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Abstract.   Evidentiary propositions 
1E  and 

2 ,E  each p - positively relevant to some hypothesis 

H, are mutually corroborating if 
1 2( | ) ( | )ip H E E p H E  , 1,2i  . Failures of such mutual 

corroboration are instances of what may be called the corroboration paradox. This paper 

assesses two rather different analyses of the corroboration paradox due, respectively, to John 

Pollock and Jonathan Cohen. Pollock invokes a particular embodiment of the principle of 

insufficient reason to argue that instances of the corroboration paradox are of negligible 

probability, and that it is therefore defeasibly reasonable to assume that items of evidence 

positively relevant to some hypothesis are mutually corroborating. Taking a different approach, 

Cohen seeks to identify supplementary conditions that are sufficient to ensure that such items of 

evidence will be mutually corroborating, and claims to have identified conditions which account 

for most cases of mutual corroboration.  Combining a proposed common framework for the 

general study of paradoxes of positive relevance with a simulation experiment, we conclude that 

neither Pollock’s nor Cohen’s claims stand up to detailed scrutiny. 
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          I am quite prepared to be told…”oh, that is an extreme case: it could never really 

happen!” Now I have observed that this answer is always given instantly, with perfect 

confidence, and without any examination of the proposed case. It must therefore rest on some 

general principle: the mental process being something like this—“I have formed a theory. This 

case contradicts my theory. Therefore, this is an extreme case, and would never occur in 

practice.”                                                  

                                                                                                        Rev. Charles L. Dodgson 

 

1.  The Corroboration Paradox.  Let 1,..., nE E  be evidentiary propositions bearing on some 

hypothesis H , construing these propositions as subsets of some set   of possible states of the 

world.  For all [ ]: {1,..., },I n n   let   
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(1.1)         : ,I i I iE E  

where E   .  Let A be the algebra generated by 1,..., nE E  and ,H  and let p  be a probability 

measure on A.  If each 
iE  is p   positively relevant to H  ( ( | ) ( )ip H E p H ), these 

propositions are said to be mutually corroborating with respect to H  if   

(1.2)      ( | ) ( | )J Ip H E p H E   whenever   [ ] .n J I   

The corroboration paradox is said to occur whenever a sequence of evidentiary propositions, 

each positively relevant to some hypothesis, fail to be mutually corroborating with respect to that 

hypothesis.
1
 The fact that numerical examples of the corroboration paradox abound is 

unsurprising in view of the following theorem, which establishes that the numbers ( | )Ip H E

may in general be utterly arbitrary. 

Given 1,..., nE E  and H as above, and  [ ],I n  let 

(1.3)         #

[ ]: ( ).c

I I i n I iE E E    

In particular,  #

[ ] [ ]( ) ,c c

i n i i n iE E E     and  #

[ ] [ ] [ ] .n n i n iE E E 
 

The propositions 
1
,..., nE E  and H are said to be qualitatively independent  (Rényi, 1970) if, for 

all [ ],I n   #

IH E   and  #c

IH E   .
 

THEOREM 1.1.   If  1,..., nE E  and H  are qualitatively independent, then for every family 

[ ]{ }I I nc   of real numbers belonging to the open interval (0,1),  there exists a probability measure 

p defined on the algebra A  generated by 1,..., nE E  and H  such that 

(1.4)      ( | )I Ip H E c   for every  [ ].I n  

PROOF.  See Appendix I.     

It follows from the above theorem that the patterns of support which the propositions iE  offer to

H  can be truly Byzantine. It is possible, for example, that each  iE  is p positively relevant to 

H , while two-at-a-time conjunctions of the iE  are p negatively relevant to H , but three-at-a-

time conjunctions are again p positively relevant to H , and so on.  This theorem explains inter 

alia why one may construct at will numerical examples of the corroboration paradox.  Left 

unanswered, however, is the question of whether the possibility of encountering this paradox has 

any significance, either for cases of practical decision making or for Bayesian confirmation 

theory, which attempts to explicate confirmation as probabilistic positive relevance.  In what 
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follows, we examine two rather different analyses of this issue, one due to John Pollock and the 

other to Jonathan Cohen.
2
 Pollock invokes the principle of insufficient reason for certain first and 

second order probabilities to argue that instances of the corroboration paradox are of negligible 

probability, and that it is therefore defeasibly reasonable to assume that items of evidence 

positively relevant to some hypothesis are mutually corroborating.  Cohen, on the other hand, 

seeks to identify supplementary conditions that are sufficient to ensure that positively relevant 

items of evidence will be mutually corroborating.  Pollock’s approach is described below in 

Section 2, and Cohen’s in Section 3.  In Section 5 these approaches are evaluated within a 

proposed common framework for the general study of paradoxes of positive relevance. 

