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1.  Why weighted arithmetic means? 
 
Answer: They furnish the simplest allocation 
aggregation methods. 
 
The Allocation Aggregation Problem:  Suppose 
that each of n individuals is asked to assess 
the most appropriate values of some set of 
numerical decision variables  x1,…,xm. Values 
are constrained to be nonnegative, and to sum 
to some fixed positive real number s. How 
should their possibly differing individual 
assessments be aggregated into a single 
group assessment? 
 
● Record their individual assessments in an  
n x m  matrix  A = (aij) where  aij  denotes the 
value assigned by individual  i  to variable  xj. 
Any such matrix is called an s-allocation 
matrix.  If  n = 1, it is called an s-allocation row 
vector. 
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Reformulation of the allocation aggregation 
problem:  Given an s-allocation matrix  A = (aij), 
produce an s-allocation row vector   
a = (a1,…,am) that incorporates the 
assessments recorded in A in some 
reasonable way. 
 
Two possible approaches, modeled on 
paradigms from social choice theory: 
 
1. Single profile (following Bergson-  
    Samuelson)—more on this in this evening’s  
    seminar. 
 
2. Multi-profile (following Black and Arrow), 
    which we pursue here. 
 
●  A(n,m;s) = the set of all n x m  s-allocation 
matrices. 
 
●  A(m;s) = the set of all m-dimensional  
s-allocation row vectors. 
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●  Any function F: A(n,m;s) → A(m;s)  is 
called an allocation aggregation method 
(AAM). Each AAM  F  furnishes a method, 
applicable to every conceivable s-allocation 
matrix A, of reconciling the possibly different 
opinions recorded in A in the form of the group 
assignment  F(A) = a = (a1,…,am). 
 
 
● Notation 
 
Aj denotes the jth column of matrix A. 
 
aj denotes the jth entry of row vector a. 
 
c  denotes the n x 1 column vector with all 
entries equal to c. 
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● Aggregation Axioms 
 
Irrelevance of Alternatives (IA): For each  
j = 1,…,m, and for all A, B in A(n,m;s), 
Aj = Bj  =>  F(A)j = F(B)j.   
 
Remark.  IA is clearly equivalent to the 
existence of functions  fj : [0,s]n → [0,s],  
j =1,…,m, such that for all A in A(n,m;s), 
F(A)j = fj(Aj)  and  Σ fj(Aj) = s. 
                         1≤ j ≤ m  
 
Zero Preservation (ZP): For each j = 1,…,m, 
and for all A in A(n,m;s),  Aj = 0  => F(A)j = 0, 
i.e., fj(0) = 0  for each j = 1,…,m. 
 
Theorem 1.1. (L & W 1981)  If  m ≥ 3, an AAM 
F satisfies  IA  and  ZP  if and only if there 
exists a single sequence  w1,…,wn of weights, 
nonnegative and summing to 1, such that for 
all A = (aij) in A(n,m;s)  and   j =1,…,m, 
 
      F(A)j = fj(Aj) = w1a1j + w2a2j + ···+ wnanj.  
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Note that IA and ZP allow for dictatorial 
aggregation  ( for some fixed d in {1,…,n},       
wd =1  and  wi = 0  for i ≠ d). 
 
Theorem 1.2. (Aczel, Ng, Wagner 1984)  If  
m ≥ 3, an AAM  F  satisfies  IA  if and only if 
there exist “weights”  w1,…,wn ε [-1,1] and real 
numbers  β1,…, βm ε [0,s] satisfying 
 
(1)     -sΣ- wi  ≤  βj ≤  s(1 – Σ+ wi) ,  j = 1,…,m, 
 
where Σ- indicates the sum of the negative 
weights and Σ+ the sum of the positive weights, 
and 
 
 (2)          Σ βj       = (1 – Σ wi) s, 
          1 ≤ j ≤ m           1≤ i ≤ n 
 
such that, for all A = (aij) in A(n,m;s), 
 
 (3)  F(A)j = fj(Aj) = w1a1j + w2a2j + ···+ wnanj + βj.  
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●  If  wi ≡ 0, aggregation is imposed. 
 
●  The weights wi may be negative, subject to 
conditions (1) and (2). In particular, condition 
(1)  implies that Σ |wi| ≤ 1, and hence that 
 Σ wi ≤ 1.  
  
