It is standard practice, and unambiguous, to express the statement " f is a function from the domain A to the co-domain B " symbolically by: $f: A \rightarrow B$. If f is bijective, then for each $b \in B, f^{-1}(b)$ denotes the unique $a \in A$ such that $f(a)=b$. Note that $f^{-1}: B \rightarrow A$, and
(1) for all $a \in A, f^{-1}(f(a))=a$ and
(2) for all $b \in B, f\left(f^{-1}(b)\right)=b$.

The function f^{-1} is called the inverse of f.
Somewhat confusingly, the symbol f is also used to denote a function from 2^{A} to 2^{B}. So construed, f is defined for all $E \subset A$ by

$$
\begin{equation*}
f(E):=\{f(a): a \in E\} . \tag{3}
\end{equation*}
$$

Even more confusingly, for every function $f: A \rightarrow B$, even if f is not bijective, the symbol f^{-1} is used to denote a function from 2^{B} to 2^{A}, defined for all $H \subset B$ by
(4) $\quad f^{-1}(H):=\{a \in A: f(a) \in H\}$.

The set $f^{-1}(H)$ is called the pre-image of H.
Are there analogues of (1) and (2) when f and f^{-1} are defined by (3) and (4)? As an exercise, try the fill in the blanks in the following statements with the appropriate symbol $(=, \subset$, or $\supset)$:
(5) For all $E \subset A, f^{-1}(f(E)) _\quad E$.
(6) For all $H \subset B, f\left(f^{-1}(H)\right)$

If you fill in either (5) or (6) with \subset or \supset, are there additional conditions on f that would enable you to substitute the symbol " $=$ " for the aforementioned symbols?

The symbol f^{\leftarrow}. This symbol occurs less frequently in mathematical writing, and denotes a function from the set $B\left(\operatorname{not} 2^{B}\right)$ to the set 2^{A}, defined for all $b \in B$ by

$$
\begin{equation*}
f^{\leftarrow}(b):=\{a \in A: f(a)=b\} . \quad \text { In other words, } \quad f^{\leftarrow}(b)=f^{-1}(\{b\}) . \tag{7}
\end{equation*}
$$

