)} \mathrm{d} \mu$.
5. Allocation Aggregation with a Finite Valuation Domain (Bradley and Wagner)

Suppose that the values assigned to the variables must lie in the finite subset V of $[0, \mathrm{~s}]$, where
(i) $0 \varepsilon \mathrm{~V}$.
(ii) $x \varepsilon V=>s-x \varepsilon V$.
(iii) $x, y \varepsilon V$ and $x+y \leq s=>x+y \varepsilon V$.

Theorem 5.1. If $m \geq 3$, an $A A M$
$\mathrm{F}: \mathcal{A}(\mathrm{n}, \mathrm{m} ; \mathrm{s}, \mathrm{V}) \rightarrow \mathcal{A}(\mathrm{m} ; \mathrm{s}, \mathrm{V})$ satisfies IA and Z if and only if it is dictatorial.