2.  Pollock on Corroboration.  

Suppose that  

(2.1)          ( ) ,p H a   1( | ) ,p H E r  and  2( | ) ,p H E s  where 0 , , 1,a r s    

where 1, ,H E  and 2E  are subsets of some set of possible worlds .  As is clear from Theorem 

1.1, nothing whatsoever may be deduced from this information about the value of 

1 2( | ).p H E E  Nevertheless, invoking the principle of insufficient reason, John Pollock (2009) 

argues that if , ,a r and s  are rational numbers,   is finite, and p  is the uniform probability 

measure on subsets of  , then, for the uniform (second-order) probability P defined on subsets 

of triples 1 2( , , )H E E  satisfying (2.1), the P-probability that 1E  and 2E  fail to be mutually 

corroborating  can be made as near as we like to 0 for a sequence of finite sets  of increasing 

cardinality.  In short, failures of mutual corroboration are, in the models constructed by Pollock, 

extreme cases.  Pollock’s argument is highly intricate, and relies on a computer algebra program 

that he wrote to establish certain key details.  The following is a summary of his conclusions, 

expressed in standard mathematical terminology. 

 Let   be a finite set of possible states of the world, and let p  denote the uniform probability 

measure on subsets of ,  so that  ( ) : | | / | |p E E   for all .E   Suppose that the cardinality 

of   is such that the family   

(2.2)  F ( , , , )a r s  : = 1 2 1 2{( , , ) : , ,H E E H E E  , ( ) ,p H a  1( | ) ,p H E r  and 2( | ) }p H E s
 

is nonempty.
3
   Let P  denote the uniform probability measure on subsets of F ( , , , )a r s , and 

define a random variable  :X F ( , , , )a r s [0,1] by 1 2 1 2( , , ) ( | ).X H E E p H E E   Let  

(2.3)                               4(1 )
( , | ) : .

(1 )

rs a
Y r s a

a r s rs




    
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THEOREM 2.1.  (i) For all 0K   there exists an 0N   such that if | |  is an integer multiple 

of N , then  |F ( , , , ) |a r s .K    (ii) For all  0   and all  >0, there exists a K  such that  

(2.4)                (| ( , | ) |P X Y r s a  ) 1     whenever   |F ( , , , ) |a r s .K  

PROOF. See Pollock (2009).                     

It is easy to verify that  0 ( , | ) 1,Y r s a   and to establish the following theorem, which Pollock 

states without proof.  

THEOREM 2.2.  If s a , then ( , | )Y r s a r  and if ,r a  then ( , | ) .Y r s a s  

PROOF.   See Appendix II.     

Although Pollock does not state the following theorem explicitly, it is implicit in Theorems 2.1 

and 2.2. 

THEOREM 2.3.  The P -probability of the subset of F ( , , , )a r s consisting of those triples 

1 2( , , )H E E  for which  1E  and 2E  are mutually p -corroborating with respect to H can be made 

as close to 1 as we wish on an infinite sequence of finite sets   of increasing cardinality. 

PROOF.  To make the P -probability in question  -close to 1, let ( ( , | ) max{ , }) / 2.Y r s a r s    

Choose K sufficiently large so that (2.4) holds, and choose N such that if | |  is an integer 

multiple of ,N  then   |F ( , , , ) |a r s  K .      

Pollock’s analysis, which seeks to reduce the corroboration problem to an exercise in 

enumerative combinatorics, has an undeniable charm. But the notorious instability of 

conclusions derived by the principle of insufficient reason, when one shifts from one set of 

possible states of the world to another equally plausible set of states, should incline one to 

caution regarding Pollock’s conclusion that instances of the corroboration paradox are of 

negligible relative frequency. Indeed, as shown in Section 5 below, a differently structured 

application of this principle issues a very different verdict on the frequency with which one may 

expect to encounter this paradox. 

3.  Cohen on Corroboration.   Jonathan Cohen (1977, 1980, 1986) has been a vigorous critic 

the application of classical probability (which he calls “mathematical,” or “Pascalian” 

probability) to inductive logic, especially in the realms of legal and medical decision making. In 

its place, Cohen has proffered his own system of linearly ordered scores (which he calls 

“inductive,” or  “Baconian” probabilities, although they need not be numerical), and which are  

intended to record the degree to which a hypothesis has survived a sequence of attempts to 

falsify it.  In an intriguing detour from his inductivist critique of classical probability, however, 

Cohen(1977, p. 101) asserts that there is a “demonstrably adequate analysis of corroboration…in 

terms of mathematical probability.”  Cohen’s aim is not to argue that instances of the 



5 
 

corroboration paradox are extreme cases. Rather, he aims to identify supplementary conditions 

that are sufficient to ensure that items of evidence positively relevant to some hypothesis are 

mutually corroborating. 

