It is standard practice, and unambiguous, to express the statement "f is a function from the domain A to the co-domain B" symbolically by: $f: A \to B$. If f is bijective, then for each $b \in B$, $f^{-1}(b)$ denotes the unique $a \in A$ such that f(a) = b. Note that $f^{-1}: B \to A$, and

(1) for all
$$a \in A$$
, $f^{-1}(f(a)) = a$ and

(2) for all
$$b \in B$$
, $f(f^{-1}(b)) = b$.

The function f^{-1} is called the *inverse* of f.

Somewhat confusingly, the symbol f is also used to denote a function from 2^A to 2^B . So construed, f is defined for all $E \subset A$ by

(3)
$$f(E) \coloneqq \{f(a) : a \in E\}.$$

Even more confusingly, for *every* function $f : A \rightarrow B$, **even if** f **is not bijective**, the symbol f^{-1} is used to denote a function from 2^{B} to 2^{A} , defined for all $H \subset B$ by

(4)
$$f^{-1}(H) := \{a \in A : f(a) \in H\}.$$

The set $f^{-1}(H)$ is called the *pre-image* of *H*.

Are there analogues of (1) and (2) when f and f^{-1} are defined by (3) and (4)? As an exercise, try the fill in the blanks in the following statements with the appropriate symbol (=, \subset , or \supset):

- (5) For all $E \subset A$, $f^{-1}(f(E)) _ E$.
- (6) For all $H \subset B$, $f(f^{-1}(H)) _ H$.

If you fill in either (5) or (6) with \subset or \supset , are there additional conditions on f that would enable you to substitute the symbol "=" for the aforementioned symbols?

The symbol $f \leftarrow$. This symbol occurs less frequently in mathematical writing, and denotes a function from the set B (**not** 2^{B}) to the set 2^{A} , defined for all $b \in B$ by

(7)
$$f^{\leftarrow}(b) := \{a \in A : f(a) = b\}.$$
 In other words, $f^{\leftarrow}(b) = f^{-1}(\{b\}).$