● If Σ wi = 1, then βj = 0 for all j, and each  
wi ≥ 0. So an AAM  F  satisfying  IA differs from 
simple weighted arithmetic averaging if and 
only if Σ wi < 1.  In such a case the formula for 
F(A)j = fj(Aj) may be recast in the form 
 
(4)   F(A)j =  fj(Aj) = Σi wi (aij - σj ) + σj 
 
                = Σi wi aij  + [1 - Σi wi] σj , 
                     
where  σj = βj / (1 - Σi wi) ≥ 0.  Here, Σj σj = s. 
 
Example with negative weights:  In (4),  
 let w1 = ··· = wn-1 = 0,  wn = -1/(m – 1), and  
σ1 = ··· = σm = s/m   =>  fj(Aj) = (s – anj)/(m – 1). 
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● A necessary and sufficient condition for all 
weights wi to be nonnegative: For all vectors  
X, Y  ε  [0,s]n, and for each j = 1,…,m, 
 
   X ≥ Y   =>   fj(X)  ≥  fj(Y).  (weak dominance) 
 
Exercise:  Determine the consequences of 
requiring strong dominance, i.e.,  
 
X ≥ Y  =>  fj(X)  ≥  fk(Y)  for all  j,k ε {1,…,m} 
 
● The case of infinitely many decision 
variables: 
 
The above theorems also hold, with the very 
same proofs, when there are denumerably 
infinitely many decision variables x1, x2, … 
 
But in the infinite case, IA  forces all weights wi 
to be nonnegative (exercise). 
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2. Aggregating Probability Measures. 
 
● If Ω is a finite or denumerably infinite set, a 
function p: Ω→ [0,1] is called a probability 
mass function if  Σ p(ω) = 1. 
                        ω ε Ω 
The above theorems apply to the aggregation 
of probability mass functions when |Ω| ≥ 3. 
 
Each probability mass function p on a 
countable set Ω gives rise to a set function 
P: 2Ω → [0,1]  defined for all subsets E of Ω by  
         
              P(E) : =   Σ  p(ω). 
                           ω ε E 
 
P is a discrete probability measure. 
 
●  Aggregating arbitrary probability measures: 
 
●  If Ω is a set of any cardinality, a family A of 
subsets (called events) of Ω is called a sigma 
algebra if  
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 (i)  Ω ε A ,  
 
(ii)  E ε A  =>  Ec ε A, and 
 
(iii)  E1, E2 … ε A   =>  E1 U E2 U ···  ε A.  
  
● A function P: A → [0,1]  is called a probability 
measure on  A  if 
 
(i)   P(Ω) = 1,   and 
 
(ii)  If E1, E2,… is a sequence of pairwise     
      disjoint events, then 
 
     P(E1 U E2 U ···) =  P(E1) + P(E2) + ···   . 

 
 
●  ΠA : = the set of all probability measures on 
the  sigma algebra A. 
 
●  Any  F: (ΠA)n → ΠA   is a probability 
aggregation method (PAM).  
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Here, IA  takes the form :  For each E ε A 
(except the empty set and Ω) there exists a 
function fE : [0,1]n → [0,1] such that  
 
     F(P1,…, Pn)(E) = fE(P1(E),…, Pn(E)), and 
 
ZP dictates that fE(0,…,0) = 0.  The condition  
m ≥ 3  is replaced by the requirement that A be 
tertiary, i.e., that there exist at least three 
nonempty, pairwise disjoint events in A. 
 
Then IA and ZP  characterize the PAMs 
 
      F(P1,…, Pn) = w1 P1 + ··· + wn Pn, 
 
and IA alone characterizes the PAMs 
 
 F(P1,…, Pn) = w1 P1 + ··· + wn Pn + (1-Σwi)Q, 
 
where Q is a probability measure on A. 
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3.  Remarks on Irrelevance of Alternatives. 
 
● Kevin McConway (Marginalization and linear 
opinion pools, J.Amer.Statist. Assoc. 76 
(1981), 410-414)  proved that IA is equivalent 
to a certain marginalization property of 
probability aggregation: 
 
● Let S(Ω) denote the set of all sigma algebras 
on Ω. For each A ε S(Ω), let  FA : (ΠA)n → ΠA . 
  
● A probability aggregation method (in the 
sense of McConway) is a family  
 { FA: A ε S(Ω)}  of such mappings.  
 
● Given A and B in S(Ω), where B is a 
sub-sigma algebra of A, and P a probability 
measure on A, let P(B) denote the 
marginalization (i.e., the restriction) of P to B.  
 