Here is Cohen’s analysis in the case of evidentiary propositions 
1E  and  

2E  satisfying  

(3.1)       1( | ) ( )p H E p H    and 

(3.2)       2( | ) ( )p H E p H . 

The aim is to find supplementary conditions which, in the presence of (3.1) and (3.2), are 

sufficient to ensure that 
1E  and  

2E  are mutually corroborating with respect to H, i.e., that 

(3.3)          1 2 1( | ) ( | )p H E E p H E     and   

(3.4)          1 2 2( | ) ( | )p H E E p H E  . 

It is natural to expect, and straightforward to demonstrate, that (3.1) and (3.2), along with the 

conditional independence of 1E  and 2E , given H , and given cH ,  imply (3.3) and (3.4).  But as 

Cohen points out, this does not vouchsafe many cases of mutual corroboration, since conditional 

independence is a stringent condition that can only rarely be expected to obtain.  Instead, Cohen 

calls our attention to the inspired generalizations of conditional independence
5
 expressed by the 

inequalities 

(3.5)         1 2 1( | ) ( | )p E E H p E H    [equivalently,  2 1 2( | ) ( | )]p E E H p E H     and 

(3.6)         1 2 1( | ) ( | )c cp E E H p E H    [equivalently, 2 1 2( | ) ( | )],c cp E E H p E H 
 

and proves, as a consequence of the following theorem, that (3.1) and (3.2), supplemented by 

(3.5) and (3.6), are sufficient to ensure that 1E  and 2E  are mutually corroborating with respect to 

:H  

THEOREM 3.1.    Conditions (3.1), (3.5), and (3.6) together imply condition (3.4). Conditions 

(3.2), (3.5), and (3.6) together imply condition (3.3).  

PROOF.  Since Cohen’s proof of this theorem runs to three pages, the following short proof may 

be of interest:  It is easy to verify that if q is any probability measure on A, then  

( | ) ( )q H E q H  if and only if  ( | ) ( | ).cq E H q E H
6
 Letting q p  and  1,E E  it follows that 

(3.1) is equivalent to 1 1( | ) ( | ).cp E H p E H  Letting  2( ) ( | )q p E    and 1,E E
 
it follows that 

(3.4) is equivalent to 1 2 1 2( | ) ( | ).cp E E H p E E H    But by (3.5) and (3.6),   
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(3.7)             
1 2 1 1 1 2( | ) ( | ) ( | ) ( | )c cp E E H p E H p E H p E E H     , 

which establishes (3.4).  Interchanging 
1E  and 

2E  in the preceding argument, replacing (3.1) 

with (3.2), and (3.4) with (3.3), and applying the bracketed equivalents of (3.5) and (3.6), 

establishes (3.3).      

Remark 3.1. In proving that (3.1), (3.5), and (3.6) imply (3.4), we did not assume (3.2).  Since we 

have restricted the term “corroboration” to apply to evidentiary propositions assumed to be 

positively relevant to some hypothesis, condition (3.4) alone does not assert that                        

1E  p  corroborates 2E  with respect to .H  Rather,  (3.4) simply states that 1E  is conditionally 

p positively relevant to H , given 2E , which we might paraphrase by saying that 
1E             

p  reinforces 2E  with respect to H .  Similar remarks apply to condition (3.5) when (3.1) is not 

assumed. 

Remark 3.2.  There are straightforward generalizations of conditions (3.5) and (3.6) which, along 

with the p positive relevance of 1 2, ,...E E , and nE  to H , ensure that the propositions iE  are 

mutually corroborating with respect to .H  See Appendix III. 

The heuristics employed by Cohen to discover conditions (3.5) and (3.6) are interesting to 

examine.  For concreteness, he considers the case in which H  is a proposition material to some 

legal proceeding,  1E  is the testimony of witness 1 that H is true, 2E  is the testimony of witness 

2 that H is true, and (3.1) and (3.2) are assumed to hold.  Suppose now that (3.6) failed to hold, 

so that  

(3.8)           1 2 1( | ) ( | )c cp E E H p E H    and  2 1 2( | ) ( | ).c cp E E H p E H 
 

Then each witness is more inclined to give false testimony when the other does, and Cohen 

(1977, p.101) asserts that “if one witness is to corroborate another…, one witness must not be 

more inclined to give false testimony when the other does.”  Similarly, suppose that (3.5) failed, 

so that 

(3.9)               1 2 1( | ) ( | )p E E H p E H     and  2 1 2( | ) ( | )p E E H p E H   . 

