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1. Introduction. Let R be a binary relation on a set X and let aR, cR and sR denote, 
respectively, the asymmetric part of R, the complement of R, and the symmetric part of 
R. We say that R is negatively transitive if cR is transitive. R is called a generalized weak 
order (GWO) if car is transitive. Generalized weak orders were introduced by Peter 
Fishburn [2] and include as special cases the asymmetric weak orders (asymmetric, nega- 
tively transitive relations) familiar to economists as models, respectively, of strict prefer- 
ence and preference-or-indifference. Every symmetric relation on X is also a GWO. 
Indeed, we shall prove that as IX] ~ oo the symmetric relations actually predominate 
among GWOs. 

An alternative x e X is optimal for a G W O  R if Vy ~ X, yRx ~ xRy. Our aim in this 
paper is to study the distribution of the number of optimal elements for randomly selected 
GWOs of several types. Specifically, if X is an n-set, let 

(1.1) 

ft. = {R:R is a G W O  on X}  

= {R e ~.: R is transitive} 

-Jg. = {R e ~.: R and cR are transitive} 

r163 = {R: R is a complete weak order on X},  

and let the random variables G,, T,, 54, and W, record the number of optimal elements 
for a G W O  R selected at random from ft,, W,, J#,, and ~/K,,, respectively. 

The combinatorial analysis of the above random variables is considerably facilitated 
by the existence of a bijection between the set of GWOs on X and the set of ordered 
partitions of X, each of the blocks of which is equipped with an arbitrary symmetric 
relation [2, pp. 164-65],  [4, p. 147]. The essential details of this correspondence are as 
follows: a generalized weak order R on a set X partitions X by the equivalence relation 
scaR, and Jf = X/scaR is linearly ordered by > ,  where for all A, B e Js A > B iff 
(x, y)e aR for all x ~ A and y ~ B. The symmetric relation attached to each A ~ )( is 
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simply the restriction of R to A. Conversely, if)~ is a partition of X linearly ordered by >-, 
and each A ~ J~ is equipped with a symmetric relation RA, then R = R(~)u R (a) is a 
generalized weak order on X, where R (s) = U_ RA and R (a) = U _ A x B. This general- 

A ~ X  A, B c X  
A?>B 

ization of the traditional bijection between weak orders and ordered partitions enjoys the 
additional feature of pairing G W O s  in ~ with partitions whose blocks carry transitive, 
symmetric (i.e., partial equivalence) relations, and GWOs  in d/d, with partitions whose 
blocks carry the empty or universal relation [2, Theorem 2]. The blocks of ordered 
partitions corresponding to complete weak orders are all equipped with the universal 
relation, and the blocks of those corresponding to asymmetric weak orders with the 
empty relation [2, p. 167]. 

It is clear that an alternative x e X is optimal for a G W O  R iff x is an element of the 
initial block of the ordered parti t ion corresponding to R. Hence the random variables G,, 
T~, M,,  and VV~ may  be thought of, respectively, as recording initial block cardinalities of 
randomly chosen elements of ~, ,  ~-~, dg~ and Ws now regarded as classes of ordered 
partitions with blocks carrying appropriate  relations. In the next two sections we analyze 
the density functions and moments  of the above random variables and determine their 
limits as n ~ oo. 

2. The random variable 6;.. Let ft. denote the set of all ordered partitions of an n-set, 
the blocks of which carry arbitrary symmetric relations, and let g. = I fr Let G. 
denote the cardinality of the initial block of a randomly chosen R ~ f#.. Since there are 

(k+,~ 
2\ 2 ] symmetric relations on a k-set, the density function of G, is 

(2.1) fo . (k )  = P(G.  = k) = 2 g . -a /g . ,  I <_ k <- n,  

where the sequence (g~) satisfies the recurrence relation 

(2.2) g . =  ~ _ 2 2 gn-k ( g o = l )  - 
k = l  

The factor 2 2 in (2.1) would lead one to guess that fo,  (k) is maximized when k = n. 
This intuition is true in the strongest possible terms, as indicated by the following 
theorem: 

Theorem 2.1. I f  G. denotes the initial block cardinality o f  a randomly selected R ~ f~n, 
and Y. = G. - n, then the sequence o f  random variables (Y.) converges to zero in mean 
square and with probability one. 