 
 



 13

● The family  { FA: A ε S(Ω)}  has the 
marginalization property (MP) iff 
 
     FB(P1(B),…,Pn(B)) = (FA(P1,…,Pn))(B) 

 
for all (P1,…, Pn) ε (ΠA)n. 
 
MP  marginalization commutes with    
           aggregation. 
 
Theorem 3.1 (McConway).  The family 
{ FA: A ε S(Ω)}  has the MP iff, for each 
nonempty, proper subset E of Ω, there exists a 
function fE: [0,1]n → [0,1]  such that, for all  
A ε S(Ω), all (P1,…, Pn) ε (ΠA)n, and all E ε A, 
 
(5)   FA(P1,…,Pn)(E) = fE(P1(E),…,Pn(E)). 
 
Note that (5), which McConway calls the  
strong setwise functionality property (SSFP) 
implies IA for each FA, where A ε S(Ω).  
Morever,  
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if A, B ε S(Ω), E ε A ∩ B,  (P1,…, Pn) ε (ΠA)n,  
(Q1,…, Qn) ε (ΠB)n, and Pi(E) = Qi(E), i =1,…,n, 
then 
         FA(P1,…,Pn)(E) = FB(Q1,…,Qn)(E). 
 
4.   Weighted Arithmetic Aggregation  and  
      Conditionalization. 
 
Let F: (ΠA)n → ΠA  be given by the formula 
 
      F(P1,…, Pn) = w1P1 + ··· + wnPn. 
 
If  E ε A, then, in general,  
 
  F(P1,…, Pn)(·|E) ≠ w1P1(·|E) + ··· + wnPn(·|E). 
 
“Weighted arithmetic aggregation does not 
commute with conditionalization.” 
 
In fact, Dalkey (1975) showed that such 
commutativity holds iff aggregation is 
dictatorial.  Is this a problem? 
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Note that  F(P1,…, Pn)(A|E) : =  
 
        F(P1,…, Pn)(A∩E) / F(P1,…, Pn)(E) 
 
    =   Σ wiPi(A∩E) / Σ wiPi(E) 
 
        = u1P1(A|E) + ··· + unPn(A|E),    where 
 
         ui = wiPi(E) / Σ wiPi(E). 
 
 
McConway:  No problem if aggregation 
“applies only to distributions conditional on a 
fixed amount of knowledge.”  
 
But  
 
(P1,…, Pn) ε (ΠA)n =>(P1(·|E),…, Pn(·|E)) ε (ΠA)n  
 
and the domain of the PAM F is assumed to be 
all of (ΠA)n.  
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● Commutativity of aggregation and 
conditionalization can be achieved if 
 
i.  a weaker form of IA is adopted;  and 
 
ii. the probability measures are discrete,  
    and aggregated via their associated mass  
    functions. 
      
Theorem 4.1.  If Ω = {ω1,ω2,…}, MΩ = the set 
of all probability mass functions on Ω. For all 
(p1,…,pn) ε (MΩ)n, and each j = 1,2,…, let  
 
F(p1,…,pn)( ωj) : =    
 
        Π1 ≤ i ≤ n  pi(ωj)w(i) /  Σj (Π1 ≤ i ≤ n  pi(ωj)w(i)), 
 
the normalized weighted geometric mean of 
p1(ωj),…, pn(ωj). Then the PAM  F  commutes 
with conditionalization (and also with Jeffrey 
conditionalization, parameterized, following H. 
Field, in terms of Bayes factors). 
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●  Theorem 4.1 also holds for probability 
measures Pi on a sigma algebra A for which 
there exists a measure μ on A and μ-
measurable “density functions”  φi  on Ω 
such that for all E ε A, 
 
                 Pi(E) = ∫E  φi dμ. 
 
Here,   F(φ1,…, φn) = Π i φi 

w(i) / ∫ Π i φi 
w(i) dμ. 

 
5. Allocation Aggregation with a Finite 
Valuation Domain (Bradley and Wagner) 
 
Suppose that the values assigned to the 
variables must lie in the finite subset V of [0,s], 
where 
(i)   0 ε V. 
(ii)  x ε V  =>  s – x  ε V. 
(iii)  x, y ε V   and  x + y ≤ s  =>  x + y  ε  V. 
 
Theorem 5.1.  If m ≥ 3, an AAM   
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F: A(n,m;s,V) → A(m;s,V) satisfies IA and Z if 
and only if it is dictatorial. 
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