Then each witness is less inclined to agree with the other when the latter’s testimony is true, and 

Cohen (1977, p. 102) asserts that “if one witness is to corroborate another, the former’s 

inclination to give true testimony…must not be reduced when the latter’s testimony is true.” 

Taken literally, Cohen appears to be asserting that conditions (3.6) and (3.5) are necessary for 

corroboration,
7
 but a subsequent remark of his, to be discussed immediately below, indicates that 

he did not mean to make these strong (and incorrect) claims. Rather, what he seemed to have in 

mind was that a juror who believed (3.8) or (3.9) might reasonably find the agreement of the 

witnesses in asserting the truth of H  to be suspect. In the case of (3.8) the suspicion might be 
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that there was a conspiracy to deceive. In the case of (3.9) such agreement might be suspected to 

have come about due to the falsehood of H.  

That Cohen did not mean to assert the absolute necessity of conditions (3.5) and (3.6) for mutual 

corroboration is apparent from his claim in Cohen (1980, p. 51) that such corroboration “will not 

normally” take place unless (3.5) and (3.6) hold. On the other hand, he appears to be making the 

only slightly less strong claim that, among cases in which positively relevant items of evidence 

are mutually corroborating, it will only rarely be the case that (3.5) or (3.6) fails to hold. This is 

clearly a second-order probability claim, though not supported by any substantive arguments. 

The need for such arguments is underscored in the next section, where it is shown that, for at 

least one possible second-order probability, in only around 39 per cent of the cases of positively 

relevant, mutually corroborating items of evidence is the corroboration accounted for by (3.5) 

and (3.6). 

4.   A Framework for Assessing Paradoxes in the Theory of Probability.  Let A be a Boolean 

algebra of propositions, and let A be the set of all probability measures on A, with a generic 

member of A denoted by .p  In what follows, the symbols C, D, and S denote subsets of A 

or, alternatively, predicates on the domain A ; we write C ( )p  whenever pC, and similarly 

for D and S.  In general, probability paradoxes involve a condition C ( ),p which naïve intuition 

(mistakenly) suggests should entail some desirable condition D ( )p , i.e., that CD. Upon 

realizing that C ( )p  does not imply D ( ),p one is naturally inclined to try to identify some 

supplementary condition S ( )p  which, in conjunction with C ( ),p does entail D ( ),p  i.e., such 

that CSD. Such supplementary conditions have several important functions: 

(i)  In experimental situations, one can often “design in” the condition S(p), thereby ensuring 

that D ( )p  will hold whenever C ( )p does.  Suppose, for example, that one wishes to test the 

efficacy of a treatment for a certain disease using experimental subjects from two different 

hospitals. Let   denote the set of all experimental subjects, T  the subset of    consisting of all 

those subjects receiving the treatment, R  the subset consisting of all those subjects, treated or 

untreated, who recover from the disease after a certain time,  and 1H  and 2H   the set of subjects 

at hospitals 1 and 2,  respectively. Let ( ) : | | / | |p E E   for all .E   As is well-known, it is 

possible that ( | ) ( | )c

i ip R T H p R T H    for 1,2,i   yet  ( | ) ( | ).cp R T p R T  But this 

possibility, which is one example of a general phenomenon known as Simpson’s paradox
8
, can 

easily be avoided if one simply administers the treatment to the same fraction of subjects in 1H  

as in 2.H  
9 

(ii)  When encountering cases where C ( )p  does not entail D ( ),p one knows immediately that    

S ( )p  must fail to hold and, in identifying the precise nature of this failure, one gains useful 

insights into the phenomenon under consideration.  Consider, for example, the following 
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simplified version of the famous Berkeley admissions case (Bickel et al, 1975), which also 

involves an example of Simpson’s paradox.  Here,   denotes the set of all applicants for 

admission to the graduate programs of a certain university, with H denoting the set of applicants 

to humanities departments, S  the set of applicants to science departments (where { , }H S

partitions  ), F the set of female applicants, M the set of male applicants, and A  the set of 

applicants accepted by the department to which they applied.  Again, ( ) : | | / | |p E E  . Suppose 

that that   C ( )p   [ ( | ) ( | )p A F H p A M H    and ( | ) ( | )]p A F H p A M H   , yet 

( | ) ( | ).p A F p A M  Since  S ( ) [ ( | ) ( | )p p A H p A S   or ( | ) ( | )]p F H p F S  would 

guarantee that ( | ) ( | ),p A F p A F
10

  we know both that ( | ) ( | )p A H p A S  and that 

( | ) ( | ).p F H p F S  Indeed, closer examination of the data reveals that ( | ) ( | )P F H P F S  and  

( | ) ( | ),p A H p A S  and to such an extent as to explain the lower acceptance rate for female 

applicants overall. 