P r o o f. By [3, Ch. 10, Th. IA] it suffices to show that 

(2.3) y, E(Y,, 2) < ~ ,  
n = l  
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which we prove  by showing that  

(2.4) E (y2) = O (n4/2"). 

F r o m  Y, = G, - n and  (2.1), we have 

(2.5) E(Y, 2) = E(G.(G,  - 1)) + (1 - 2n)E(G. )  + n 2 

= n ( n -  1)q, + (1 - 2 n ) n p ,  + n 2, 

where 

(2.6) P, = Z n -  1 2 g , - a - j / 9 ,  
)=o J 

and  

)tJ  31 
(2.7) q, = Z n -  2 2 g . - 2 - j / g , .  

j=O J 

If  we let a.  = g,]2 , then 

(2.8) 0 < l /a ,  =< q, =< p,  =< 1, 

since 1/a. is the last term of the sum in (2.7) and since p, is the probabi l i ty  that  some fixed 
object of  an n-set belongs to the first block of  a r andomly  chosen R s fr and q, the 
probabi l i ty  that  that  same object, as well as another  fixed object, belongs to the first 
block. 

F r o m  (2.5) and  (2.8), 

(2.9) E(Y ,  z) < n(n - 1)p, + (1 - 2 n ) n p ,  + n 2 

= nZ(l - p.) < n Z a . ( 1  - p . )  = n Z ( a . -  a .p . )  < n Z ( a . -  1) .  

Hence, if we can prove that  

(2.10) a,  - 1 = 0(n2/2") ,  

(2.4) will follow from (2.9/. ( ,+  1) 
To show (2.10) divide each side of the recurrence relation (2.2) by 2 z , and replace 

n - k by k, yielding 

(2.11) a . -  1 = ~ ak(l /2)  k~"-k). 
k=l  

Lett ing b, = max {ak}, it follows f rom (2.11) that  
O<_k<_n 

= (1U"-2~  (2.12) 0 < a . - l < b . _ a  4n( �89  ~ 52 
k=2 

=< b.  _ ,  (4 n ,21')" + (�89 - 4). 

For  n > 6, a,  < 1 + b._ t. Thus  b, = O(n), and so (2.10) follows f rom (2.121. 
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In conclusion we remark that 

(2.13) .~lim 2 2 g.=._~lim 1/a.=limo~ a .=l .  

(.+1) 
by (2.10). Since 2 2 is the number of symmetric relations on an n-set, it follows that 
as n ~ oo "almost all" generalized weak orders are simply symmetric relations. 

3. The random variables 1., M,, and W,,. Let X be an n-set. Exploiting the bijection 
described in the third paragraph of Sect. 1, we now let ~ denote the set of all ordered 
partitions of X with blocks carrying symmetric, transitive (i. e., partial equivalence) rela- 
tions, J r ,  the set of such partitions with blocks carrying the empty or universal relation, 
and r the set of such partitions with blocks all carrying the universal relation. Let T,, 
M,, and W, denote the initial block size of an ordered partition chosen at random, 
respectively, from ~-~., J/g. and ~ .  Letting t. = If . I ,  m. = IJ~.l, and w. = Ir163 I and using 
the fact that a k-set may be equipped with a partial equivalence relation in B (k + 1) ways 
(where B(k + 1) is the k + U Bell number [4, p. 148]) and with the empty or universal 
relation in two ways, we get the density functions 

= P ( r ,  = k)  = + 

fM.(k)=P(M.=k)=2(nk)m._ffm,, ( l < k < n ) ,  (3.2) 

and 

(3.3) fw.(k) = P(W, = k) = (nk)W,_ffw,, (1 <_ k < n), 

(3.5) 

and 

and the recurrence relations 

(3.4) t , =  k=l~' (nk) B(k+l) t"-k (t o = 1), 

(too = 1) ,  

Using (3.4)-(3.6) [4, pp. 149-50], or a direct argument based on the multiplication of 
Taylor series, along with the classical [1, p. 43] result 