(iii)  The foregoing examples typically involve empirical probabilities, i.e., relative frequencies 

ascertained by design or observation. But there is also a role for S ( )p  type conditions in the 

formulation of subjective assessments of probability, especially in the case of qualitative 

probability assessments (expressed by relations such as “is more probable than,” or “is at least as 

probable as”).  For the predicates C, S, and D typically involve probability inequalities, and can 

thus be interpreted in subjective contexts as qualitative probability judgments.  S ( )p  type 

conditions then function in the following way:  Having made the qualitative probability 

judgment C ( ),p  and contemplating whether to embrace the judgment D ( ),p  one can approach 

this decision indirectly by considering whether it is reasonable to judge that S ( ).p  When S is 

more salient than D, this may be a useful strategy for the construction of qualitative probability 

judgments.  Unless it should be the case that, in the presence of C ( ),p  S ( )p is necessary, as well 

as sufficient, for D ( ),p  rejecting S ( )p  will of course still leave the decision about whether to 

embrace D ( )p unresolved. 

5.  Probable Probabilities. 

We are now prepared to deal with assertions to the effect that a given paradox has negligible 

chance of occurring, or that a given supplementary condition is responsible for most cases in 

which both C ( )p and D ( )p  hold.  These are, as noted earlier, second-order probability claims, 

and demand an explicit representation in terms of such probabilities.  To that end, let us suppose 

that the set A
   

of all probability measures on A is equipped with a sigma algebra  , and that 

P is a probability measure on .  Suppose further that C, S, and D are all members of  , and 

that P  assigns events C and D nonzero probability.  Then 

(5.1)                              (P Dc
| C )   1 (P D | C )  

measures what we shall call the prevalence of the paradox in question, relative to ,P  
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(5.2)                              (P S | C )  

measures what we shall call the incidence of S in C, relative to ,P  and  

(5.3)                             (P S | DC )  

measures what we shall call the S-provenance of D in C, relative to .P   Since C   S    D, 

(5.4)                             (P S | C ) (P D | C ) (P S | DC ),  

i.e., “incidence = (1 – prevalence)provenance.”   

Let us now apply the foregoing framework to the corroboration paradox, with A being the 

algebra of propositions generated by 1 2, ,E E and  ,H   

(5.5)          C = {pA : 1( | ) ( )p H E p H  and   
2( | ) ( )},p H E p H  

(5.6)          D = {pA : 1 2 1( | ) ( | )p H E E p H E   and  1 2 2( | ) ( | )},p H E E p H E 
  
 and 

(5.7)          S = {pA : 1 2 1( | ) ( | )p E E H p E H    and  1 2 1( | ) ( | )}.c cp E E H p E H                                                           

In order to define a sigma algebra   of subsets of A  and a probability measure P on ,  we 

identify each p A  with the 7-tuple 1 2 7( , ,..., )p p p 
   

1 2 1 2 1 2 1 2( ( ), ( ), ( ), ( ),c c c cp HE E p HE E p HE E p HE E 1 2 1 2 1 2( ), ( ), ( )),c c c c cp H E E p H E E p H E E  where set 

intersection is indicated by concatenation. This results in an identification of A with the 

simplex 7  = 1 2 7{( , ,..., ) : 0ip p p p   and 
7

1

1}.i

i

p


  As an illustration, let us equip the sigma 

algebra of Lebesgue measurable subsets of 7  with the uniform probability (i.e., normalized 

Lebesgue) measure .P  Since P7 has Lebesgue measure  ( 7 ) = 1/ 7! ,  we set ( ) 7! ( )P E E  

for every Lebesgue measurable  E  7 . The second-order probabilities (P D|C ),  (P S|C ),  and 

(P S|DC )  are now well-defined, but their exact evaluation requires the computation of some 

complicated multiple integrals.  Fortunately, one can approximate these integrals using Monte 

Carlo methods (see Appendix IV for details). A sample of one million probability measures p  

on A, selected uniformly at random from A (i.e., from 7 ) yielded the approximations  

(5.7)       (P Dc
|C ) 0.37,   

(5.8)       (P S|C ) 0.25,  and   

(5.9)       (P S|DC ) 0.39.      
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I should emphasize that in employing the uniform probability measure P  above, I am in no way 

asserting that P is the “right” second-order probability for analyzing the corroboration paradox. 

Rather, P  is introduced as a test case, and serves a cautionary role, highlighting the fact that the 

claims of Pollock and Cohen are overly broad and insufficiently supported. 

The result (P Dc
|C)   0.37 shows that a differently structured application of the principle of 

insufficient reason yields an estimate of the prevalence of the corroboration paradox quite 

different from Pollock’s.  This is no surprise, since the results of applying this principle are 

notoriously unstable when one shifts from one set of possible states of the world to another 

equally plausible set of states. Absent a (highly unlikely) demonstration that Pollock’s particular 

application of this principle is the uniquely rational way to assess the corroboration paradox, the 

result (5.7) simply devastates his claim that it is defeasibly reasonable to assume that two items 

of evidence, each  positively relevant to some hypothesis, are mutually corroborating with 

respect to that hypothesis. 

 

What light do these results shed on Cohen’s claim that 1E  and 2E  will  “not normally” be 

mutually corroborating with respect to H  unless the supplementary conditions  (3.5) and (3.6) 

hold?  Cohen is clearly asserting that the S-provenance of D in C is high, i.e., that property S, as 

expressed in (3.5) and (3.6), accounts for the vast majority of cases in which evidentiary 

propositions 1E  and 2 ,E  each positively relevant to hypothesis ,H are mutually corroborating.  

But (5.9) indicates that, for the uniform probability measure ,P property S accounts for only 

around 39% of such cases.  This is far from a refutation of Cohen’s claim. But it does underline 

the fact that anyone seeking to justify that claim must defend (as Cohen has not) a second-order 

probability measure, necessarily different from ,P  for which the S-provenance of D in C is 

high. This may well involve distinct analyses of corroboration by means of case studies in law, 

medicine, and the various sciences, and while guided by the spirit of the framework introduced 

in Section 4 above, such analyses need not match the level of formality posited by that 

framework.
11

  Even if such a program fails to produce convincing evidence for the high               

S-provenance of D in C, however, Cohen’s identification of the S – conditions  (3.5) and (3.6) 

furnishes an invaluable perspective on the phenomenon of corroboration. 
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Appendix I 

THEOREM 1.1.   If  1,..., nE E  and H  are qualitatively independent, then for every family 

[ ]{ }I I nc   of real numbers belonging to the open interval (0,1),  there exists a probability measure 

p defined on the algebra A  generated by 1,..., nE E  and H  such that 

(I.1)      ( | )I Ip H E c   for every  [ ].I n  

PROOF.  For every [ ]I n , select a number 
Ix  according to the following recursive scheme:  (i) 

Let 1x  .  (ii)  The numbers 
Ix  having been chosen for all I of cardinality r , choose numbers 

0Jx   for every J  of cardinality 1r   so that, for every I  of cardinality r ,  

(I.2)        
&| | 1

0I I J j

J I J I

c x c x
  

  ,   and 

(I.3)       
&| | 1

(1 ) (1 ) 0.I J j j

J I J I

c x c x
  

     

Now define a function p  on all propositions of the form #

IH E   and  #c

IH E  by 

(I.4)    # | |( ) : ( 1) J I

I J j

J I

p H E c x



   ,   and 

(I.5)    # | |( ) : ( 1) (1 )c J I

I J J

J I

p H E c x



    , 

extending p  to unions of these mutually exclusive propositions in the obvious way so that p is 

additive on A. To show that p  is actually a probability measure on A, it then suffices to show 

that the quantities (I.4) and (I.5) are all nonnegative, and that ( ) 1.p    

From (I.4) we have 

(I.6)                   # | |

| | 1 | | 2

( ) { } ( 1) .J I

I I I J J J J
J I J I

J I J I

p H E c x c x c x

 

   

       

The bracketed term on the right hand side of equation (I.6) is nonnegative by (I.2), and the 

remaining sum clearly dominates 

(I.7)                

| | 0(mod2) | | 1

{ },J J K K
J I K J

J I K J

c x c x
 

   

   
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each term of which is again nonnegative by (I.2). The proof that the numbers #( )c

Ip H E are 

nonnegative is similar.  Next, note that for every [ ],I n  #( ) ( ),I K I KH E H E   whence 

(I.8)         # | | | |( ) ( ) ( 1) ( 1) ,J K J K

I K J J J J I I

K I K I J K J I J K I

p H E p H E c x c x c x 

     

            

since, if ,J I  with | | 0,J I s    

(I.9)     | )

0

( 1) ( 1) (1 1) 0.
s

J K i s

J K I i

s

i



  

 
      

 
   

Similarly, for every [ ],I n  

(I.10)     #( ) (1 ) ,c

I I Ip H E c x     

 and so 

(I.11)      ( ) ( ) ( )c

I I I Ip E p H E p H E x     . 