(3.7) ~ B(k)z~/k! = exp (e z - 1), 
k=O 
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one may easily derive the following exponential generating functions: 

(3.8) ~gt (z) = ~ t.z"/n! = [1 - (exp (e z + z -- 1) -- 1)] -1 , 
n ~ O  

(3.9) 

and 

Tim(Z) = ~ m,z"/n! = [1 -- 2(e ~ -- 1 ) ] - l ,  
n = 0  

(3.10) 7Jw(z) = ~ w,z"/n! = [1 - (e ~ - 1)]-1 
n = 0  

These generating functions can be used to derive asymptotic estimates of t,, m,, and w,, 
from which the limiting distributions of T,, M,, and W, follow immediately. Note that in 
each of (3.8)-(3.10), we have a generating function of the form 7J(z) = [1 - F (z ) ] - l ,  
where F is entire. Indeed, as we show below, a comprehensive theorem, yielding asymp- 
totic estimates for t,, ran, and w,, may be based on the assumption of analyticity of F on 

a disk of positive radius. (The numbers 9,, for which F (z) = Y~ 2 2 zk/k[, converging 
k - > l  

only at z = 0, are, in the light of the following result, understandably a different case.) 

Theorem 3.1. I f  ( C k ) k  > = 1 is a positive sequence such that 

(3.11) f ( z )  = ~ Ckzk/k! 
k = l  

is analytic on a disk of positive radius R, and the sequence (Y,).>=o is defined by the 
recurrence relation 

(3.12) Y"= ~ (nk) ( Y ~  

then 

(3.13) Yn ~ n!/F'(p)P "+1 , 

where p is the unique real positive solution of F (z) = 1. 

P r o o f .  Let 

(3.14) 7 t (z) = ~ y, z"/n !. 
n = 0  

From (3.11), (3.14), and (3.12) it follows that 7J(z)F(z)= ~P(z)-- l ,  i.e., that 
~(z) = (1 - F(z)) -1. From (3.11) and the positivity of Ck, k > 1, we obtain 

(3.15) F(0) = 0 and lim F(x) = § oo, 
x ~ R - -  

x f f R  

(3.16) F ' ( x ) > 0  for xe [0 ,  R), 
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and  

(3.17) IF(z)[ _< V([z[),  [z[ < R .  

By (3.15) and  (3.16) there  exists a un ique  real  posi t ive  p such tha t  F ( p ) =  1. Since 
F '  (p) 4: 0, we have 

(3.18) l im (z - p) 7J(z) = - 1/F'(p),  
Z--*p 

and  so the pole  p of 7 ~ is simple,  with res idue a = - I /F '  (p). 
F u r t h e r m o r e ,  there  exists a real  r > p such tha t  ~P is ana ly t ic  for [z] < r, except  for the 

a fo remen t ioned  s imple  pole  at  z = p. F o r  let r = rain {Izl: F(z) = 1 and  z + p}, se t t ing 
r = R if this set is empty.  By (3.17), we have r > p. If  r = p, then equal i ty  ho lds  in (3.17) 
for some  z. But  then  arg (z) = arg (z 2) and  z = [z[ = p, which is a con t rad ic i t ion .  Thus  
r > p, as asserted.  

N o w  set 

(3.19) ~o(z) = ~ (z )  - (a/(z - p)) = ~ (y,/n! + a/p"+l)z ", 
n=O 

where  a = - I /F '  (p) is the res idue of 7 ~ at  p. Since ~0 is ana ly t ic  a t  p, (3.19) converges  there, 
and  so 

(3.20) l i ra  (y, p"/n! + alp) = O, 

f rom which it fol lows tha t  

(3.21) y,  ~ n ! / -  ap "+1 = n! /F ' (p)p  "+1 . 

We r e m a r k  tha t  Bender  [1] has  es tab l i shed  resul ts  which coincide  with (3.21) when 
F (z) = e z - 1. We avo id  his use of a special  case of D a r b o u x ' s  t heo rem by our  choice of 
the funct ion q0 (z) of (3.19) to  " repa i r "  7 j (z) [cf. Bender ' s  g l  (z), p. 501]. 