In particular,  ( ) ( ) 1,p p E x      and so p is a probability measure. Finally, from (I.8) and 

(I.11), it follows that ( | )I Ip H E c  for all [ ].I n              

Note that the above method yields infinitely many probability measures p  on A satisfying (I.1), 

and that the set of all p  satisfying (I.1) is convex, i.e., closed under weighted arithmetic 

averaging. 

 

Appendix II  

THEOREM 2.2. Let 
(1 )

( , | ) ,
(1 )

rs a
Y r s a

a r s rs




  
 where 0 , , 1.a r s   If ,s a   then 

( , | )Y r s a r  and if ,r a  then   ( , | ) .Y r s a s  

PROOF. Since ( , | )Y r s a  is symmetric in r  and ,s  it suffices to prove the first of these assertions. 

Note first that  (1 ) [(1 ) ] min{ , } 0,a r s rs r a rs as a s as           so ( , | )Y r s a  is well-

defined and positive. From the fact that (1 ) (1 )sa r a r    it follows that  

(1 ) (1 ) ,rs a a r s rs      and so ( , | ) 1.Y r s a   Suppose that .s a  T (1 ) (1 )s r as a r as      

  (1 ) (1 )s a a r s rs        
(1 )

1
(1 )

s a

a r s rs




  
  

(1 )
.

(1 )

rs a
r

a r s rs




  
      

Note that the above theorem remains true when each of the inequalities  >  is replaced by < .  
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Appendix III 

GENERALIZED THEOREM 3.1.  Let 1,..., nE E  be evidentiary propositions bearing on the 

hypothesis ,H  with IE  defined for all [ ]I n  by (1.1).  If 

(II.1)      ( | ) ( )ip H E p H   for all  [ ],i n  

(II.2)      ( | ) ( | )i I ip E E H p E H   for all [ ]I n  and all [ ] ,i n I     and 

(II.3)       ( | ) ( | )c c

i I ip E E H p E H   for all [ ]I n  and all [ ] ,i n I   

then 

(II.4)      ( | ) ( | )J Ip H E p H E   whenever  .J I  

PROOF. Let 1 iE E  and 2 IE E  in Theorem 3.1. This yields ( | ) ( | )i I Ip H E E p H E  , from 

which (II.4) follows by induction on | |J I .           

 

Appendix IV 

One simulates the uniform distribution on n  := 1{( ,..., ) : 0 1n ip p p   and 1 1}np p    by 

using the following theorem: 

THEOREM IV.1.  If  1 1,..., nU U   are uniformly distributed on the open interval (0,1),  

: ln ,i iY U   and 1 1: ,nS Y Y    then the random vector 1( ,..., ),nX X  with : / ,i iX Y S  is 

uniformly distributed on n . 

PROOF: It is easy to show by induction on n  that the Lebesgue measure   ( )n  = 1/ !n  . So to 

show that X  is uniform on n , it suffices to show that the density Xf  of X  takes the form 

1( ,..., )X nf x x  = !n   if  1( ,..., )nx x  n   and  1( ,..., )X nf x x = 0  otherwise. Let :g R
n+1

R  be a 

bounded function. Then 

 (IV.1)       111 1
1 1 1

0 0

( ,..., , ) ( ,..., , ) ( ,..., , ) ,n ny yyn n
n n

Y yY y
Eg X X S Eg S g s e e e dy dy

S S s s


 

 

       
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since each 
iY  is exponentially distributed, with parameter 1.  Under the change of variables 

1
1 ,..., ,n

n

yy
x x

s s
   where 1 1,ns y y    we have 1 1,..., ,n ny sx y sx   and 

1

1

,
n

n i

i

y s sx



   

from which it follows that the Jacobian 

 

   

1

2

1

0 0

0 0

det
0 0

1

n

n

i

i

s x

s x

J
s x

s s s x


   
 


 
     

  
 

 
     
 



 = det

1

2

0 0

0 0

0

0 0 1

n

s x

s x

s x

   
 


 
     
 

  
   

 = .ns  

Hence the integral in (IV.1) is equal to  

(IV.2)                     
1 1

0

( ,..., , ) .

n

s n

n ng x x s e s dx dx ds







 
 

Now set 1 1( ,..., , ) ( ,..., ).n ng x x s h x x   Then 

     1 1 1 1 1

0 0

( ,..., ) ( ,..., ) ( ,..., )

n n

s n s n

n n n n nEh X X h x x e s dx dx ds h x x dx dx e s ds

 

 

 

         

=  
1 1( ,..., ) !

n

n nh x x n dx dx


 ,  by Euler’s identity.  Given any measurable set AR
n
,  setting 

Ah  , the characteristic function of A , completes the proof that X  is uniform on .n      

Remark 1.  I am indebted to my friend and colleague Jan Rosinski for his crucial assistance in the 

formulation and proof of the above procedure for simulating the uniform distribution on n .  

Remark 2.  If exponential random variables  1 1,..., nY Y   with parameter 1 can be generated directly 

from a computer program, the initial step in the above procedure can be omitted. 

 

Notes 

1.  In this paper, the term “paradox” denotes an apparent, not actual, contradiction. The 

corroboration paradox is just one example of the many paradoxes of positive relevance.  In most 

cases the paradoxical air of such examples derives from mistakenly construing positive relevance 
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as an attenuated sort of implication. Unlike implication, however, the positive relevance relation 

is symmetric, and non-transitive. Indeed, just about all of one’s naïve expectations regarding 

positive relevance turn out to be false. Chung (1942) provides a comprehensive catalogue of 

examples.  

2. Both Pollock and Cohen restrict consideration to the case of two evidentiary propositions. 

Cohen’s analysis is, as we shall see, easily extended to any finite number of such propositions. 

There appear, however, to be formidable roadblocks to a similar extension of Pollock’s analysis. 

3.  Suppose that the rationals , ,a r and s  are expressed as fractions in lowest terms, with 

* / ,a    * / ,r    and  * / .s     Since  *| | | |H   , it must be the case that | |  is an 

integer multiple of  , say | | ,m   whence  *| |H m .  Since  *

1| | | |H E H    and  

*

2| | | |H E H   ,  it must be the case that | |H  is divisible by both   and   , and hence 

that  *m is an integer multiple of  the least common multiple of    and   .                  

 4.  It is interesting to note that ( , |1/ 2) / [ (1 )(1 )]Y r s rs rs r s     agrees with the result of 

applying Dempster’s rule of composition for belief functions (Shafer, 1976). See Pollock (2009) 

for an elaboration. 

5. The conditional independence of  1E  and 2E , given H , and given cH , are just the respective 

equality cases of the inequalities (3.5) and (3.6). 

6.  One simply shows that each of these inequalities is equivalent to the inequality  

( ) ( ) ( ) ( ).c c c cq E H q E H q E H q E H      The foregoing inequality expresses the 

“determinant test” for the relation of positive relevance between E  and H . Indeed, with 

( ),a q E H   ( ),cb q E H   ( ),cc q E H   and  ( ),c cd q E H   E  and H  are, 

respectively,  q  positively relevant to each other, q  negatively relevant to each other, or    

q  independent  according as the determinant of the matrix  
a b

M
c d

 
  
 

 is positive, negative, 

or equal to zero. 

7.  Schlesinger (1988) is among those misled on that score. See Wagner (1991). 

8. See Simpson (1951) and Blyth (1972) 

 

9.  Since  1 2{ , }H H  is a partition of  , it follows from  1 2( | ) ( | )P T H P T H  that

( | ) ( | ),c

i iP H T P H T  1,2.i    Hence, if (i) ( | ) ( | )c

i iP R H T P R H T   , 1,2,i    then    

1 2 1 1 2 2( | ) ( | ) ( | ) ( | ) ( | ) ( | ) ( | )P R T P R H T P R H T P H T P R H T P H T P R H T       
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1 1 2 2( | ) ( | ) ( | ) ( | ) ( | ).c c c c cP H T P R H T P H T P R H T P R T       It is also true (and left as an 

exercise to show) that (i), in conjunction with the supplementary condition 1 2( | ) ( | ),P R H P R H  

implies that ( | ) ( | ).cP R T P R T  But this is of no interest here, since we cannot “design in” 

condition (ii). 

10.  The proofs are similar to the proof in Note 9 supra. 

11. It is interesting, and ironic, that a formal and experimental (to the extent that simulation 

counts as experimentation) study of corroboration should wind up reminding us of the value of 

good old-fashioned case studies. It is also conceivable that such studies may identify clusters of 

cases in which the prevalence of the corroboration paradox is negligible.  This would be of no 

help to Pollock, however, since his analysis is meant to be completely general in application, and 

is unalterably wedded to particular embodiments of the principle of insufficient reason, for both 

first and second order probabilities. 
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