The  fo l lowing t h e o rem yields, as special  cases, the l imit ing d i s t r ibu t ions  of the r a n d o m  
var iables  T,, M, ,  and  W,: 

Theorem 3.2. Under the hypotheses of  Theorem 3.1, with p the unique positive real 
solution of  F (z) = 1, if one defines random variables (Yn), >= 1 and Y by the density functions 

(3.22) 

and 

(3.23) f ( k )  = P ( Y =  k) = Ckpk/k!, 1 < k <  co, 

then (I1,) ~ Y in distribution and the moments of  Y, converge to the moments of  Y 

P r o o f. F o r  each  k > 1, it follows immed ia t e ly  f rom (3.13) app l ied  to  Y,-k  and  y ,  
tha t  

(3.24) f . (k)  = (nk) eky._~/y.  --. Ckpk/k, = f (k), as n --, oo. 
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Since the densities of the I1. converge pointwise to the density of Y and these random 
variables are discrete, (Y,) --* Y in distribution. 

Setting k = 1 in (3.24) yields f . ( l) /cl  ~ p as n --* o% and so 3M < R (the radius of 
convergence of F) and 3N such that f,(1)/c 1 < M for all n > N. Since 

k - 1  

(3.25) f.(k) = (Ck/k!) FI (f.-i(1)/ct) 
i = 0  

for I _ k < n and f,(k) = 0 for k > n, it follows that 3B such that f,(k) < BckMk/k! for 
all n, k > 1. Hence for all j > 1 

(3.26) 

and so 

k J f.(k) < k; B Ck Mk/k! 

(3.27) E(Y, j) = ~ kJf.(k) <= B ~ CkUMk/k! < cO, 
k = l  k - 1  

since F (z) = ~ Ck zk/k[ and all its derivatives are finite at z = M. It follows from the 
k = l  

Lebesgue dominated convergence theorem that 

(3.28) l im o E(Y. ~) = ~ k~f(k) = E(YJ). 
k = l  

In particular, since F(pz) = ~2 (Ckpk/k!)z k = ~ f (k)z k, we have 
k = l  k=J_ 

lim E(Y,) = E(Y)  = pF'(p) ,  
n--+ oo 

(3.29) 

and 

(3.30) 

so that 

(3.31) 

lim E(Y  2) = E(Y  2) = pF'(p)  + p2 F' (p) ,  
n- -*  oo 

l i rn  Var (1I.) = Var (Y) = p F '  (p) (1 - p F '  (p)) + p2 F" (p). 

The above theorem yields the following corollary, which describes the asymptotic 
behavior of the random variables T,, M,, and I41,: 

Corollary 3.2. 

(a) l i rnofr .(k ) = B(k + 1)2k/k! (2 ~ 0.3183247) 

j i m  E(T,,) = 2(e ~ + 1) ~ 1.5119294 

lim Var (T.) = 22(e a + 1 - 2(e 2z + e ~ + 1)) 
n ~ o o  
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(b) l ina  f~t, (k) = 2 (log (3~2))k/k! 

lim E(M. )  = 3 log (3/2) ~ 1.2163953 

l i m  Var (M.) = 3 log (3/2)(1 - 2 log (3/2)) 

(c) lim fw.  (k) = (log 2)k/k ! 
n ~ o o  

lim E(W,) = 2 log2  ~ 1.3862944 
n ~ o o  

lim Var (IV,) = 2 log 2 (1 - log 2). 
n ~ o o  

P r o o f. Apply (3.24), (3.29), and  (3.31) to Y, = T,, (with p = 2 ~ 0.3183247 the unique 
positive real solution of exp (e z + z - 1) = 2), Y, = M,  (with p = log (3/2)), and Y, = W, 
(with p = log 2), respectively. 

It  is interesting to note that  while the initial b lock size of any total order  on an n-set 
is always 1, even l i m  E(T,) is only about  1.5. On  the other  hand, it follows immediately 

from Theorem 2.1 that  E(G,) ~ n. 
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